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Abstract

With the increasing amount and complexity of data generated in biological experiments it is becoming necessary to
enhance the performance and applicability of existing statistical data analysis methods. This enhancement is needed for the
hidden biological information to be better resolved and better interpreted. Towards that aim, systematic incorporation of
prior information in biological data analysis has been a challenging problem for systems biology. Several methods have
been proposed to integrate data from different levels of information most notably from metabolomics, transcriptomics and
proteomics and thus enhance biological interpretation. However, in order not to be misled by the dominance of incorrect
prior information in the analysis, being able to discriminate between competing prior information is required. In this study,
we show that discrimination between topological information in competing transcriptional regulatory network models is
possible solely based on experimental data. We use network topology dependent decomposition of synthetic gene
expression data to introduce both local and global discriminating measures. The measures indicate how well the gene
expression data can be explained under the constraints of the model network topology and how much each regulatory
connection in the model refuses to be constrained. Application of the method to the cell cycle regulatory network of
Saccharomyces cerevisiae leads to the prediction of novel regulatory interactions, improving the information content of the
hypothesized network model.
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Introduction

In recent years, multiplex and high-throughput technologies

provided biologists with the opportunity to increase the amount of

data generated on various biological systems. Analysis of these

data allows to gain comprehensive information on the system on

various levels such as transcriptome, proteome, metabolome and

interactome. However, there are two major challenges which are

directed by the systems biology perspective. The first challenge is

to integrate all the information from these different levels.

Statistical approaches for this aim have mostly stemmed from

the need of integrating transcriptome data with other omics data

sets. A noticeable example in this field has focused on mapping

gene expression data on protein-protein and protein-DNA

interactome data to reveal the active sub-networks in the course

of perturbation experiments [1].

The second challenge is to interpret the massive information

collected from experiments in a biologically meaningful manner.

Data analysis can be directed towards knowledge already available

on the investigated system to facilitate its biological interpretation.

This approach is referred to as incorporation of prior information

in data analysis.

Systematic incorporation of prior information in data analysis

has been an important topic in statistics mostly due to Bayesian

approaches. With the increasing demand of statistical approaches

in biology, methods have been proposed also in this particular

area. Several studies have focused on exploiting different kinds of

prior information in biological systems. One important approach

is based on Factor Analysis directed by prior information. Network

Component Analysis (NCA) [2] set the framework for the

decomposition of microarray data based on the transcriptional

regulatory network topology provided as prior information. This

decomposition leads to the reconstruction of both the connection

strengths between gene - transcription factor pairs and the

transcription factor activities over a range of different conditions.

The NCA approach has been the subject of several followup

studies which aimed either at increasing the applicability range of

the method [3,4], the stability of the solutions [3] or finding more

efficient ways of carrying out the decomposition involved [5].

In some studies, the prior information is exploited in a

controlled manner where the analyst can set the limit for the

intervention level of the prior information [6–9]. In these studies,

penalized or stepwise regression methods and Bayesian approach-

es are utilized. By some of these approaches, the prior information

is also changed in accordance with the data at hand [8,9]. In [8]

this is accomplished by updating the prior information back and

forth between different prior information with different reliabilities

whereas in [9] forward stepwise regression is used to determine the

true positive interactions in the prior information.
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However, there is one point which must always be kept in mind

while incorporating any type of prior information in data analysis.

It is very likely to lead to incorrect results if incorrect prior

information is allowed to dominate the data analysis process.

Therefore, being able to discriminate between competing sources

of prior information has always been an important issue. With this

study, we propose measures to make this discrimination available

on both global and local levels based on the assumption that

correct models must behave consistent with experimental obser-

vations. To explain it more clearly; if there are two different

hypotheses for a certain type of prior information, these measures

will guide us to identify which hypothesis (on global level) or which

parts of each hypothesis (on local level) are supported more by the

experimental data and thus are closer to the underlying biological

reality. Our focus is on topological prior information in

transcriptional regulatory networks. However, such an approach

can also be used for discriminating between competing prior

information at other levels such as metabolomics and proteomics

when appropriately adapted.

In this paper, we show how two different regulatory networks

can be distinguished on a global level using an NCA type

decomposition framework. New regulatory interactions between

genes and transcription factors can also be proposed by using our

method. This feature represents our method’s local performance.

Furthermore, we show how application of our method to cell cycle

transcriptional regulatory network of Saccharomyces cerevisiae led to

the improvement of the regulatory interactions in the network.

Methods

Guideline for Data Decomposition
A Factor Analysis model for gene expression data can be written

as in Equation 1. This type of model relates the gene expression

data to the underlying hidden factors, namely the activity of the

transcription factors. In this decomposition scheme, X contains

gene expression profiles of the I genes in the J conditions in terms

of log2 ratios. The score matrix T contains the binding association

information between the I genes and the K transcription factors.

The P matrix contains the activities of the K transcription factors

in the J conditions in its columns. The matrix E contains the

residual of the model, namely the part of the data that could not be

modeled. Network Component Analysis (NCA) puts restrictions on

the decomposition. In an NCA model, the score matrix T must be

an element of Z, a special set of matrices. These matrices have a

predefined structure based on the imposed topological pattern of

the network. Binding of a transcription factor on the promoter

region of a gene is represented with a nonzero value -the

connection strength between the genes and the transcription

factors- and lack of binding is represented with a 0. The

decomposition in Equation 1 was proven to be unique up to

scaling under certain criteria for the identifiability of the system [2].

The estimation of T and P under the imposed topological

constraints gives us both the connection strengths between gene -

transcription factor pairs as well as the transcription factor

activities over a range of different conditions.

X~TPTzE ð1Þ

In our approach, the decomposition in Equation 1 is carried out

by Alternating Least Squares with two types of constraints;

topological constraints on T as NCA puts and unit column length

constraint on P. In other words, as demanded by the first

constraint, T has to stay a member of the set Z, the set of all the

matrices which obeys the imposed topological pattern. The

imposed topological pattern is represented by fixed places of

zeros in T. With the second constraint, the length of all the

columns in the estimated P (the activity profiles of all the

transcription factors in the system) are fixed to unit length. This

makes the comparison between different estimates of the T
possible in different simulations as will be explained later.

The first step of Alternating Least Squares is the initialization

step. In this step, Tinitial , an initial educated guess for T is given.

For obtaining this initial guess, a PCA decomposition is carried out

on the data matrix X. The resulting score matrix, TPCA is a good

initialization for T itself. However, the PCA score matrix can be

rotated further towards the imposed topological pattern with the

requirement of staying within the PCA space. So, the elements

which are restricted to 0 based on the topology would be as close

to 0 as possible and thus the nonzero elements would be adjusted

accordingly. This is achieved by multiplying the PCA score

matrix, TPCA by a nonsingular rotating matrix, R. The

minimization function for the estimation of R is given in Equation

2. The target minimization in Equation 2 is carried out only on the

restricted elements as imposed by the binary matrix W and the use

of the Hadamard Product (Figure 1). The Ttemplate is the matrix in

which the imposed topology is encoded with 19s showing the

interaction and 09s showing lack of interaction between genes and

transcription factors.

min
R

DDW0(Ttemplate{Tinitial)DD2

where Ttemplate [Z and Tinitial~TPCA:R
ð2Þ

In the second step, estimation of P is achieved by an Iterative

Restricted Least Squares approach (Personal communication with

Henk Kiers, University of Groningen) using the educated guess

Tinitial. In the third step, Ordinary Least Squares is used for

estimating T based on bPP which was estimated in Step 2. In this

step only the nonzero values in T are subject to change. The

elements which are restricted to 0 as imposed by the network

topology are always kept as 0. The computation in this step follows

the guideline which was defined within the NCA framework [2].

The constraints and objectives of the overall optimization scheme

are summarized in Equation 3 where the estimated variables are

shown with a hat ( b ) on them. The fourth step is the

termination step where the alternating least squares algorithm is

terminated when the relative change in the residuals is below a

previously determined threshold.

How this type of supervised decomposition of gene expression

data is used to provide us with a guideline to discriminate between

competing network information is depicted in Figure 2.

min
T̂T ,P̂P

DDX{bTTbPPTDD2

s:t bTT [Z

s:t bpkpk
T bpkpk~1 Vk [ 1,2,:::,K

where K ~ # (Transcription Factors)

ð3Þ

Discriminating Measures
MSE: Mean sum of squared residuals in the model. The

first proposed measure is the model fit. This simple but yet very

important measure is strongly dependent on the prior information

Testing and Improving Topological Information
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regarding the network structure. The concept of model fit as a

discriminating measure is based on the idea that the model data

matrix, X̂X will be closer to the measured data matrix, X when a

network model which is closer to the real network structure is used

as prior information. This is due to the strictness of the constraints

imposed by the topology of the network.

MSE is calculated via Equation 4 as the mean sum of squared

residuals in the model.

bXX~bTTbPPT

MSE~(
PI

i

PJ
j

(xij{x̂xij)
2)=(I|J)

where I ~ # (Genes) and J ~ # (Conditions)

ð4Þ

MSSRE: Mean squared sum of restricted elements. The

second proposed measure uses T̂Tun which is the connectivity

matrix estimated after the relaxation of the topological constraints.

MSSRE summarizes the distance of specific elements from 0 in

T̂Tun. These specific elements are the ones which were restricted to

0 in the imposed network structure.

Once the alternating least squares is terminated and the P̂P
matrix is estimated, we can obtain the unrestricted connectivity

matrix, T̂Tun by solving Equation 5. This would be the ordinary

least squares solution to the problem under no topological

constraints. So, there are now two predicted connectivity matrices;

restricted (T̂T) and unrestricted (T̂Tun). The unrestricted connectivity

matrix has been relaxed from any type of topological constraints.

In principle, if the network model that was supplied as prior

information is indeed close to the real network structure, the

elements which were previously restricted to 0 should not deviate

far from 0 in the unrestricted connectivity matrix. This informa-

tion can be accessed via the mean squared sum of these elements,

referred to as MSSRE (Mean Squared Sum of Restricted

Elements). A similar approach was also used in introducing the

Core Consistency Diagnostic (Corcondia) in 3-way analysis [10].

The idea of MSSRE intrinsically assumes that P̂P has been

properly estimated. This measure would not be appropriate if P̂P
cannot be estimated accurately. A major reason for probable

inaccuracy in the estimation of P̂P within the NCA framework and

how it was challenged will be discussed in more detail later while

showing the application of the method on a real biological system.

bTTun~XbPP(bPPTbPP){1

MSSRE~(
PI

i

PK
k

t̂tun(i,k)2)=nr Vi,k for which t̂ti,k~0

where bTT [Z, bTTun [= Z,

I ~ # (Genes), K ~ # (Transcription Factors) and

nr~ # elements restricted to 0 in bTT
ð5Þ

The unrestricted connectivity matrix gives the opportunity to

evaluate the proposed network model from a local point of view as

well. Investigation of the individual elements in the unrestricted

matrix makes it possible to see which connections in the network

model are supported by the gene expression data. Some of the

elements which were restricted to 0 in the originally imposed

network structure would tend to deviate far from 0 in the

unrestricted connectivity matrix more than the others. These

elements would indicate additional potential connections in the

network. Furthermore, the idea of unrestricted connectivity matrix

can be extended to include a new set of genes whose expression

profiles were not used for the estimation of P̂P.

In addition to the original model set with the I genes in the

analysis, the estimated P̂P can be used to estimate the connection

strengths of the transcription factors with a new the set of L genes

which were not previously included in the analysis, T̂Tun(new) as in

Equation 6. For this purpose, the gene expression data of these

new genes in the J conditions (Xnew) is used. This extension of the

approach assumes that P̂P could be properly estimated by using

only the expression profiles of the model set genes.

T̂Tun(new)~XnewP̂P(P̂PTP̂P){1 ð6Þ

Simulations Setup
The main goal of the simulations study was to model the

simulated data by embedding different types of prior information

during modeling and to elaborate on the measures that made it

possible to discriminate between these different cases. In this sense,

synthetic data gives us the opportunity to know exactly which

network model is closer to the real network structure, Ttrue which

was used to generate the data. The simulated dataset consisted of

240 genes, 20 transcription factors, 40 different conditions and was

Figure 1. Example network with 6 genes and 3 transcription factors (TF’s). The imposed network structure is encoded in Ttemplate. Existing
connections are depicted as 19s. W has 19s at the positions where the difference between the initial estimate, tinitial(i,k) and the template, ttemplate(i,k)
is subject to minimization. These positions correspond to the 09s in Ttemplate where no connections exist.
doi:10.1371/journal.pone.0040082.g001
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constructed based on Equation 7.

Xtrue ~TtruePT
true

X ~XtruezN
ð7Þ

The values of the elements in the Ttrue, Ptrue and the

measurement noise term, N were randomly drawn from standard

normal distribution. Then some of the elements in Ttrue were

randomly set to 0 representing the imposed topological pattern.

This pattern was very sparse where one gene is regulated by at

most 6 transcription factors in order to mimic the sparsity of real

biological transcriptional regulatory networks. The level of the

added measurement noise was either 0%, 5% or 20%. The noise

level was calculated based on the sum of squares of the true

expression data, Xtrue as shown in Equation 8.

Figure 2. General view of the approach. The individual steps in the figure are explained in detail in the Methods Section.
doi:10.1371/journal.pone.0040082.g002
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noise~

PI
i

PJ
j n(i,j)2PI

i

PJ
j xtrue(i,j)2

ð8Þ

The simulations were carried out by embedding both correct

and incorrect prior information at different noise levels in various

transcriptional regulatory network structures. Here, correct prior

information (Correct Network (CN) in Table 1) refers to the true

regulatory pattern used to create the synthetic network structure as

explained earlier. For the incorrect prior information (MN3% and

MN5% in Table 1), the connections of randomly selected

transcription factors were changed by adding a connection not

present and removing another connection which was present in

the correct prior information. The properties of the various prior

information used in the simulations are shown in Table 1. As

shown in Table 1, in a 3% randomly misconnected network

structure, 3% of the total number of the connections differ with

respect to the correct prior information. We derived 5% randomly

misconnected network structures from the 3% misconnected

structures by adding extra random misconnections. The miscon-

nection levels were kept low in order to test the discrimination

capability of our method even at very low levels. Furthermore,

random network structures were generated completely unrelated

to the correct one except the size, connectivity and total number of

connections in the network. We used random networks to see the

changes in the discriminating measures when the prior informa-

tion is completely incorrect and thus to test whether the

discriminating measures relied on chance.

The structure of the simulations setup is depicted in Figure 3.

For each specific regulatory network structure, there existed

simulations with four types of prior information (see Table 1 for

details). The incorrect prior information cases consisted of 5

different sets of misconnections at each misconnection level as

shown in Figure 3 with the yellow boxes. On the other hand,

simulations with random prior information were carried out 100

times for each corresponding CN. Most important of all, each of

the nodes in this simulation scheme was repeated with 100

different noise realizations. This means that the simulation

experiments were repeated 100 times at each case of prior

information. This allowed statistical comparison between different

cases.

Results and Discussion

MSE: A Sensitive Global Measure for Discrimination
In Figure 4, the medians and median absolute deviations of

MSE are shown for 12 different simulation cases in each of the

three example network structures. As can be seen from the figure,

the MSE discriminates between different types of prior informa-

tion steadily well even with 20% noise in the data which was the

maximum level of noise in the simulations. We have chosen this

noise level based on the expected level of reproducibility in

different types of microarray data. In a comprehensive study

where they calculated the coefficient of variation of gene

expression in replicate experiments, the median of this variation

coefficient across all genes changed between 5% and 23% [11].

This indicated that the noise to signal ratio never exceeded 23% in

over 80 experiments that they have performed with 6 different

platforms. Our limit of 20% thus seems realistic for microarray

data in general. The results of simulations with less noise were

more apparent so they were not discussed here.

In Figure 4, each shape in blue (MN3%) has an MSE

distribution with a higher median than the correct network (CN)

model and has an MSE distribution with a lower median than the

corresponding same shape in green (MN5%). Besides that, all of

these MSE distributions depicted in the main parts of the graphs

locate separately from the MSE distributions of totally random

network structures (RN) shown in the upper right corners. This

shows that when misconnections are introduced in the prior

information of network structure, the model fit gets worse. One

sided t-tests between these cases with different prior information

also indicate that all of these distributions can be separated

statistically well from each other at a 5% significance level. This

means that the mean of the MSE distribution of the 100

experiments with a MN5% is greater than the mean of both a

CN and a MN3%.

What is important here is that the solutions in 100 different

noise realizations are very close to each other in each case with a

certain prior information. The superiority of using the alternating

least squares approach not with random guesses but with an

educated initial guess for T is important, in this sense because the

ordinary least squares optimization with random initial guesses

leads to local minima in a considerable number of cases. However,

by using an educated initial guess, the local minima problem was

encountered only in 0.5% of all the simulations that have been

carried out in total. This finding eliminated the need for additional

runs with different starting points.

MSSRE and The Local Investigation of the Unrestricted
Network Structure

In accordance with the observations in MSE, the relaxation of

topological constraints for calculating the MSSRE led to relatively

higher MSSRE in simulations with incorrect prior information

(Figure 4). MSSRE acted in a consistent manner with the

previously discussed MSE measure. The results of non-parametric

tests between these different prior information cases (Figure 4)

indicated that the distributions of MSSRE could be separated in

95%of all the comparisons at a 5% significance level. The results

suggested that the variability of MSSRE was higher than the MSE.

Even when the MSE of different models were small, the values

that the originally restricted elements took in T̂Tun could vary to a

higher degree. However, the unrestricted connectivity matrix T̂Tun

offered more. Inspection of the individual elements in the

unrestricted matrix gave indications on the locations of the

misconnections. This generates the opportunity for a local

evaluation and possible improvement of the proposed network

structure.

In Figure 5, the values of specific elements in the unrestricted

connectivity matrix, T̂Tun are shown. These specific elements are

the ones which were originally restricted to 0 in the proposed

network structure. This example figure comes from one of the

simulations with MN5% with 20% noise. The connection

strengths of these originally restricted elements estimated after

the relaxation of the topological constraints are shown with black

dots. In some of the elements, the deviation from 0 is very strong

and easily distinguishable from the others. These are the outlier

connections framed in blue squares.

The outlier connections are the ones that were estimated to

be uncommonly strong compared to other connections. Their

values were estimated either higher than q3zw � (q3{q1) or

smaller than q1{w � (q3{q1), where q1 and q3 are the 25th

and 75th percentiles of the distribution, respectively and w is the

whisker length as suggested by [12]. This distribution refers to

the distribution of the elements which were originally restricted

Testing and Improving Topological Information
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to 0, in one column of T̂Tun (corresponds to one transcription

factor at each time). As a result of their extra-ordinary locations

in the very edge of the distributions, they have the potential to

point to the existing connections which were missing in the

imposed network structure. Therefore, we expect the outlier

connections and these missing connections (Figure 5) to overlap

at a considerable degree. The non-parametric definition of

outliers is very beneficial for our case where the underlying

distributions of the connection strengths per transcription factor

might not be normal. The sensitivity and false discovery rate for

the identification of the missing connections depend on the

chosen whisker length (w) as summarized in Table 2. In Table 2,

whisker length has been varied from the very loose value, 1.2

up to the extremely strict value of 2.8. When the number of

outliers were kept high at a whisker length of 1.2, 72% of the

missing connections (denoted by red stars in Figure 5) were

identified in the outliers. This indicated the sensitivity of the

method. As the whisker length increased, the number of the

missing connections which could be identified by the method

(true positives) decreased as a result of the decreasing number of

outliers detected. This decreased the sensitivity from 0.72 to

0.48. On the other hand, the false discovery rate decreased at a

faster rate from 0.95 to even 0.07. When whisker length was set

to the most extreme value, only 7% of the outlier connections

were false positives. Although it depends on the analyst to

decide which one to sacrifice, in most of the cases, we think

that the number of false positives should be reduced as much as

possible. This performance summary depicted in Figure 2

proves to be a very useful tool when the whisker length has to

be optimized for real biological data. The FDR value calculated

for simulated data can give good indication of the expected

FDR in real data.

Overall Results of the Simulations Study
For further investigation of the discriminating capacity of the

measures, we checked the magnitude of the connection strengths

differing between the competing networks. Indeed, the answer to

the question whether these networks are easily distinguishable

heavily depended on the magnitude of the difference between the

competing networks. If the connections which the imposed

network (either MN3% or MN5%) lacked were indeed strong

Table 1. Prior Information Properties.

Case Label Type of Prior Information Remarks

CN Correct Network –

MN3% 3% Randomly Misconnected Network Misconnection level 1 in Figure 3

MN5% 5% Misconnected Network Misconnection level 2 in Figure 3 -Extra misconnections were added on top of the
corresponding readily miswired network structures of case MN3%.-

RN Random Network Certain graph properties were kept the same with case CN.

doi:10.1371/journal.pone.0040082.t001

Figure 3. Structure of the Simulations. At each noise level, 10 different regulatory networks were simulated as shown with circles in the figure.
Later, each of these were manipulated to obtain different prior information as depicted in pink rectangles.
doi:10.1371/journal.pone.0040082.g003
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connections in the correct network (CN), the differences in both

measures with respect to the simulations with CN were shown to

be larger. This relation is more clear when Figure 6 is investigated.

In these figures, the relative values of the two measures in MN3%

and MN5% simulations with respect to their values in CN

simulations were shown with respect to the magnitude of the

misconnections. The magnitude of the misconnections is formu-

lated as the sum of squares (SS) of all the connection strengths that

were existent but later had been restricted to 0 to create the

misconnected networks. The differences increased as the Sum of

squares of the misconnections increased and thus made the

discrimination as clear as it deserves. This conclusion is based on

the idea that strong connections deserve more to be identified than

the weaker interactions. However, Figure 6 suggests that this

dependence on magnitude is weaker in MSSRE. In some cases,

the difference in MSSRE was smaller when SS of the misconnec-

tions was larger. This can be explained by the dependence of the

MSSRE on the topology. Discrimination by MSSRE might be

more difficult when certain topologies are involved.

Based on the results we obtained from the simulations study, it

can be concluded that MSE and MSSRE both can be used

efficiently to discriminate between two competing network

structures. The discrimination was possible in 95% of cases with

MSSRE and 100% of cases with MSE even when the network

structures shared 97% of the connections in common. However,

the discrimination capabilities of both measures increased with the

strength of the connections differing between the two networks. In

this sense, MSE was more successful than MSSRE in discrim-

inating weaker differences. MSSRE seemed to be more dependent

on the specific topologies of the networks that were questioned. On

the other hand, the unrestricted network structure was worth to be

inspected in more detail as a tool for local evaluation rather than

global evaluation. When the connection strengths in this

unrestricted connectivity matrix were investigated, the unexpect-

edly outlying elements which deviate far from 0 proved to be

mostly the connections which exist in reality but had been ignored

in the previously imposed network structure. However this last

conclusion must always be carried out with care since the setting of

the whisker length for the definition of an outlier heavily affects the

sensitivity and false discovery rate in the discrimination process.

The values reported for FDR at different whisker lengths in the

simulations study can work as a very useful reference for

application of the method to real biological systems.

An important point of discussion regarding our method might

be the questioning of the applicability range of our method’s local

improvement feature. How misconnected can a network be at

most to still allow this method to indicate potential connections in

the network, and what is the maximum noise level allowing

reliable analysis? The actual misconnection level in TF-binding

data is thought to be between 10% and 50% [13]. Therefore, we

constructed even more misconnected networks (25% misconnec-

tion level) to test this particular feature with 30%–50% measure-

ment noise. The sensitivity values were affected by both noise in

the gene expression measurements and misconnection level of the

network. The sensitivity calculated at the whisker length of 1.2

decreased to 0.54 in the most extreme case with 50% noise and

Figure 4. MSE and MSSRE in the simulations with 20% noise. Each point corresponds to the median of the MSE values (Panel A) and MSSRE
values (Panel B) in 100 simulations with different noise realizations. The error bars represent the median absolute deviation. The results of the
simulations with the correct network (CN) are plotted in red whereas the blue and green colors represent the solutions with 3% and 5%
misconnected network structures, respectively (MN3% and MN5%).The networks which are represented by the green shapes share the same
misconnections with the corresponding shapes in blue and have extra misconnections on top of these. In the upper right hand side corner of each
plot, the results of the simulations with totally random networks (RN) are depicted. In Panel A, each errorbar is surrounded with different shapes,
whereas in Panel B, the medians are denoted by the corresponding shapes for better readability of both graphs. (See Table 1 for the details of the
prior information used).
doi:10.1371/journal.pone.0040082.g004
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25% misconnection level. This decrease in the sensitivity at

extreme cases indicated that identification of the misconnections

became difficult. However, the FDR values were not affected at all

by the increasing noise or the misconnection level. The stability of

the FDR values calculated at the whisker length of 2.8 (below 0.07)

showed that even at these extreme cases, the candidate interac-

tions identified by our approach were very unlikely to include false

positives. Keeping the FDR low in such a discovery scheme makes

more sense from a biological point of view than achieving high

sensitivity. Hence, these results indicated that our local approach is

reliable even at these high experimental uncertainties. When the

global discrimination was considered, MSE could discriminate

between these extreme cases in 100% of the comparisons. The

performance of MSSRE in discriminating networks with small

differences decreased with increasing noise. However, it could still

discriminate in 80% of all the comparisons made between highly

similar networks with 95% connections in common. Another

important point we observed was that an increase in the

misconnection level of the network resulted in an increase in the

number of local minima encountered in the simulations. This

indicates the need for an optimization scheme with multiple

starting points when prior information on the approximate extent

of the misconnection levels of the networks is not available. The

results of simulations at high experimental uncertainities can be

found in Table S1.

Figure 5. Values of Connection Strengths in T̂Tun. In this plot, each black point represents the connection strength of an element in the
unrestricted connectivity matrix which was restricted to 0 previously in the imposed network structure. Each column represents one transcription
factor. Red stars are the connections which were missing in the imposed network structure whereas in CN these elements have nonzero values
indicating existing connections instead. The outlier elements for each transcription factor identified at a whisker length of 2 are surrounded with
additional squares in blue.
doi:10.1371/journal.pone.0040082.g005

Table 2. Discrimination Performance.

Sensitivity False Discovery Rate

Whisker Length
# Missing connections identified in the outliers/#
All missing connections # False positives in the outliers/# All outliers

1.20 0.7228 0.9487

1.40 0.6897 0.9080

1.60 0.6593 0.8342

1.80 0.6274 0.7114

2.00 0.5980 0.5409

2.20 0.5672 0.3642

2.25 0.5598 0.3231

2.30 0.5528 0.2846

2.40 0.5382 0.2182

2.45 0.5309 0.1885

2.50 0.5237 0.1641

2.60 0.5099 0.1218

2.70 0.4965 0.0909

2.80 0.4830 0.0690

doi:10.1371/journal.pone.0040082.t002
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Application to the Cell Cycle Trancriptional Regulatory
Network of Yeast

We applied our discrimination algorithm to a real biological

transcriptional regulatory network structure. For this purpose, we

chose to work on the transcriptional regulatory system controlling

the well studied cell cycle in S. cerevisiae. The system chosen

included 11 cell cycle transcription factors: Ace2p, Fkh1p, Fkh2p,

Mbp1p, Mcm1p, Skn7p, Ndd1p, Stb1p, Swi4p, Swi5p and Swi6p.

For the identifiability of the network, Ndd1p had to be removed

[2]. The network structure regarding these transcription factors

was adapted from the study of Harbison et al. [14], named the

Harbison network throughout the text. In this benchmark study,

the genes that are likely to be targets for transcriptional regulators

have been identified by consensus of information from genome-

wide location data, phylogenetically conserved sequences and

prior information. For our purposes, we used the most reliable

transcription factor-gene interactions with a binding p-value

smaller than 10{3 that have been conserved in at least two yeast

species.

Cell cycle microarray data from Spellman et al. was used for the

analysis [15]. The data analyzed consisted of time series gene

expression data from four synchronization experiments, leading to

a total of 77 sampled conditions.

Problem of degeneracy. A degeneracy problem arose when

the expression data was modeled with 10 underlying factors. This

led to an extremely high condition number of the estimated

activity matrix which indicated that the activities of different

transcription factors were linearly dependent on each other.

However, for proper discrimination between networks indepen-

dent profiles are required, because otherwise the activity profiles

and thus the connections of the transcription factors cannot be

distinguished. It is very important to notice that, in such situations,

one of the criteria for identifiability [2] is severely disturbed. This

loss in the rank of the activity matrix might be easily missed due to

the compensation by the noise in the system. In other words, noise

in the data may hide the elevated levels of linear dependence

between the activity profiles of the transcription factors. In the end

of the analysis, estimated profiles of the transcription factors might

be extremely correlated although there is no loss in the calculated

rank of the activity profile matrix.

When more factors are extracted from a data set than can be

supported by it, this kind of degeneracy occurs [16]. The SVD

decomposition of the data also indicated clearly that the data

should be modeled with fewer underlying factors. A scree plot of

the singular values revealed an optimal number of 7 independent

factors. This high dependency between the activity profiles can be

explained by the partial redundancy and serial regulation structure

regarding different cell cycle regulators. Indeed, in earlier studies it

was shown that cell cycle regulators had important roles in

controlling each other’s expression profiles [17]. A high degree of

overlap between the target genes of cell cycle regulators was also

mentioned in the same study. These regulators were not only

homologues or partners in regulating complexes, but they could

also be regulators that were not known to be related at all in terms

Figure 6. Behaviour of MSE and MSSRE with respect to changes in the connection strengths differing between the competing
networks. The change in MSE (Panel A) and MSSRE (Panel B) in simulations with MN3% and MN5% relative to the simulations with CN are shown in
the y-axis. In the x-axis, the total magnitude of the missing connections which existed in CN but had been ignored in the imposed network structure
are plotted.
doi:10.1371/journal.pone.0040082.g006

Testing and Improving Topological Information

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40082



of their specific role in regulation. These findings support our

estimated dependency between the factors.

To find out the best combination of 7 transcription factors, a

trade-off approach was used. Out of all the possible combinations,

a set of factors was selected that were most independent but yet

resulted in low residuals and thus good models of the data. For this

aim, decompositions were carried out several times with all

possible combinations of 7 transcription factors. Among the

models with the best fit, we looked for the smallest condition

number of P̂P. This set of transcription factors both described the

data well, indicated by the low residuals of the model, and were

independent of each other, indicated by the small condition

number of P̂P. The resulting high confidence network contained the

interactions between 342 genes and the 7 transcription factors:

Ace2p, Fkh1p, Mbp1p, Mcm1p, Skn7p, Swi5p and Swi6p.

Another general solution to this degeneracy problem would be

increasing the number of experimental conditions. At these new

data points, the connectivity structure of the network should be the

same but the biological interdependency of transcription factors

should be lower. That would allow independent activity profiles in

P̂P but it also necessarily requires design of new experiments and

specific selection of data points. Indeed in [3], the authors have

followed a specific application of such an approach where they

incorporated microarray data from transcription factor deletion

mutants. They achieved this incorporation by putting constraints

on P̂P such as zeros for certain elements. As a conclusion, carrying

out new microarray experiments might solve the problem of

degeneracy while a purely computational solution remains as a

challenge.

Two competing networks for cell cycle regulation. We

compared the Harbison network [14] to another network that has

been constructed by reanalyzing the same ChIP data [13] by

MacIsaac et al. This alternative network has been reported as an

improved map of the regulatory network in S. cerevisiae. We only

included the genes and the transcription factors that have reported

interactions in both networks. When the number of transcription

factors was further reduced to overcome the non-identifiability and

degeneracy problems, both networks included 308 genes and 7

transcription factors. The MSE values for the two networks did not

differ significantly (0.1312 and 0.1313, respectively). This suggests

that the cell cycle related part of the MacIsaac regulatory network

used for this study does not show significant improvement in

comparison to the Harbison network. It is important to note here

that the size of the networks that can be compared is severely

limited by the limitations of the NCA approach. First of all, the

networks both must be identifiable, as has been discussed by Liao

et al. in [2]. Secondly, the transcription factors involved in the

study must have independent activity profiles as we have already

discussed. Due to these restrictions, we could only compare certain

parts of the cell cycle regulatory network. Still, we showed that this

part represents the whole cell cycle regulatory mechanism well.

The details regarding this latter assessment was already discussed

in the previous section where we discussed about the best

combination of the transcription factors. Another reason behind

the insignificant improvement might be due to the connection

strengths of the connections differing between the two networks.

As we have already discussed in the results section for the

simulations, networks with strong connections differing are more

easily discriminated than the ones with weaker connections

differing. It might be the case that the regulatory interaction

map achived in [13] is indeed more realistic but these interactions

that exist in the part of the network we tested are not strong

enough to be identified. However, local investigation of the

Harbison network showed possible points of improvement in the

network as will be discussed in the next section.

Emerging interactions. The unrestricted Harbison cell

cycle transcriptional regulatory network, T̂Tun was calculated

according to Equation 9 with an extension to a new set of 54

Figure 7. Local Investigation of the Harbison Cell Cycle Transcriptional Regulatory Network. The black dots correspond to the elements
in T̂Tun which were restricted to 0 in the imposed Harbison network structure, and the red denotes the elements belonging to the new set genes. Blue
squares show the outliers defined at a whisker length of 1.6 and green squares denotes the outliers defined at a whisker length of 2.8. The gene
names in these outlier connections are shown in their respective color, as well. In the y-axis, the values of the connection strengths are shown.
doi:10.1371/journal.pone.0040082.g007
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genes. The idea behind was introduced in Equation 6. The

expression values of this new set of genes, XNewSet were not taken

into account for estimating P̂P but were used for estimating their

connection strengths with the transcription factors in the study as

described before for simulated data. The genes in the new set were

known to be cell cycle regulated [15] but had not been included in

our network. The reason was that these genes were not connected

to any of the transcription factors based on the interaction data

adapted from [14] and thus were previously excluded from the

analysis. T̂Tun(NewSet) stored the unrestricted connection strengths of

the 54 new set genes whereas T̂Tun(ModelSet) stored the unrestricted

connection strengths of the 342 model set genes whose expression

values were used to estimate P̂P.

Equation 9 also shows clearly how the degeneracy problem

would lead to difficulties associated with the identification of the

new interactions in both the model set and the new set. High

condition number of P̂P would make it nearly rank deficient. This

would introduce errors in the generalized inverse of P̂P used in

Equation 9 and thus also in the T̂Tun(NewSet) and T̂Tun(ModelSet).

T̂Tun(ModelSet)

T̂Tun(NewSet)

" #
~

XModelSet

XNewSet

� �
P̂P(P̂PTP̂P){1 ð9Þ

Figure 7 shows the connection strengths estimated in T̂Tun. For

each transcription factor, outlier connections were identified as

described earlier for simulated data. The elements surrounded

with squares are of high importance because they potentially point

to connections which indeed do exist but had not been included in

the network structure used. In the same figure, the boxes in each

segmentation show the gene names for these potential interactions

of each transcription factor.

When the whisker length was kept at 2.8, only 6 outliers were

detected. Based on the performance evaluation in Table 2 we

expect nearly 0 false positives in this set. It must not be forgotten

that the real biological data will show differences in terms of

sensitivity and false discovery rate compared to the simulated data.

However, the performance measures for simulated data can still

give an approximate idea of the discrimination performance in

real data. This was also supported by the findings in real data

when the outlier elements were further investigated. There is

strong biological evidence for 5 out of the 6 outliers pointing to

existing regulatory interactions between genes and transcription

factors (Table 3). In such a case, the remaining predicted

interaction (Skn7p with the YGP1 gene) is worth being investigated

further both through literature and experimentation.

The whisker length can be reduced to let more outliers show up

in the analysis. This will identify weaker interactions at the cost of

a higher incidence of false positives. We set the whisker length to a

relatively loose value of 1.6, to let the number of outliers increase

to 38. Out of these 38 potential interactions, nearly half come from

the new set of genes, as expected. The new genes were curated

from literature as cell cycle regulated genes but had no interactions

according to the imposed Harbison network structure. Therefore

their regulation pattern was non-existent in the network used as

prior information, and they immediately showed their regulation

pattern in the unrestricted connectivity matrix.

Out of the model set connections, evidence for 10 of them was

found in other sources of experimental data (Table 3). When the

new set was considered the number of connections supported with

biological evidence increased to 17 (Table 3).

Table 3. Predicted Interactions in Cell Cycle Regulatory Network of Yeast.

Whisker Length TF Gene Biological Evidence

2.8 Ace2p SCW11 ChIP [17,19]

Mcm1p CLB1 ChIP [19,20], Gene is known to be regulated in the G2/M phase of the cell cycle [21],
Mcm1p is an important transcriptional regulator of this phase [17].

Swi5p SIC1 Regulation of SIC1 gene by the Swi5p was already known [17,22].

Swi6p HHF2, HHT1 These histone genes (together with their homologues HHF1 and HHT2) were shown
to be both MBF (Mbp1p-Swi6p complex) and SBF (Swi4p-Swi6p complex) targets
[23].

1.6 Ace2p UTH1 ChIP [19]

Mbp1p RAD27 ChIP [17,19]

Mbp1p CWP1 Comparative Microarray [24]

Swi5p EXG1, CLN3 ChIP [17,19]

Swi5p CDC6 Gene’s transcription at the end of mitosis is induced by Swi5p [25].

Swi6p RPL18B, EXG1 ChIP [17,19]

Mbp1p POL3, POL30, PMS1 Identified as late G1 phase genes regulated by MBF complex [26,27].

Swi5 PCL9 It is known that the expression of the gene is regulated by Swi5p [28].

Swi5 TEC1 ChIP [17]

Mcm1p ACE2, CDC20, KIN3, MRH1,
CDC47

ChIP [20], Genes are regulated mainly in G2/M phase [15,21,29–31] or M/G1
boundary (CDC47) [32] and Mcm1p is known to be involved in the transcriptional
regulation of these phases either by direct binding or together with Fkh1p, Fkh2p
and Ndd1p [17].

Swi6p HTA2, HTB2, HHF1 These histone genes are targets for both MBF (Mbp1p-Swi6p complex) and SBF
(Swi4p-Swi6p complex) [17,23].

Only the ones which were supported by biological evidence from literature are shown here. Bold font genes belong to the new set of genes whereas the normal font
genes are the model set genes.
doi:10.1371/journal.pone.0040082.t003
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Lastly, there are a considerable number of outliers that can be

hypothesized regarding the Skn7p. Apparently, the activity profile

of this transcription factor is essentially needed to explain the

expression profile of these genes. However, we know from

literature that Skn7p’s role in cell cycle regulation is through its

association with the Mbp1p [18], but there is little information

about this role in the literature which is why we choose not to

interpret these interactions in more detail here.

Conclusions
We present this study as a contribution to both model

discrimination and model improvement in the rapidly evolving

world of network based approaches. In terms of model discrim-

ination, we have presented measures to discriminate between

competing regulatory network structures. Looking at the MSE and

MSSRE in decompositions with two different network structures

allows to comment on the consistency between the data and the

network structure. This indicates which network structure is the

most realistic. However, the magnitudes of differences in these

measures between two networks depend on the total strength of

the connections differing between them. It is therefore easier to

discriminate between networks with strong connections differing

between one another. This conclusion makes sense through

biological interpretation: strong connections are more easily

identifiable and they should be so. This finding is more consistent

in MSE whereas MSSRE is more dependent on the specific

topologies that are questioned. Therefore, we suggest MSE as a

sensitive global measure that discriminates between two different

networks.

In terms of model improvement, the relaxation of the

topological constraints for the estimation of an unrestricted

connectivity matrix allows us to investigate the connections

individually. Through this local approach, the unexpectedly strong

connections in the unrestricted connectivity matrix can be

identified as outliers. These outliers point to existing connections

that were lacking in the hypothesized network as has been shown

on simulated data. We also showed how the application of the

method to the cell cycle regulatory network of S. cerevisiae led to the

prediction of novel regulatory interactions, improving the infor-

mation content of the hypothesized network model.

Supporting Information

Table S1 Summary of the simulations with high
experimental uncertainities. The sensitivity and FDR values

regarding the local part of our approach are given at two different

whisker lengths. PMSE and PMSSRE stand for the percentage of

the simulations where global measures MSE and MSSRE could

discriminate between different networks, respectively. The mis-

connection levels of the networks that have been compared are

stated in the second column.
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