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Abstract

Background: Nesprins (Nuclear envelope spectrin-repeat proteins) are a novel family of giant spectrin-repeat containing
proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ,1mDa and ,800 kDa
is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have
multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms.

Results: In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database
and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and
termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only
expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of
nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show
localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE).
Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type,
suggesting any single nesprin variant may have different functions in different cell types.

Conclusions: These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify
potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for
the diverse range of disease phenotypes observed when these genes are mutated.
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Introduction

Nuclear envelope (NE) spectrin-repeat proteins, or nesprins, are

a novel family of nuclear and cytoskeletal proteins with rapidly

expanding roles as intracellular scaffolds and linkers [1,2,3,4].

Nesprins are characterized by a central extended spectrin-repeat

(SR) rod domain and a C-terminal Klarsicht/ANC-1/Syne

homology (KASH) transmembrane domain, which acts as a NE

targeting motif. At the NE, via interactions with the Sun-domain

family of proteins and the nuclear lamina, nesprins on both the

inner and outer nuclear membrane form the linker of the

nucleoskeleton and cytoskeleton (LINC) complex [5,6]. This

complex requires the giant nesprin-1 (,1 MDa) and nesprin-2

(,800 kDa) isoforms, which possess a pair of N-terminal calponin

homology domains, which bind directly to F-actin [7,8]. Nesprin-3

(,110 kDa) and nesprin-4 (,43 kDa) are smaller family members

with more divergent spectrin-repeats. These lack the N-terminal

CH domains of nesprin-1 and -2 and via SRs interact with

intermediate filaments and microtubules respectively [3,4,9].

Disruption of the LINC complex via mutations in nesprin-1 and

-2 or their binding partners, such as emerin and lamin A/C, give

rise to Emery Dreifuss Muscular Dystrophy (EDMD)

[6,10,11,12,13,14,15,16,17]. However, emerging evidence impli-

cates nesprin-1 and -2 in several other unrelated diseases,

including schizophrenia, epithelial cancers and autosomal reces-

sive cerebellar ataxia (ARCA1), which are not characterized by

NE defects [18,19,20]. It is likely that these non-canonical roles for

nesprin are mediated by alternative transcription that has been

shown to generate multiple tissue-specific nesprin variants that

lack either the CH domain, the KASH domain or both and

localize to a number of subcellular compartments [2,21]. For

example, nesprin-1 has been shown to localize to the Golgi

apparatus and over-expression of dominant-negative nesprin-1

fragments composed of SRs within the central rod domain disrupt

Golgi organization and function [22,23,24]. Nesprin-1 isoform

Drop1, which consists of the N-terminal CH domain and SRs but

lacks the KASH domain, is significantly down regulated in

epithelial cancer and may play a role in chromatin organization

[16,25,26]. Furthermore, the brain-specific nesprin-1 isoform,

candidate plasticity gene 2 (cpg2), consists solely of SRs and

localizes to the neuronal postsynaptic endocytic zone surrounding

dendritic spines where it regulates clathrin-mediated uptake and

recycling of chemokine receptors [27,28].
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In order to assess further the extent of alternate nesprin

functionality, in this study we set out to identify novel nesprin

variants by identifying 59UTRs and 39UTRs transcribed from the

nesprin-1 and nesprin-2 genes. We provide evidence that both

nesprin-1 and -2 undergo alternative splicing and express multiple

tissue specific variants generated by alternate initiation and

termination and that the sub-cellular localization of these variants

is cell type dependent. We also provide a unifying nomenclature

system for nesprin variants and their UTRs.

Results

Identification of Novel Nesprin-1 and Nesprin-2 UTRs
We adopted two approaches to identify bone fide novel 59 and

39UTRs. We first performed 59 and 39 RACE from HeLa, Skeletal

Muscle and Brain cDNA libraries using multiple gene specific

nesprin primers and nested primers designed towards the end of a

range of exons throughout the nesprin gene. Many PCRs

produced non-specific or no amplicons (data not shown) however,

products for multiple UTRs as retained introns were detected

(Figure 1A). For nesprin-1 we identified N1-59E83, a novel 59UTR

where the first coding exon utilised is exon 83. Multiple nesprin-1

39UTRs were detected in a tissue/cell specific manner where the

last coding exons were either exons 14, 44, 82, 90 or 106 (N1-

39E14, N1-39E44, N1-39E82, N1-39E90 and N1-39E106 respec-

tively). Similarly N2-39E50 and N2-39E90 are two novel nesprin-2

39UTRs also identified by RACE. The stop codons for isoforms

terminating with these novel 39 ends were found in retained

intronic sequences between the last coding exon and the exon

thereafter. In nesprin variants using these 39 ends the ‘retained

intron’ resulted in the addition of unique amino acids followed by

a stop codon that were absent from the giant isoforms.

Downstream of the stop codon will be a polyA signal followed

by a polyadenylation site. For example, variants terminating with

the N1-39E90 UTR contain eight codons before the stop codon in

the retained intron between exon 90 and exon 91. Thus variants

terminating with this 39UTR possess a novel 8 amino acid peptide

sequence, ‘AGAGYPHQ*’, which is absent in the giant isoform

(Figure 1B).

Due to limitations with RACE analysis we next screened

available databases for novel nesprin cDNA transcripts. The

NCBI expressed sequence tag database (EST), which consists of

one-shot sequences of cloned mRNA, was blasted with consecu-

tive, 500 bp-overlapping 1 kb nesprin-1 and nesprin-2 sequences

covering the entirety of the giant isoform cDNAs. Several novel

UTRs were detected in the EST database screen, typically

presenting as retained introns between two exons (Table 1).

59UTRs were considered real if they contained an identifiable and

viable Kozak sequence surrounding the first start codon. Only

those 39UTR sequences which already included a poly(A) tail or

contained at least one poly(A) site downstream of the initial ORF

termination codon, as determined by scanning with the polyAdq

program or manually for non-canonical poly(A) signals, were

considered for further study.

The majority of UTRs identified by RACE or through the EST

screen were verified by PCR and DNA sequencing using a multi-

tissue cDNA panel (Figures 1C,D. Table 1 contains a column

showing the UTRs which have been verified by PCR). PCR

primers were designed so that one primer was present within the

UTR and the second within a constitutively present exon with at

least one intervening intron sequence to control for genomic DNA

contamination. Although many UTRs PCR amplified in a range

of tissues, most were transcribed in a tissue specific manner

suggesting they lead to the creation of tissue specific nesprin

variants. The potential combinations of 59 UTRs with 39UTRs are

extensive and would allow generation of many variants. Figures 2A

and 3A provide an outline of the nesprin-1 and nesprin-2 UTRs

across their respective genes with figures 2B and 3B highlighting

proposed variants that could be created by a ‘mix-and-match’

approach in vivo for nesprin-1 and nesprin-2 respectively (Table S1

and Table S2 shows the UTRs that when combined generate these

nesprin-1 and -2 variants respectively). The spectrin repeats (SRs)

used in our schematics to represent nesprins are based on the

predictions of SRs as previously described [29]. Many of the

predicted nesprin variants are too large to be detected by

conventional PCR and are therefore hypothetical. The smaller

nesprin variants were however validated by PCR and are

described below.

Although many variants could retain the KASH domain, there

is a possibility of generating isoforms composed solely of SRs.

Therefore, the identified nesprin variants were named according

to their predicted molecular weights and the domains they

possessed. For example, p56CHNesp1 is a nesprin-1 variant of

56 kDa which has the N-terminal CH domains, p50Nesp1 is a

50 kDa nesprin-1 variant which lacks both the CH domains and

the KASH domain and is composed of SRs, while p53KASHNesp1

is a 53 kDa KASH containing variant lacking CH domains.

Variants that lack the KASH domain due to alternative splicing

events in and around the exons coding for the KASH domain have

been described as DKASH variants (See below).

Nesprin KASH Isoforms
So far a number of KASH variants including the nesprin-1 and

nesprin-2 a,b isoforms have been identified. In principle any of the

59UTRs identified in this study could be utilised with the 39UTR

of the nesprin-1 giant to make KASH containing NE localized

nesprin variants. Whilst most 59UTRs are too distant from the

KASH domain for PCR amplification we were able to verify

p53KASHNesp1 (Accession number JQ754366), the smallest

nesprin-1 KASH containing isoform identified to date, with a

molecular weight of 53 kDa. p53KASHNesp1 uses the N1-59E138

alternative start site which was detected in heart, spleen, lung,

brain, prostate, PBL, small intestine (SI), ovary and liver cDNA

(Figure 1C). Although full-length p53KASHNesp1 could not be

detected in a range of primary and transformed cell lines it was

detected in tissues including heart, spleen and peripheral blood

leukocytes (PBL) (Figure 4F). Flag-p53KASHNesp1 cloned from

heart cDNA confirmed NE localization when transfected into

U2OS cells (Figure 4A,B).

Nesprin Calponin Homology Domain containing Isoforms
Next we set out to identify the sub-cellular localizations of

KASH-less nesprin variants composed of SRs or CH domains.

p56CHNesp1 and p32CHNesp2 are two nesprin CH-domain

containing variants with a Mw suitable for PCR amplification

and cloning (Accession numbers JQ740783 and JQ754367

respectively) (Figures 4A,E). p56CHNesp1 initiates with the most

upstream nesprin-1 UTR utilised by the nesprin-1 giant and

terminates with N1-39E14, encoding a protein that possesses the

CH domains and the first SR of nesprin-1. p32CHNesp2 terminates

upstream of the first SR coding exon and is therefore the only

known nesprin variant to date which lacks any SRs. Interestingly

we observed differential sub-cellular localizations when

p56CHNesp1 was transfected into transformed and primary cell

lines. In U2OS cells p56CHNesp1 surprisingly localized to the

nucleolus while in HDFs it associated with actin stress fibres and

focal adhesions (Figure 4C,D). Whilst p56CHNesp1 expression was

ubiquitously detected in all cell lines examined, expression of

Identification of Novel Nesprin-1/-2 Variants
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p32CHNesp2 was limited to PBL, MBs and U2OS cells (Figure 4F).

Unlike p56CHNesp1, p32CHNesp2 localized to focal adhesions

when ectopically expressed in its native U2OS cells (Figure 4E).

Nesprin Central Rod Isoforms
Multiple 59 and 39 UTRs were identified in the nesprin-1 gene

between exons 83 and 90, suggesting that it is a region where

multiple variants are generated (Figure 5A). Using RACE we

identified a 59UTR where the first coding exon was exon 83 (N1-

59E83) and a 3‘UTR where the final coding exon was exon 90

(N1-39E90) (Figure 1A). Furthermore online databases revealed an

additional 59UTR associated with exon 84 (N1-59E84) and a

previously described Kazusa clone KIAA1262. The KIAA1262

sequence includes exons 77 to 87 and terminates in a 39UTR

where the final coding exon is exon 87 (N1-39E87). The

identification of these new UTRs together with the pre-existing

nesprin-1b1 and nesprin-1b2 59UTRs confirms that this is a region

of nesprin with the ability to generate multiple alternative

transcripts (Figure 5A).

Hypothetically these UTRs could generate 7 nesprin-1 splice

variants by alternative initiation and termination of the four

59UTRs with the three 39UTRs (Figure 5A). To test this, PCR

amplification from 59 to 39UTRs were carried out in multiple

tissue cDNA panels to see if any of the variant messages were

transcribed. p50Nesp1 (Accession number JQ740784) expression

was ubiquitous while expression of the p41Nesp1 (Accession

number JQ740786), p31Nesp1(Accession number JQ740785),

p23Nesp1 (Accession number JQ754364) and p12Nesp1 (Accession

Figure 1. Identification of novel nesprin UTRs. A) cDNA ends identified by 39 and 59 RACE from Brain, Skeletal Muscle (SkeMus) and HeLa cDNA
libraries. B) DNA sequencing results suggest that nesprin isoforms terminate with unique C-terminal ends absent from the giant isoforms as a result of
intron retention. For example, isoforms utilising the N1-39E90 UTR terminate with ‘AGAGYPHQ’ amino acids, giving it a unique fingerprint. Blue
sequences show the coding regions of exons 90 and 91, black sequences show intronic regions and red sequence indicates a stop codon. C)
Validation and tissue specificity of nesprin-1 UTRs identified on online databases and by RACE were confirmed by PCR amplification from a multiple
tissue cDNA panel and DNA sequencing. Nesprin-1 PCRs were carried out when UTRs were identified on cDNA panels available at the time and are
therefore organised into 3 separate sections. D) Validation and tissue specificity of nesprin-2 UTRs identified on online databases and by RACE were
confirmed by PCR amplification from a multiple tissue cDNA panel and DNA sequencing. Nesprin-2 PCRs were carried out when UTRs were identified
on cDNA panels available at the time and are therefore organised into 3 separate sections. Small Intestine and Peripheral Blood Lymphocytes have
been abbreviated as ‘SI’ and ‘PBL’ respectively for all cDNA panels.
doi:10.1371/journal.pone.0040098.g001
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number JQ754365) variants was restricted to certain tissues.

p30Nesp1 and p20Nesp1 failed to amplify and therefore are probably

not expressed (Figure 5A). When p50Nesp1 was expressed in U2OS

cells it localized to and polymerized microtubules while all the

other isoforms displayed a diffuse cytoplasmic and nuclear

localization (Figure 5B for Flag- p50Nesp1 and Flag- p31Nesp1).

All other isoforms are shown in Figure S1A). p23Nesp1 and

p12Nesp1 both localized to and disrupted nucleolar morphology

when expressed in HDFs, causing fibrillarin to redistribute into

peri-nucleolar caps, while the slightly larger p31Nesp1 localized

with fibrillarin without affecting its localization (Figure 5C). When

p41Nesp1 was expressed in HDFs, it displayed diffuse cytoplasmic

localization and also concentrated around the ER (Figure S1B).

Another central rod variant Nesprin-1 p55Nesp1, is composed of

a single SR and lacked both the CH and KASH domains

(Figure 5D). p55Nesp1 was detected in the kidney, spleen and PBL

by PCR and displayed diffuse cytoplasmic localization when

transfected into U2OS cells (Figure 5D).

Nesprin Isoform Expression is Highly Adaptable
To further confirm the validity of the novel variants and

because previous evidence indicates that nesprins have the ability

to self-compensate we decided to investigate how knocking down a

sub-set of transcripts would effect expression levels of variants

encoded by nearby transcripts [30]. By designing an siRNA

targeting exon 90 (si-90) we were able to monitor by qRT-PCR

the levels of transcripts terminating with N1-39E87 and N1-39E90

UTRs (Figure 6). In theory this siRNA should target all transcripts

terminating with N1-39E90 but have no effect on N1-39E87

terminating transcripts as this termination site is located to the 59

end on exon 87. As expected, si-90 significantly reduced levels of

N1-39E90 expression but more interestingly also significantly

knocked down levels of the transcripts terminating with N1-39E87.

Furthermore si-136, an siRNA designed towards the KASH

domain of nesprin-1 increased expression of N1-39E87 transcripts,

showing that perturbations in the expression of one transcript can

influence expression of other downstream transcripts. Conversely

no change in N1-39E90 was detected with si-136, however both

siRNAs knocked down levels of nesprin-1 KASH expressing

transcripts (Figure 6).

Nesprin and Alternative Splicing of Cassette Exons
Next we set out to determine whether any of the 100 plus exons

of the nesprin-1 and nesprin-2 genes have the ability to undergo

alternative splicing to increase further variant diversity. As a

starting point we used nesprin EST and nucleotide databases to

look for potential splicing events which identified cassette exons 69,

93 and 145 for nesprin-1 (Table 2). Exon 69 is a potential isoform

Table 1. UTRs identified through online databases.

Gene UTR 59 or 39 Location NCBI Accession
Verified by
PCR

Nesprin-1 N1-59I14/15 59 Intron 14–15/ DA151121, CR933676, AK055440, BG197747, DB324328 +

Nesprin-1 N1-39E18 39 Exon 18 BC028616, DB545136, DB540697, DB538738 +

Nesprin-1 N1-59I18/19 59 Intron 18–19 DA337073 2

Nesprin-1 N1-39E20 39 Exon 20 DB540697, DB545136, DB538738 2

Nesprin-1 N1-59I21/22 59 Intron 21–22 DA337073 +

Nesprin-1 N1-39E25 39 Exon 25 DA151121, CR933676, AK055440, BG197747, DB324328 +

Nesprin-1 N1-39E37 39 Exon 37 AL713682 +

Nesprin-1 N1-59E44 59 Exon 44 DB300122 2

Nesprin-1 N1-39E62 39 Exon 62 BC039121,CA425673,AW300380, BG203678, BG210617, DB516174,
CA441052, BX093712,CA312508, DB319424, AA227537,AI866946

+

Nesprin-1 N1-59E84 59 Exon 84 BU461222 2

Nesprin-1 N1-39E87 39 Exon 87 AB033088 2

Nesprin-1 N1-59E92 59 Exon 92 CJ462692, DA229059, DA227411, DA212433, DA509325, DB059554,
DA802484, EE366817, DA241105, DA338782, DB289567, DA116814,
DA493491

+

Nesprin-1 N1-59E97 59 Exon 97 BF740426, BF726175 2

Nesprin-1 N1-59I128/129 59 Intron 128–129 AK304825 +

Nesprin-1 N1-59I132/133 59 Intron 132–133 DA632075 2

Nesprin-1 N1-59E138 59 Exon 138 DA827648 +

Nesprin-2 N2-39E9 39 Exon 9 BC042134, BC071873 +

Nesprin-2 N2-39E46 39 Exon 46 BX648234 +

Nesprin-2 N2-59E49 59 Exon 49 BC036941, BI860943,AA247756 +

Nesprin-2 N2-59E63 59 Exon 63 CV571029 2

Nesprin-2 N2-59I 91/92 59 Intron 91–92 DA226447 +

Nesprin-2 N2-59I 99/100 59 Intron 99–100 DB089560, BM805144, DB088145, DA810994, DA725349, DA101036,
DB152052, DA196319, DA706514, DA186088, DA106538, DA093934,
DA334037, DA333629, DB063748, DA222451, DA230417, DA097798,
DA094004, DA522676

+

Table listing all potential UTRs identified through available online databases.
doi:10.1371/journal.pone.0040098.t001
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or tissue specific coding region located between exons 6 and 7 and

encodes a 7 amino acid peptide insert at the end of the first CH

domain of nesprin-1 (See Figure S2A for nesprin-1 genomic map

with cassette exon). Exon 93 contributes an additional 47 amino

acids to a SR of the central rod domain while exon 145 encodes a

peptide sequence at the C-terminal region of the KASH domain.

Several alternatively spliced exons, were also identified in

nesprin-2 using the same data mining procedure, including

cassette exons 1019, 1079 and 114 and 59 alternatively spliced

exons 110 to 113 (Table 2). Unlike nesprin-1, the identified exons

were all located near the C-terminal half of the nesprin-2 giant.

Splicing of exons 1019, 1079, 110 to 113 and 114 would alter the

length of the coiled-coil regions surrounding the two SR preceding

the KASH domain while removal of the first 31aa encoded by

exon 113 would eliminate the final SR before the KASH domain.

As with exon 69 of nesprin-1, exon 1019 and 1079 of nesprin-2

represent coding regions which maybe isoform or tissue specific

and are located between exons 101 to 102 and 107 to 108

respectively. (See Figure S2B for nesprin-2 genomic map with

cassette exons).

To identify whether these splicing events did indeed take place

we designed primers to exons either side of the cassette exons and

carried out PCR analysis from U2OS and VSMC cDNA libraries

(Figure 7A,B). For nesprin-1, two PCR products appeared from

U2OS and VSMC libraries when PCR amplification was carried

out across exon 93; the larger of the two bands included exon 93

and the smaller band with the exon excluded. Nesprin-2 splicing

showed more tissue specificity than nesprin-1, with PCR products

including and excluding cassette exon 1079 expressed in U2OS

cells at equal quantities while in VSMCs exon 1079 was exclusively

expressed with no band detected for transcripts with the exon

excluded expressed. Furthermore in VSMCs, transcripts with

exons 110–113 removed were detected as well as transcripts with

the exons included, although transcripts with the exons included

seem to be transcribed in greater abundance. U2OS cells only

expressed transcripts with the exons included.

Although splicing of cassette exons 69 of nesprin-1 and exon 28–

31, 1019 and 114 for nesprin-2 failed to be detected in this set of

PCRs, examination of a wider array of cells and tissues is required

to determine whether the splicing events listed in the databases

occur.

Nesprin DKASH Isoforms
The search for potential splicing events for nesprin also revealed

splice events that eliminate the KASH domain. Alternative

splicing of cassette exon 145 of nesprin-1, results in a frame shift

that removes the KASH domain to create Nesprin-1DKASH (N1-

DKASH) (Figure 8A). Though the same 39UTR adjacent to exon

146 is shared between KASH domain and N1-DKASH sequences,

the removal of exon 145 results in a change in the open reading

frame of N1-DKASH variants and therefore they terminate with a

novel 11aa tail: VHKRWLRFLPF rather than the RYTNGPPPL

sequence utilized by KASH containing variants. Expression of N1-

DKASH isoforms was detected in all tissue cDNA examined by

PCR, suggesting that this splicing and resultant variants are

ubiquitously expressed (Figure 8D). When the DKASH variant of

p53KASHNesp1 (p53DKASHNesp1) lacking exon 145 was trans-

fected into U2OS cells it no longer resided at the NE, but instead

displayed strong nuclear matrix localization and weak cytoplasmic

staining (Figure 8A).

Unlike N1-DKASH, nesprin-2 possesses two mechanisms for

creating DKASH variants (Figure 8B,C). Like nesprin-1, genera-

tion of N2-DKASH1 occurs via the removal of cassette exons 110

to 113 but uses the same 39UTR as the KASH variant. This

splicing event results in a change in the ORF and therefore N2-

DKASH1 terminates with a GIAGHSATPPA amino acid

sequence rather than the YPMLRYTNGPPPT sequence used

by KASH containing isoforms. N2-DKASH2 is created by a novel

39UTR immediately adjacent to the 39 end of exon 115. N2-

DKASH2 splicing truncates larger isoforms without generating a

novel C-terminal peptide. The N2-DKASH1 splicing was pre-

dominantly detected in the brain and kidney with smaller amounts

being amplified from the heart, where the lower band represents

the removal of the cassette exons promoting N2-DKASH1

formation (Figure 8D). The N2-DKASH2 termination was

detected in the heart and spleen only (Figure 8D).

Discussion

Nesprins as Adaptable, Tissue Specific, Intracellular
Scaffolds

This study has demonstrated that nesprins, by generating

variants via alternative transcriptional initiation and termination

show localizations and therefore functions independent of their

original description as NE linkers and scaffolds. Although nesprin-

1 has the potential to generate more isoforms than nesprin-2, with

more UTRs spread across the gene, the nesprin-2 isoforms are

primarily N-terminal truncations that would retain the KASH

domain. This suggests that nesprin-1 may have more functions

beyond the NE than nesprin-2 or that sequences near the highly

conserved C-terminus of nesprin-2 are important for cell function

[29]. To our knowledge, the potential combinations of UTRs and

exon splicing are unlimited. This combined with the ability of

nesprins to dynamically regulate variant expression would allow

cells to fine-tune their nesprin isoform repertoire as needed to

maintain and restore homeostasis following stress or to regulate

tissue-specific signalling pathways [31]. As a proof of principle we

were able to show that nesprin transcription appears to be highly

adaptable with a feedback loop regulating nesprin variant

expression. For example we demonstrate using siRNAs that by

knocking down a region of nesprin-1 near the KASH domain we

were able to upregulate expression of N1-39E87 UTR transcripts.

Furthermore nesprin-2 CH domain knockout mice display an

altered expression pattern for specific nesprin-2 C-terminal

isoforms in certain tissues to compensate for the loss of nesprin-2

giant or nesprin-2 actin binding domain isoforms [30]. These

observations suggest that nesprin alternative transcript generation

is highly flexible and more complex than a simplified tissue-specific

expression model.

Generation, Regulation and Function of Novel Tissue
Specific Nesprin Variants via Alternative Initiation and
Termination

Using 59 and 39RACE as well as sequences in the EST

database, followed by PCR amplification and DNA sequencing,

we identified multiple novel sequence variants for nesprin-1 and -

2. RT-PCR was used to establish the existence of mRNA

Figure 2. Potential nesprin-1 isoforms. A) Genomic map of the nesprin-1 gene highlighting the positions of the nesprin-1 UTRs identified to
date. B) Proposed nesprin-1 isoforms created by alternative transcription. SRs are numbered and shown according to the scheme of Simpson and
Roberts 2008 and are shown to scale.
doi:10.1371/journal.pone.0040098.g002
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Figure 3. Potential nesprin-2 isoforms. A) Genomic map of the nesprin-2 gene highlighting the positions of the nesprin-1 UTRs identified to
date. B) Proposed nesprin-2 isoforms created by alternative transcription. SRs are numbered and shown according to the scheme of Simpson and
Roberts 2008 and are shown to scale.
doi:10.1371/journal.pone.0040098.g003

Identification of Novel Nesprin-1/-2 Variants

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e40098



Identification of Novel Nesprin-1/-2 Variants

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40098



transcripts for full-length short isoforms or for the novel UTRs of

potentially larger variants. The multiple UTRs allow nesprins to

express a large number of sequence variants via alternate initiation

and termination and many of these were generated in a tissue

specific manner. Therefore, in addition to the novel UTR’s

verified in this study it is likely that by performing RACE in a

greater collection of cells/tissues we may be able to identify further

nesprin alternate initiation and termination sites.

To date, the mechanisms of tissue specific generation of nesprin

variants has not been studied. Analysis of the human transcrip-

tome shows a direct correlation between alternative promoter use

and alternative splicing [32]. Alternative promoters can produce

mRNAs with different 59UTRs that encode the same protein,

distinct N-termini, and even different proteins from the same locus

[33,34,35,36]. The identification of multiple, novel 59UTRs in

both nesprin-1 and -2 indicated the presence of several internal

alternative promoters. The existence and regulation of alternative

nesprin promoters has not yet been explored but this study

suggests that these promoters are utilised in a tissue specific

manner. Furthermore, because many individual variants have

unique pairs of 59 and 39UTRs, additional control and regulation

of variant expression can be maintained. The 59UTR is an

important regulator of mRNA translation and can contain

regulatory motifs/sequences which affect the rate of translation

as well as containing a kozak sequence upstream of the start codon

which plays a major role in determining the translational strength

of the transcript [37,38]. The 39UTR of mRNA transcripts can

play a role in mRNA localization, stability, and translation

[39,40,41,42]. For example, binding of miRNAs to partially

complementary sequences in the 39UTR can result in de-

adenylation and translational inhibition or destruction of the

target mRNA [43,44]. A RegRNA scan of both the nesprin 59 and

39UTRs for regulatory RNA motifs detected several potential

miRNA binding sites which were transcript specific and could

potentially regulate variant translation (data not shown).

Importantly, we showed that many of the variants generated

through retained introns had generated unique peptide sequences.

It is highly likely that these sequences expose new functional

domains that give the variants additional localization signals or

motifs that play an important role in their function. For example,

ELM analysis predicts a novel retinoblastoma (Rb) interacting

motif found in cell cycle regulatory proteins at the C-terminal end

of p220CHNesp2 while the N-terminus of p931KASHNesp1

contains a potential N-myristoylation site, a post-translational

modification which facilitates membrane anchoring [45,46,47].

ELM analysis also predicts multiple PKA, MAPK and CDK

phosphorylation sites in the unique sequences of p32CHNesp2,

p56CHNesp1 and p55Nesp1. To further explore this hypothesis

yeast-2-hybrid analyses or co-immunoprecipitation assays will be

required to identify binding partners for specific nesprin variants.

The ultimate validation for each proposed variant will be the

detection of their translation and expression by western blotting.

Post-translational modifications such as phosphorylation, sumoy-

lation, and enzymatic cleavage may be partially responsible for the

range of western bands often visualized using the currently

available anti-nesprin antibodies [1,17,48]. Designing isoform-

specific antibodies will help to distinguish between modifications

and splicing.

Alternative Splicing of Cassette Exons may Diversify
Nesprin Function and Localization

In addition to alternative initiation and termination, we showed

that some of the cassette exons located in the EST database are

indeed valid. It is unclear whether these splice events occur in

multiple variants or are isoform specific but they are likely to

substantially increase nesprin diversity, likely in a tissue specific

manner. This notion was supported by the observation that while

some splice events occurred in the majority of cell lines, some

events seemed to be cell type specific. For example unlike the

nesprin-1 DKASH which was detectable in all cells tested, the

splicing event of cassette exons which generate nesprin-2 DKASH

seem to be very tissue specific. Furthermore the ability for nesprin-

2 to generate DKASH variants via 2 different mechanisms, one by

the utilization of a unique 39UTR and another by the splicing of

exons 110–113 suggest that the C-terminal ends of the DKASH

variants may serve unique tissue specific functions at sites away

from the NE.

Although in this study we did not look specifically at the effects

of structure, function and localization of nesprin variants with and

without alternate splicing of the cassette exons we did show that

some of these splicing events also created unique peptides.

Nesprin-1 exon 93 encodes a unique 47 amino acid peptide

sequence and nesprin-2 exon 1079 encodes a unique 23 amino

acid peptide. Although these peptide sequences are not very large

they may be capable of encoding novel localization signals or

binding sites for interactions with other proteins. Our next aim will

be to create nesprin variants with and without these exons so we

can identify their putative roles in nesprin function.

However we were able to show that KASH-less nesprin

isoforms displayed subcellular localizations which varied depend-

ing on the cell lines they were expressed in. In U2OS cells

p56CHNesp1 localized to the nucleolus while the same protein

localized along actin cables and focal adhesions in HDFs.

Currently we do not understand what determines this differential

change in subcellular localizations but we speculate that the

presence of endogenous p32CHNesp2 at focal adhesions in U2OS

cells (p32CHNesp2 is not expressed in HDFs but is expressed in

U2OS) is enough for p56CHNesp1 function to become redundant

at focal adhesions in U2OS. Furthermore we suspect that

differences in the actin cytoskeleton may play a role in differential

localization of p56CHNesp1. The nesprin-1 CH domains contain

two nuclear localization signals which may be utilized in cells with

low actin levels such as U2OS cells but not in structural cells such

as HDFs where there is plenty of actin for the protein to bind to

[49]. Alternatively, potential p56CHNesp1 phosphorylation events

predicted by ELM analysis may occur in a tissue specific manner

which may contribute to the differences seen in localizations

between the two cell types. Similarly differential sub-cellular

localizations were seen when central rod isoforms p12Nesp1,

Figure 4. Cloning and expression of novel Nesprin KASH and CH isoforms. A) Schematic representation of p53KASHNesp1 (Accession
numberJQ754366) and p56CHNesp1 (Accession number JQ740783) relative to the nesprin-1 giant. B) p53KASHNesp1 localizes to the NE when
transfected into U2OS cells. C) Nesprin-1 Flag-p56CHNesp1 localized to the nucleolus when transfected into U2OS cells. D) Nesprin-1 Flag-p56CHNesp1

localizes to actin stress fibres and with Focal Adhesion Kinase (FAK) at focal adhesions when transfected into Human Dermal Fibroblasts (HDFs). E)
Nesprin-2 Flag-p32CHNesp2 (Accession numberJQ754367) co-localized with FAK at focal adhesions when transfected into U2OS cells. F) p53KASHNesp1

expression was not detected by PCR in U2OS, Human Dermal Fibroblasts (HDFs), Vascular Smooth Muscle Cells (VSMCs) or Myoblasts (MBs), however
it was detected in the heart, spleen and peripheral blood leukocytes (PBL). p56CHNesp1 was detected in all cells and tissues examined whereas
p32CHNesp2 was limited to U2OS cells, MBs and PBL.
doi:10.1371/journal.pone.0040098.g004
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p23Nesp1 and p31Nesp1, were transfected into U2OS and HDFs. In

U2OS cells all isoforms displayed diffuse cytoplasmic localization

while in HDFs nucleolar localization was observed. Differences in

post-translational modifications could vary between the two cell

lines or the proteins may have different binding partners in each

cell line which could contribute to differential localizations.

Ultimately the localization of these isoforms would have to be

monitored in cells that express the variant endogenously.

Isoforms and Disease
Multiple nesprin mutations have been identified in Emery

Dreifuss Muscular Dystrophy (EDMD), Dilated Cardiomyopathies

(DCM), autosomal recessive arthrogryposis (ARA) and autosomal

recessive cerebellar ataxia (ARCA1) [15,17,18,50,51]. The nesprin

mutations promoting EDMD and DCM presumably affect LINC

nesprin variants resulting in abnormal nuclear morphology and

function.

ARA is caused by an A to G mutation in a splice acceptor site,

resulting in retention of intron 136 of nesprin-1 [51]. This

mutation produces a premature stop codon and therefore the

nesprin-1 giant, nesprin-1b and nesprin-1a isoforms should lack

the KASH domain. Conversely these patients appeared to have no

defects in nuclear morphology or lamin and emerin localization,

suggesting other nesprin gene products or p53KASHNesp1 which

should not be effected by this mutation maybe enough to keep the

nucleus intact.

ARCA1 is a neurological disease characterized by irregular gait

and lack of limb coordination [18]. Five different mutations giving

rise to ARCA1 were identified within the central spectrin rod of

nesprin-1, upstream of the KASH variants identified so far. The

A310067G mutation which effects the invariant A of the AG splice

acceptor site at the junction of exon 85 and intron 84 results in the

formation of a pre-mature stop codon and therefore will effect

production of not only the p40, p50, p31 and p23 nesprin-1

proteins identified in this study but also other variants terminating

with the N1-39E87 and N1-39E90 ends in there native tissues/

cells. Although many diseases associated with nesprins so far

suggest that NE nesprins are involved, ARCA1 patients appear to

have no nuclear defects, suggesting that nesprin associated

signalling pathways beyond the NE may be significantly hindered

and potentially causative in the disease.

Materials and Methods

Identification of Novel UTRs
Rapid Amplification of cDNA Ends (RACE) on Brain, HeLa

and Skeletal muscle Marathon-Ready cDNA libraries using the

Advantage-2 PCR kit (Clontech) and gene specific primers was

performed (Table S3). Resultant PCR fragments were cloned into

pGEM-T easy vector (Promega) and sequenced (Gene Service).

These sequences were then BLASTED against the human genome

and novel cDNA ends were further analyzed.

Additional novel UTRs for nesprin-1 and nesprin-2 were

identified by screening the NCBI expressed sequence tag (EST)

database with consecutive, 500 bp-overlapping 1 kb Nesprin-1

and Nesprin-2 sequences covering the entirety of the giant isoform

cDNAs. Tissue specificity of novel UTRs was determined by

performing PCR amplification in a multiple tissue cDNA

collection (Clontech). 30 PCR cycles were performed on 0.5 ul

of cDNA followed by a further 15 cycles on 1 ul of the amplified

Figure 5. Nesprin-1 Central rod isoforms. A) Nesprin-1 isoforms p31Nesp1, p23 Nesp1, p12 Nesp1, p50 Nesp1, p41 Nesp1, p30 Nesp1 and p20 Nesp1 are
potential variants which could be generated through alternative initiation and termination using UTRs located between exons 83 and 90. All isoforms
except p30Nesp1 and p20Nesp1 PCR amplified from at least one tissue examined. B) p50Nesp1 localized to and polymerized microtubules in U2OS cells.
p31Nesp1 displayed a diffusive localization when transfected into U2OS cells. See Figure S1A for diffusive localization staining of p23Nesp1, p12Nesp1 and
p41Nesp1. C) p23Nesp1 and p12Nesp1 promoted nucleolar cap formation in HDFs while p31Nesp1 localized to the nucleolus without causing any nucleolar
disruption. D) p55Nesp1 localized diffusively around the cytosol when transfected into U2OS cells and was detected in the kidney, spleen and
peripheral blood leukocytes (PBL) by PCR.
doi:10.1371/journal.pone.0040098.g005

Figure 6. Nesprin-1 expression is highly adaptable. Expression levels of N1-39E87, N1-39E90 and nesprin-1 KASH domain were monitored post-
siRNA knockdown using siRNAs targeting exons 90 and 136 of the nesprin-1 gene. As demonstrated si-136 increased expression of N1-39E87 whereas
si-90 reduced it’s expression. *p,0.01, ANOVA analysis, 95% confidence interval.
doi:10.1371/journal.pone.0040098.g006
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product. Specificity of the PCR products were validated by DNA

sequencing. Primers used for UTR expression can be found in

Table S4. Primers used for cassette exon splicing and detection of

nesprin DKASH variants can be found in Tables S5 and S6

respectively.

Plasmids
Isoforms p53KASHNesp1, p56CHNesp1 and p50Nesp1 were Taq

PCR amplified from tissue cDNA and cloned into pGEM-T

Easy. The pGEM-T plasmids were subsequently used as

templates for Pfu amplification with primers containing restric-

tion sites and ligated into pCMV-Tag2 vector. p53DKASHNesp1

was cloned using inverse PCR with Pfu off the Flag-

p53KASHNesp1 vector while p50Nesp1 served as a template for

the inverse PCR and creation of p41Nesp1 and p30Nesp1. The

Kazusa cDNA clone KIAA1262 served as a template for PCR

amplification and cloning of p31Nesp1, p23Nesp1 and p12Nesp1

into a pCMV-Tag2 (Clontech). p32CHNesp2 was PCR amplified

from IMAGE clone 5478637 and cloned into pCMV-Tag2 as

described.

Tissue culture
Normal human dermal fibroblasts (HDF) and osteosarcoma

cells (U2OS) were obtained from American Tissue Culture

Table 2. Cassette exons identified through online databases.

Nesprin Exon Splicing Peptide Sequence Accession

Nesprin-1 Exon 69 Cassette SMHRGSP CF552114

Nesprin-1 Exon 93 Cassette MTAGRCHTLLSPVTEESGEEGTNSEISSPPACRSPSPVANTDASVNQ DB289567,
AK310977,
CA425673,
CA312508,
DA809350,
DB224830,
DA493464

Nesprin-1 Exon 145 Cassette VHKRWLRFLPF* BX647837

Nesprin-2 Exons 28–31 Cassette Premature stop codons AU185086

Nesprin-2 Exon 101’ Cassette PTHGVQQKYYLMMTKNAMFIREEVFQFFPMTMHFLFINVIFPKLGN
CITIIIKGQDSRDPTSLQATTALAGLYQLGRQGSTARY

CR749324

Nesprin-2 Exon 107’ Cassette DVEIPENPEAYLKMTTKTLKASS NM_182914,
DA044815,
DB138084,
DA868743

Nesprin-2 Exons 110–113 Cassette IRASSPSKVQSSENYRRRGGDREQGPRQHTATALLPLKGGPGSPTPA
AAPPAAAAPGLPAALLRRRLQLHSGQQLCPVLLPHAEVHQWATPH
IEGIAGHSATPPA*

BM725084

Nesprin-2 Exon 114 Cassette NPASPLPSFDEVDSGDQPPATSVPAPRAK BE795270

An online scan of the EST and nucleotide databases indicated that the nesprin-1 and nesprin-2 genes underwent extensive alternative splicing and this was verified
using PCR (Figure 7A,B).
*Represents a stop codon for nesprin-1 exon 145 and nesprin-2 exons 110–113.
doi:10.1371/journal.pone.0040098.t002

Figure 7. Identification of nesprin-1 and nesprin-2 splicing events. A) PCR amplification across splice sites was carried out from cDNA
isolated from U2OS cells. Splicing of exon 93 for nesprin-1 was observed as was the splicing for nesprin-2 exon 107’. B) PCR amplification across splice
sites was carried out from cDNA isolated from VSMCs. Splicing of exon 93 for nesprin-1 was observed. Exon 107’ was retained in all nesprin-2
transcripts while splicing of exons 110–113 was also observed in these cells. +Represents bands with exon(s) excluded.
doi:10.1371/journal.pone.0040098.g007
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Collection (ATCC). The cells were passaged after reaching 70%

confluency and maintained in DMEM complete media (Sigma)

supplemented with 10 units/mL penicillin, 10 mg/mL strepto-

mycin, 200 mM L-glutamine and 10% FBS.

Transfections
For Flag-tagged construct expression, 16106 HDFs or U2OS

cells were electroporated with 1 mg plasmid DNA using an Amaxa

Nucleofector and cultured on coverslips for 16 hours.

Immunofluorescence
Cells were fixed for 5 minutes in 3.7% paraformaldehyde in

PBS followed by 2 min permeabilization with 0.5% NP-40 in

PBS. The coverslips were incubated with blocking solution (1%

BSA) for 1 hour at RT. The primary antibodies were diluted in

blocking solution and applied to the coverslips for 1 hour at

RT, followed by a 1 hour RT incubation with fluorescent dye-

conjugated secondary antibodies (Invitrogen) diluted in blocking

solution. The coverslips were washed with PBS, mounted onto

Figure 8. Generation of nesprin-1 and nesprin-2 DKASH variants. A) Nesprin-1DKASH is generated through the removal of cassette exon 145,
resulting in disruption of the KASH domain. Ectopically expressed p53DKASHNesp1 fails to localize to the NE in U2OS cells and is strongly concentrated
within the nucleus and weakly in the cytosol. B) Nesprin-2DKASH1 is generated though the removal of exons 111–112 through the splicing event
described in the previous section (splicing shown in red). C) Nesprin-2DKASH2 is generated through utilization of an alternative 39UTR juxtaposed to
exon 115. D) PCR-based tissue screen for DKASH variants shows that the removal of exon 145 for Nesprin-1DKASH is detected in a wide array of
tissues. Nesprin-2DKASH1 splicing is detected pre-dominantly in the brain and kidney with small amounts also detected in the heart. +denotes the
spliced Nesprin-2DKASH1 product. Nesprin-2DKASH2 was detected in the heart and spleen only. Peripheral Blood Leukocytes (PBL).
doi:10.1371/journal.pone.0040098.g008
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slides with medium containing DAPI, and visualized using a

Leica SP5 confocal microscope or a Zeiss Axioskop microscope.

siRNA Knockdown and qRT-PCR
U2OS cells were transfected with siRNAs for nesprin-1 or

control siRNA using hiperfect transfection reagent (Quiagen) as

described by the manufacturer. Three days post-transfection total

RNA was obtained from cells using Triazole RNA STAT-60 and

phenol chloroform extraction. 2 mg of total RNA was reverse

transcribed using AMV Reverse Transcriptase (Promega) accord-

ing to the manufacturer’s instructions. qPCR was performed in a

20 ml reaction containing cDNA per 16 SYBR Green PCR

master mix (Eurogentec) and 0.1 mM of each primer. PCR

products were amplified, N1-39E87 primers (forward, 59-

TCTCCAAGCTCAATCAGGCAGCAT -39 and reverse, 59-

CACAGCCCTCTAAGTGTTGTGTCA -39), N1-39E90 primers

(forward, 59- AGTTGGACGTCTCAGTCTCAAGGA -39 and

reverse, 59- TTTGATGGCTGAGCCCACACAATG -39),

KASH primers (forward, 59-CGAGGCAAGTGTAGTCTCT-

CACAG-39 and reverse, 59-AGGGCCATTCGTGTATCTGAG-

CAT-39) and GAPDH primers (forward, 59-CGACCACTTTGT-

CAAGCTC-39 and reverse, 59-

CAAGGGTCTACATGGCAAC-39). The cycling parameters

were 94uC for 15 seconds followed by a single step annealing

and extension at 60uC for 60 seconds. Amplifications were

performed on RotorGene-3000 (Corbett). Fold changes between

samples were calculated by the delta-delta CT method.

Supporting Information

Figure S1 Localizations of p23Nesp1, p12Nesp1 and
p41Nesp1. A) p23Nesp1, p12Nesp1 and p41Nesp1 displayed diffusive

cytoplasmic localization when transfected into U2OS cells. B)

p41Nesp1 displayed diffusive localization and concentrated around

the ER when transfected into HDFs.

(TIF)

Figure S2 Schematics of nesprin-1 and nesprin-2 cas-
sette exons. A) Nesprin-1 genomic map showing the location of

nesprin-1 cassette exon 69 (Red box). B) Nesprin-2 genomic map

showing the location of nesprin-2 cassette exons 101’ (orange box)

and107’ (Purple box).

(TIF)

Table S1 UTR combinations used to generate potential
nesprin-1 variants. Nesprin-1 can generate multiple variants

through the use of alternative UTRs in a ‘mix-and-match’

approach. The tables highlight the UTR pairs used to generate

the potential isoforms described in Figures 2B.

(DOCX)

Table S2 UTR combinations used to generate potential
nesprin-2 variants. Nesprin-2 can generate multiple variants

through the use of alternative UTRs in a ‘mix-and-match’

approach. The tables highlight the UTR pairs used to generate

the potential isoforms described in Figures 3B.

(DOCX)

Table S3 Primers used for 59 and 39 RACE. Primers and

nested primers used for detection of novel nesprin-1 and nesprin-2

cDNA ends.

(DOCX)

Table S4 Primers used for UTR detection. Forward and

reverse primers used for detection of novel nesprin-1 and nesprin-2

UTRs. Forward and reverse primers were separated by at least 1

coding exon to control for genomic contamination.

(DOCX)

Table S5 Primers used for detection of cassette exons.
Forward and reverse primers used for detection of novel nesprin-1

and nesprin-2 cassette exons.

(DOCX)

Table S6 Primers used for the detection of DKASH
variants. Forward and reverse primers used for detection of

nesprin-1 and nesprin-2 DKASH variants.

(DOCX)
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