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Abstract

In this paper we describe the repeated replacement method (RRM), a new meshfree method for computational fluid
dynamics (CFD). RRM simulates fluid flow by modeling compressible fluids’ tendency to evolve towards a state of constant
density, velocity, and pressure. To evolve a fluid flow simulation forward in time, RRM repeatedly ‘‘chops out’’ fluid from
active areas and replaces it with new ‘‘flattened’’ fluid cells with the same mass, momentum, and energy. We call the new
cells ‘‘flattened’’ because we give them constant density, velocity, and pressure, even though the chopped-out fluid may
have had gradients in these primitive variables. RRM adaptively chooses the sizes and locations of the areas it chops out and
replaces. It creates more and smaller new cells in areas of high gradient, and fewer and larger new cells in areas of lower
gradient. This naturally leads to an adaptive level of accuracy, where more computational effort is spent on active areas of
the fluid, and less effort is spent on inactive areas. We show that for common test problems, RRM produces results similar to
other high-resolution CFD methods, while using a very different mathematical framework. RRM does not use Riemann
solvers, flux or slope limiters, a mesh, or a stencil, and it operates in a purely Lagrangian mode. RRM also does not evaluate
numerical derivatives, does not integrate equations of motion, and does not solve systems of equations.
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Introduction

In this paper, we first present background material on CFD and

discuss previous CFD methods which have informed this work.

Then we motivate RRM and explain its workings in depth. Next, we

show that RRM gives correct results for many standard test

problems. We also demonstrate that RRM shows steadily decreasing

error in its solutions as we increase the desired accuracy, and that

RRM handles many common types of boundary conditions. Finally,

we discuss the similarities and differences between RRM and other

CFD methods.

Background
CFD is the use of numerical methods to model liquid and gas

flow. CFD has many practical uses, from the analysis of the airflow

over vehicles to the design of water turbines.

CFD covers a vast range of fluid compositions and flow types.

For simplicity, we only consider a fluid that is:

N Continuous: Infinitely subdividable, unlike real fluids which

are made of discrete atoms and molecules.

N Simple: Completely described by density, velocity, and

pressure at each point, which we call the ‘‘primitive variables’’,

and write as r, u, and p. We do not consider other possible

fluid properties like chemical reactivity. We also do not

consider the action of non-pressure forces like gravity or

electromagnetism on the fluid.

N Ideal: Described by the ideal gas law, in which the internal

energy of a fluid is purely a function of r, p, and c. The

constant c is called the ratio of specific heats, and has a value of

about 1.4 for air.

N Single-phase: Consisting entirely of either liquid or gas, but

not a mixture of the two. This means we need not model

liquid-gas interfaces. We also do not consider the interaction of

solid objects with the fluid.

N Inviscid: Having no resistance to deformation. This simplifies

the equations of fluid motion.

N Adiabatic across contacts: Allowing no heat to flow from

one side of a contact discontinuity to the other. This means that

contact-adjacent regions will not tend towards the same tempera-

ture. We compare RRM’s results to fluid flows that are adiabatic

across contacts because of the availability of analytic solutions, but

we show later that RRM is not adiabatic across contacts.

N One-dimensional: Having only one spatial dimension. This

makes illustration and programming simpler.

Even though our fluid is infinitely subdividable, for illustration

and analysis we divide it into finite-sized cells. Figure 1 shows a cell

c1 with its left edge at x1 and its right edge at x2. The density,

velocity, and pressure components are shown on separate graphs.

When we do not need to show all three components separately,

we combine them onto one axis for simplicity as shown in figure 2,

with the understanding that r, u, and p may have different values

even though they are drawn with the same line.

We can describe fluid flow with cells in two main ways. The Eulerian

description considers the cells to be stationary, and the fluid to flow

across their edges and through them. The Lagrangian description

considers the cells to move along with the fluid, so any given bit of fluid
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is always found in the same cell. We will initially use the Eulerian

description since it is the most common. We will later switch to the

Lagrangian description when we describe RRM in more detail.

Given the restrictions and cell definition above, we can model

fluid flow with a set of equations called the Euler equations, which

can be derived from the local conservation of mass, momentum,

and energy. The Euler equations take on different forms

depending on whether we write them for the Eulerian or

Lagrangian description of fluid flow. For the Eulerian description,

we write the Euler equations in English like this:

N Conservation of mass: The mass in a cell changes by the

amount that flows across its edges.

N Conservation of momentum: The momentum in a cell

changes by the amount that flows across its edges, and by the

amount due to the pressure acting on its edges.

N Conservation of energy: The energy in a cell changes by

the amount that flows across its edges, and by the amount due

to work done by the pressure acting on its edges.

The Euler equations are typically written as partial differential

equations, but we write them here as integral equations because it

is more natural for our derivative-free numerical method. Here are

the Euler equations for a cell, written for the Eulerian description

of fluid flow, in conservation form:

conservation of massðx2

x1

(r(x,t2){r(x,t1))dx

~{

ðt2

t1

(r(x2,t)u(x2,t){r(x1,t)u(x1,t))dt

conservation of momentumðx2

x1

(r(x,t2)u(x,t2){r(x,t1)u(x,t1))dx

~{

ðt2

t1

(r(x2,t)u2(x2,t){r(x1,t)u2(x1,t))dt

{

ðt2

t1

(p(x2,t){p(x1,t))dt

ð1Þ

conservation of energyðx2

x1

(r(x,t2)eT(x,t2){r(x,t1)eT(x,t1))dx

~{

ðt2

t1

(r(x2,t)eT(x2,t)u(x2,t){r(x1,t)eT(x1,t)u(x1,t))dt

{

ðt2

t1

(p(x2,t)u(x2,t){p(x1,t)u(x1,t))dt

The coordinates x1 and x2 are the left and right edges of the cell.

The times t1 and t2 are the starting and ending times of a period

where fluid is flowing into and out of the cell, and pressure is

acting on the cell edges.

This form is called the conservation form because it is written in

terms of the conserved quantities per unit length. These conserved

quantities are mass per unit length r, momentum per unit length

ru, and energy per unit length reT.

The specific total energy eT is the energy per unit mass due to

both macroscopic and microscopic motion. The ideal gas law gives

us equations for eT and for the speed of sound a, which we will use

later.

specific total energy eT~
1

2
u2z

p

(c{1)r
ð2Þ

speed of sound a~

ffiffiffiffiffi
cp

r

r
ð3Þ

Figure 1. Fluid cell with three separate components. Fluid cell c1

has density, velocity, and pressure components r, u, and p. The left and
right coordinates of the cell are x1 and x2.
doi:10.1371/journal.pone.0039999.g001

Figure 2. Fluid cell with three superimposed components. Fluid
cell c1 has density, velocity, and pressure components all superimposed
on the same axis. The left and right coordinates of the cell are x1 and x2.
doi:10.1371/journal.pone.0039999.g002
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To write the Euler equations in a more compact form we define

a vector of the conserved quantities

u~

r

ru

reT

2
64

3
75 ð4Þ

and a vector of the fluxes (plus the pressure and pressure work) at

the edges

f~

ru

ru2zp

reTuzpu

2
64

3
75 ð5Þ

Then the Euler equations can be written as a single vector

equation

ðx2

x1

(u(x,t2){u(x,t1))dx~{

ðt2

t1

(f(x2,t){f(x1,t))dt ð6Þ

For the general initial conditions r(x,t1), u(x,t1), and p(x,t1), the

Euler equations have no known analytical solution. This is

inconvenient when we wish to check the results of a numerical

method. So in this paper we restrict ourselves to simple initial

conditions known as the Riemann problem, where r, u, and p take

on the constant values (rl, ul, pl) and (rr, ur, pr) on the left and right

sides of an initial discontinuity, as shown in figure 3.

Unlike the general initial conditions, the Riemann problem has

an analytical solution, though this solution contains a nonlinear

implicit equation and a number of special cases that we must treat

carefully. In this paper, we use a Riemann solver due to Toro [1]

as a standard to test RRM’s results against. Many CFD methods,

beginning with Godunov’s method in 1959 [2], use an embedded

Riemann solver as a part of their algorithms, though RRM does

not.

Even for the Riemann problem, accurate numerical solutions to

the Euler equations are challenging, mainly because the solutions

can include discontinuities. At these discontinuities, the spatial

derivatives in the differential form of the Euler equations are

undefined, which spoils many simple numerical methods and

requires special-case code in more advanced methods.

In the solutions to many other partial differential equations such

as the heat equation, initial discontinuities will smear out and

become increasingly smooth over time. But in the solutions to the

Euler equations, initial discontinuities do not always smear out,

and indeed new discontinuities may arise over time.

For example, consider Sod’s shock tube problem [3], a special

case of the Riemann problem. A shock tube is a gas-filled tube

with a diaphragm in the center. The diaphragm is initially airtight,

so the left and right sides of the tube can be separately charged to

specific pressures and densities as shown in figure 4, which sets (rl,

ul, pl) = (1.0, 0.0, 1.0) on the left side, and (rr, ur, pr) = (0.125, 0.0,

0.1) on the right side.

At time t = 0.0, we instantly remove the diaphragm and let the

fluid start flowing from left to right. Figure 5 shows the fluid at

t = 1.5 seconds. We can see both types of discontinuity that are

possible in solutions to the Euler equations, as well as the

‘‘expansion fan’’ that joins the high-pressure left state to the flat

area in the center.

The first type of discontinuity, a contact, separates two areas

that differ only in density. Contacts travel along with the fluid, and

since velocity is constant across a contact, no fluid flows across

them. Contacts cannot form spontaneously; they must either be

present in the initial conditions as in Sod’s problem, or they must

be formed by the intersection of two shocks. As a real-world

example, if stationary hot and cold water masses are carefully

placed side by side, they will be separated by a contact

Figure 3. The Riemann problem. The Riemann problem specifies
initial density, velocity, and pressure values of rl, ul, pl on the left side of
the origin and rr, ur, pr on the right side of the origin.
doi:10.1371/journal.pone.0039999.g003

Figure 4. Sod’s shock tube problem at t = 0.0 seconds. Sod’s
shock tube problem showing initial density, velocity, and pressure
values (rl, ul, pl) = (1.0, 0.0, 1.0) and (rr, ur, pr) = (0.125, 0.0, 0.1).
doi:10.1371/journal.pone.0039999.g004
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discontinuity, at least until heat energy flows across the discon-

tinuity and smears it out.

The second kind of discontinuity, a shock, can be formed by a

pressure gradient steep enough to force the fluid to move faster

than the local speed of sound a. Shocks can develop over time, and

need not be present in the initial conditions. Density, velocity, and

pressure can all change across a shock. As a real-world example, if

you pilot a boat through the water faster than waves can travel

through the water, the boat creates a shock at its bow.

The 2D graphs of Sod’s shock tube problem above show flow

features at specific times, but do not show how the fluid flow

evolves over time. Figure 6 uses 3D to add a time dimension.

These graphs show how the contact and the shock both start at

the origin and move to the right, with the shock running ahead

due to its higher speed. They also show how the expansion fan

gradually slopes left as more and more fluid flows to the right to

feed the travelling shock.

For subsequent figures we will mainly use 2D graphs, since they

allow easier comparison of our results with those of a Riemann

solver. We will use 3D only when the time evolution of the flow is

of special interest, such as when we illustrate boundary conditions.

Previous Work
If you simply use the definition of the derivative to convert the

Euler equations from differential equations to algebraic equations,

Figure 5. Sod’s shock tube problem at t = 1.5 seconds. Sod’s
shock tube problem showing density r, velocity u, and pressure p after
1.5 seconds of time evolution. We can see three flow features: an
expansion fan, a contact, and a shock.
doi:10.1371/journal.pone.0039999.g005

Figure 6. Sod’s shock tube problem time evolution from t = 0 to
t = 1.5 seconds. Sod’s shock tube problem showing density r, velocity
u, and pressure p from time t = 0 to time t = 1.5 seconds. We can see
three flow features: an expansion fan, a contact, and a shock. The
contact and the shock both start at the origin and move to the right,
with the shock running ahead due to its higher speed. The expansion
fan gradually slopes left as more and more fluid flows to the right to
feed the shock.
doi:10.1371/journal.pone.0039999.g006
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you get the finite difference method (FDM). In conservation form,

FDM models a fluid as a set of cells, each of which contains the

values of the conserved quantities at a point within the cell. The

explicit version of FDM calculates those values at the next time

step from the values in nearby cells at the current time step. The

set of nearby cells is called the stencil.

The finite volume method (FVM) also models a fluid as a set of

cells, but it stores cell average values instead of point samples in the

cells. In its explicit conservation form, FVM calculates the values at

the next time step by adding and subtracting fluxes of the conserved

quantities across each neighboring cell’s edges during the time step.

The finite element method (FEM) was historically used for

structural mechanics [4], but began to find use in fluid dynamics

[5] as the method was generalized and applied to time-varying

problems. FEM starts by creating a mesh of elements (cells in our

terminology) which are shaped to fit the problem geometry. FEM

then solves a system of equations at each time step to determine

the unknown fluid values in each element. Fluid values in FEM are

typically stored in piecewise polynomial form, as opposed to the

point samples of FDM or the cell averages of FVM.

In FDM and FVM, the fluid is usually considered to move

through stationary cells in a single, global coordinate system. This

is the Eulerian description of fluid flow mentioned above.

Figure 7 shows an example with three stationary cells c1, c2, and

c3. The measuring points xm1, xm2, and xm3 are at the cell centers.

The entire fluid has a rightward velocity u. In panel A at time t1,

we measure cell c1’s r and p values at xm1, and c2’s values at xm2.

Cell c3 is empty.

In panel B at a later time t2 = (xm2– xm1)/u, all the fluid from c1

has moved into c2, and all the fluid from c2 has moved into c3.

Now we measure the same r and p values at xm2 that we previously

measured at xm1, and the same values at xm3 that we previously

measured at xm2. The fluid has moved one cell width to the right,

but the cells themselves have stayed in place.

Eulerian methods are relatively simple to implement, but

shocks, contacts and other steep gradients may smear out or gain

unphysical oscillations as they cross cell edges, depending on the

algorithm used. Researchers have proposed many refinements

over the years to increase accuracy, such as Total Variation

Diminishing (TVD) methods [6], Essentially Non-Oscillatory

(ENO) methods [7], Monotone Upwind Schemes for Scalar

Conservation Laws (MUSCL) [8], the Piecewise-Parabolic Meth-

od (PPM) [9], and many more.

Another approach to Eulerian fluid flow is the lattice

Boltzmann method (LBM) [10]. Instead of a mesh of cells,

LBM uses a lattice of connected sites, each of which can

‘‘stream’’ fluid to a fixed number of neighboring sites. Each site

contains a distribution function that represents how much fluid

is streaming in each direction. After each streaming step, LBM

executes a ‘‘collision’’ step at each site to alter the distribution

functions to maintain conservation. LBM has many attractive

features, including ease of programming and simple handling of

boundary conditions.

In contrast to FDM, FVM, and LBM, FEM often uses the

alternative Lagrangian description of fluid flow, in which the cells

travel along with the fluid.

Figure 8 shows an example, with two cells c1 and c2 moving to

the right with a velocity u, similar to the Eulerian example above.

However, in the Lagrangian description the fluid does not move

across cell edges. Instead, the cells themselves move, carrying local

coordinate systems along with them.

Panel A shows us measuring the values at time t1 of r and p at

point xm1 in the local coordinate system of cell c1. Panel B shows

that we will measure the same values at any later time t2, since cell

c1 and its coordinate system move together. The same holds true

for cell c2 in its local coordinate system at its own point xm2.

Lagrangian methods handle shocks and contacts naturally,

because those flow features travel with the fluid instead of

smearing out as they cross cell edges. But pure Lagrangian

methods are rare, because as the fluid flows, the cells can become

excessively bunched up, stretched out, or deformed, which can

reduce simulation accuracy and efficiency.

The cells of FDM, FVM, and FEM, and the lattice sites of

LBM, are usually connected in a mesh. Each cell has a well-

defined shape, and each cell or site has a fixed set of neighbors. In

simple methods, these shapes and sets of neighbors are constant

over the whole course of the simulation. But in Eulerian methods,

a fluid may have complex flow features that move around over

time, so we may want to create smaller cells in those complex areas

and larger cells in other areas. Or in Lagrangian methods, some

cells may become degenerate or singular in a complex flow, so that

the method’s equation solver no longer works correctly.

The process of changing the mesh to alleviate these problems is

called remeshing. Figure 9 panel A shows eight small fluid cells,

and panel B shows those eight cells remeshed into two cells that

cover the same area.

To avoid this complication, the so-called meshfree methods do

away with mesh connectivity entirely. One of the first meshfree

methods was smoothed-particle hydrodynamics (SPH) [11,12].

SPH is a purely Lagrangian method which models a fluid with a

set of moving particles, and computes the fluid’s properties at any

point by summing the contributions of nearby particles using a

kernel function which smooths out the particles’ properties over

some ‘‘smoothing length’’. SPH was originally motivated by the

study of astrophysical problems such as galaxy formation, where

the constituents were already discrete particles. SPH was later

applied to other problems where the fluid was presumed to be

continuous before being discretized.

The moving-particle semi-implicit method (MPS) [13] is a

meshfree method similar to SPH, which was originally intended

for simulation of incompressible fluids with interacting free

surfaces. It also uses a kernel function (called a weight function

in the MPS literature), but one which is specially designed to repel

particles at short distance, thereby maintaining approximately

Figure 7. Eulerian description of fluid flow. In the Eulerian
description of fluid flow, the fluid moves through stationary cells.
Consider a global coordinate system divided into three cells c1, c2, and
c3. The fluid is traveling rightwards with velocity u. In panel A at time t1,
a measurement at point xm1 will show the density r and pressure p of
cell c1. In panel B at a later time t2 = (xm2– xm1)/u, we measure the same
density and pressure at point xm2 because the fluid has moved to the
right by one cell width.
doi:10.1371/journal.pone.0039999.g007
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constant density in the fluid. MPS has been applied to many

situations, including simulations of coastal waves and dam breaks.

Much research in meshfree methods has been done in recent

years, and there is now a great variety of such methods with

different kernel functions, particle properties, and integration

techniques. Li and Liu [14] and Huerta et al. [15] have both

written excellent surveys of the field.

Methods

Motivation
RRM was motivated by Chaikin’s corner-cutting algorithm for

curve generation, which evolved into the subdivision curves of

computational geometry [16,17]. A curve of this type starts as a set

of lines joined end to end to form a roughly faceted curve, shown

in figure 10 panel A. First we cut off each of the corners one-

quarter of the way along each side, shown in panel B. Then we cut

the corners off the new corners, shown in panel C, iteratively

refining the curve into smaller and smaller line segments, until a

desired level of smoothness is reached in panel D.

RRM does the same sort of iterative refinement, but on a

moving fluid instead of a stationary curve, and with constraints on

conservation of mass, momentum and energy rather than

constraints on surface continuity and smoothness.

Overview
To begin, we divide a fluid into finite-sized cells. In one

dimension, each cell is a line segment with an associated density,

velocity, and pressure, all of which are constant across the cell.

Figure 11 shows a fluid divided into three cells c1, c2, and c3. For

now we use periodic boundary conditions, so the left side of c1 is

adjacent to the right side of c3. We indicate this with the dotted

line on the right of c3.

At each cell edge, we send tracer particles left and right through

the fluid at the local speed of sound a, as shown in figure 12. Each

pair of tracer particles defines an expanding wavefront of change

that originates at the cell edge. For example, in figure 12 we show

w23, the wavefront originating between c2 and c3, along with its left

tracer particle pl and its right tracer particle pr.

As each tracer particle travels, it accumulates an error metric that

tracks how much each of the primitive variable values has changed,

and over what distance. Figure 13 shows a tracer particle p, the

right-hand particle of wavefront w, moving through the fluid. The

Figure 8. Lagrangian description of fluid flow. In the Lagrangian description of fluid flow, the cells are part of the fluid and move along with it.
Consider fluid cells c1 and c2 traveling with their own local coordinate systems. The cells and their coordinate systems are both traveling rightwards at
velocity u in the global coordinate system. In panel A at time t1, and in panel B at any later time t2, points xm1 and xm2 in the cells’ coordinate systems
remain at the same places in those cells. No fluid crosses cell edges.
doi:10.1371/journal.pone.0039999.g008

Figure 9. Remeshing. The eight cells in panel A can be remeshed into
two cells in panel B that cover the same area and contain the same
mass, momentum, and energy. Some CFD methods require remeshing
to maintain accuracy or to prevent numerical difficulties.
doi:10.1371/journal.pone.0039999.g009

Figure 10. Chaikin’s corner-cutting algorithm. Starting with the
triangle in panel A, cutting the corners off one-quarter of the way along
each side gives us panel B. Panels C and D show the process carried out
two more times. We can repeat this process until the curve has any
desired smoothness.
doi:10.1371/journal.pone.0039999.g010
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particle’s error metric D grows as the particle moves, with the slope

of D changing when the particle crosses each cell edge.

When this error metric for either of the two tracer particles in

any wavefront exceeds a preset maximum, we chop the wavefront

area out of the fluid, flatten the chopped-out cell parts into a single

new cell, and insert that new cell into the hole left by the chopping.

In areas of the fluid where primitive variable values differ

greatly from cell to cell, tracer particles’ error metrics will

accumulate quickly, so new cells will be chopped out soon after

wavefront creation. This leads to more, smaller cells in areas of the

fluid with steep slopes. Conversely, in areas where values are very

similar from one cell to the next, error metrics will accumulate

slowly, so we will chop out fewer, larger cells in areas of the fluid

with shallow slopes.

We illustrate this whole process in figure 14. In panel A, we

chop wavefront w23 out of the fluid, removing the wavefront’s

tracer particles from the fluid at the same time. This leaves us with

chopped cell parts c2c and c3c, shown in panel B. Panel C shows us

flattening c2c and c3c into a new cell c4 of the same mass,

momentum and energy. Then in panel D we insert c4 into the fluid

and create new wavefronts w24 and w43 at the cell edges.

The chop-flatten-create process always results in exactly one

new cell, and always shrinks two other cells by chopping parts off

of them. But this process can also remove any number of whole

cells if the maximum error metric allows the wavefront to grow

wide enough. For example, if wavefront w23 in figure 14 had

grown wider, it could have chopped off the right side of c1, entirely

removed c2, and chopped off the left side of c3, resulting in no net

change in the number of cells. An even wider wavefront which

removes two whole cells would reduce the total number of cells in

the fluid by one, and so on. This is how RRM increases and

decreases the total number of cells over time to adapt to changing

fluid conditions.

The last step in the RRM algorithm is to choose the next

wavefront whose tracer particles have reached the maximum error

metric and repeat the chop-flatten-create process detailed above.

This repetition evolves the fluid simulation forward in time.

Stored Quantities
In each cell, we store three main types of data:

N The size, shape, and position of the cell. In one dimension,

cells have only width, so we need only store the time-varying x

coordinate x1(t) of the cell’s left edge, and the cell’s width w.

N The cell’s three primitive variable values r, u, and p.

N Four extra vector quantities which help us ensure conservation.

Below we explain the relationships between these quantities and

show how to derive other necessary values from them.

RRM is purely Lagrangian and represents the fluid as finite-

sized cells, so we use the integral Lagrangian form of the Euler

equations, written in terms of the primitive variables:

conservation of volumeðm2

m1

(v(m,t2){v(m,t1))dm~{

ðt2

t1

({u(m2,t)zu(m1,t))dt

conservation of momentumðm2

m1

(u(m,t2){u(m,t1))dm~{

ðt2

t1

(p(m2,t){p(m1,t))dt

conservation of energyðm2

m1

(eT(m,t2){eT(m,t1))dm

~{

ðt2

t1

(p(m2,t)u(m2,t){p(m1,t)u(m1,t))dt

ð7Þ

The values m1 and m2 are the mass coordinates of the left and right

side of the cell. The mass coordinates move with the fluid, unlike

the fixed spatial coordinates x1 and x2 that we used in the Eulerian

form of these equations in equation set 1. This means that the fluid

between m1 and m2 stays between m1 and m2, with no fluid flow

across the cell edges. We can get the mass coordinate m at a point

Figure 11. Fluid cells. A fluid divided into three cells c1, c2, and c3.
The dotted line at the right shows that there are periodic boundary
conditions, so the right side of c3 is adjacent to the left side of c1.
doi:10.1371/journal.pone.0039999.g011

Figure 12. Fluid cells showing wavefronts and tracer particles.
A fluid divided into three cells c1, c2, and c3. The dotted line at the right
shows that there are periodic boundary conditions. Wavefront w23

originates between c2 and c3, and contains tracer particles pl and pr that
travel through the fluid at the local speed of sound a = sqrt(cp/r). The
constant c depends on the fluid (it has a value of 1.4 for air). The r and p
values are those of the cell the particle is traveling through. Note that
w31 (not labeled) extends into both c3 and c1 due to the periodic
boundary conditions.
doi:10.1371/journal.pone.0039999.g012

Figure 13. Error metric growing as a tracer particle travels. A
particle p traveling right as part of wavefront w. Its error metric D
increases as the particle travels, with the slope of D changing at cell
edges.
doi:10.1371/journal.pone.0039999.g013
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in the fluid from the Eulerian coordinate x at that point by

integrating all the mass up to that point:

m~

ðx(m,t)

x(0,t)

r(x,t)dx ð8Þ

So the value of the mass coordinate at any point is the sum of all

the mass to the left of that point in the fluid.

Note that the conservation of mass equation does not appear in

equation set 7. That is because the mass between m1 and m2 is

constant, so that equation would be trivial. Instead we show the

conservation of volume equation, which merely says that a cell’s

volume v changes as its edges move towards or away from each

other. In the Eulerian form of these equations, it was the

conservation of volume equation that was trivially equal to a

constant, so we omitted it from equation set 1.

Note also that the equations for the conservation of momentum

and energy are simpler in the Lagrangian form than in the

Eulerian form. This is because we do not need the flux terms that

describe momentum and energy flowing across the cell edges, now

that the cell edges move with the fluid.

As we saw with the Eulerian form, if we define a vector of the

conserved quantities

u~

v

u

eT

2
64

3
75 ð9Þ

and a vector of the velocity, pressure and pressure work at the cell

edges

f~

{u

p

pu

2
64

3
75 ð10Þ

then the Lagrangian form of the Euler equations can be written as

a single vector equation

ðm2

m1

(u(m,t2){u(m,t1))dm~{

ðt2

t1

(f(m2,t){f(m1,t))dt ð11Þ

We do not store the cells’ conserved quantities directly, but we can

calculate them by integrating over the primitive variables. Since

our primitive variables are piecewise constant, the integrals are

simply multiplications by w, the width of the cell.

cell right edge x2(t)~x1(t)zw

cell mass M~rw

cell momentum P~rwu

cell energy E~rweT~
1

2
rwu2z

pw

(c{1)

ð12Þ

To allow our flattening process to exchange energy between

kinetic and potential forms while remaining conservative, we store

two extra vector quantities on each edge of each cell: pressure

momentum and pressure energy.

Figure 15 shows these quantities for a single cell c1. We define

them as follows:

Figure 14. Chopping, flattening, and new cell creation. Panel A shows the chopping of wavefront w23 out of the fluid, which chops off the
right side of c2 and the left side of c3. Panel B shows the resulting chopped parts c2c and c3c. Panel C shows the flattening of the two chopped parts
into a new cell c4 with the same mass, momentum, and energy. Panel D shows the insertion of the new cell c4 into the fluid and the creation of the
new wavefronts w24 and w43 on its edges.
doi:10.1371/journal.pone.0039999.g014
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cell transit time

left pressure momentum

right pressure momentum

left pressure energy

right pressure energy

Dt~wa

Ppl~{pDt

Ppr~pDt

Epl~{puDt

Epr~puDt

ð13Þ

The first quantity Dt is the time it takes a tracer particle to cross a

cell, and also the time it takes for a cell to completely expend its

store of pressure momentum and pressure momentum upon its

neighbors. The next four quantities are the terms on the right-

hand sides of the momentum and energy Euler equations from

equation set 7. They represent the changes in momentum and

energy due to pressure work that a cell has the potential to cause to

its neighbors. We store equal quantities of Pp and Ep in each

direction, so for each cell they sum to zero, leaving the overall

momentum and energy of the fluid unchanged.

As the fluid evolves, the total fluid mass, momentum, and

energy remain strictly constant when these extra Pp and Ep vectors

are summed along with the cells’ mass, momentum, and energy.

total fluid mass Mf~
Pn
i~1

Mi

total fluid momentum Pf~
Pn
i~1

(PizPplizPpri)

total fluid energy Ef~
Pn
i~1

(EizEplizEpri)

ð14Þ

This insures strict conservation of mass, momentum, and energy

over the course of the simulation.

Cell Chopping and Flattening
When we chop off one side of a cell, we are removing five

quantities: mass, momentum and energy, plus part of the pressure

momentum and pressure energy from the vectors on the chopped-

off edge of the cell. Figure 16 shows this for a single cell c1. Panel A

shows the quantities remaining in c1 after chopping, and panel B

shows the quantities that are chopped off to form cell part c1c.

Note that we chop off mass, momentum and energy in amounts

proportional to the width of the chopped part, but we chop off

pressure momentum and pressure energy in an amount propor-

tional to the time since the chopped cell was created. This is

because mass, momentum and energy are inherent properties of

the fluid that must be integrated over space, whereas pressure

momentum and pressure energy act over time to convert energy

from potential to kinetic form when there is a gradient in the fluid

pressure. We can see this in equation set 7, where the left-side

integrals are spatial, and the right-side integrals are temporal. In

RRM, we treat Pp and Ep as acting steadily over time, starting at

time tc when a cell is created, and ending at time tc+Dt, the time at

which both of the cell’s tracer particles (the left wavefront’s right

particle, and the right wavefront’s left particle) leave the cell.

When chopping out a new cell, we first determine its

intersections with existing cells. Then we chop off those

intersections and add up all the mass M, momentum P, and

energy E the intersections contained. Then, using the width of the

new cell w and the requirement that density, velocity, and pressure

are constant across it, we can calculate the flattened values of the

primitive variables for the new cell.

flattened density r~
M

w

flattened velocity u~
P

M

kinetic energy KE~
1

2
Mu2

potential energy PE~E{KE

flattened pressure p~
PE(c{1)

w

ð15Þ

Negative Pressure Fix
Very occasionally, the flattening process will produce a cell with

negative pressure, either because of rounding or truncation error,

or because a very small wavefront chops a large amount of

pressure momentum and pressure energy, which would accelerate

the newly created small cell more than its store of potential energy

can support.

When this happens, we flatten the cell without adding in the

chopped pressure momentum and pressure energy, which turns off

pressure-to-momentum conversion for that cell and gives us a

positive pressure after flattening. The unused pressure momentum

and pressure energy are added to that of the newly created cell,

which spreads the pressure-to-momentum conversion out over a

slightly longer time.

Whitehurst’s signal method [18] uses a similar fix for negative

pressures, but averages over space instead of time. When negative

pressure occurs in a cell, the signal method averages that cell’s

mass, momentum and energy with its three neighbors, in

proportion to their volumes.

Tracer Particles and Their Error Metric
The movement of the tracer particles through the cells of the

fluid models the movement of characteristics or acoustic wave-

fronts through the fluid. The tracer particles do not represent real

physical particles, they are merely a computational device. They

do not carry mass, momentum, or energy, they do not interact

with each other, and they do not affect cells’ properties. They

always travel at the local speed of sound a in the cell that contains

them.

Figure 15. Pressure momentum and pressure energy vectors. A
single cell c1 showing left and right pressure momentum Ppl and Ppr,
and left and right pressure energy Epl and Epr. Portions of these vectors
are transferred to new cells during the chopping and flattening process,
and this transfer is what causes the conversion between potential and
kinetic energy and vice versa.
doi:10.1371/journal.pone.0039999.g015
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As the tracer particles move through the fluid, we accumulate

an error metric that tells us when to stop and chop out a new cell.

The error metric D1,n is the error accumulated by a tracer particle

as it travels from cell 1 to cell n.

error metric D1,n~
Pn
i~1

max ( Mi{Mi{1j j)di ð16Þ

where di is the distance the tracer particle travels in cell i, and the

metric vector Mi for cell i is

Mi~

ri

ui

pi

2
64

3
75 ð17Þ

When D1,n for either tracer particle exceeds a user-supplied Dmax,

we chop out a new cell.

This error metric needs a bit of explaining. First, the metric is a

vector of all the primitive variables (instead of choosing just one or

two) so that variation in any of them across the fluid can trigger the

chopping of a new cell. So our maximum error metric Dmax is a

vector Dmax = [Dmax r, Dmax u, Dmax p]
T, with each value set

separately by the user. When we say that D1,n exceeds Dmax, we

mean that some element of D1,n exceeds the corresponding

element of Dmax.

We take the absolute value of Mi – Mi–1 so the error metric will

increase monotonically as the tracer particle travels. If we did not,

the error metric might go up and down many times without

exceeding Dmax, which could lead to chopping out new cells that

contain more total variation in the primitive variable values than

we meant to allow.

We multiply the error metric by distance so that the error metric

grows even as the tracer particles move across cells, not just as the

particles cross cell edges. This prevents us from chopping out

unduly large new cells in areas of shallow density, velocity, or

pressure gradients.

There is also a special case in this formula. When i is 1, M0 is

the metric vector of the cell on the other side of the edge from

where the tracer particle was created. So the tracer particle does

not travel through cell 0, but its metric vector contributes to the

overall error metric.

Figure 17 panel A shows two tracer particles pl and pr traveling

through a fluid as part of wavefront w23. Panel B shows how the

error metrics Dpl and Dpr of the two particles change as the

particles travel.

Note that the slopes of Dpl and Dpr are shallow in the center of

the graph, because the density, velocity, and pressure of c2 and c3

are similar. As the particles cross into c1 and c4, the slopes of Dpl

and Dpr increase substantially, which means that w23 will reach

Dmax sooner than it would have with a shallower gradient in the

fluid.

Wavefront Unioning
When we choose a wavefront that we wish to chop the fluid

with, we first must check for overlap with other wavefronts. The

final area we chop out will be the union of the first wavefront with

all the wavefronts that overlap it, and all the wavefronts that

overlap them, and so on. Figure 18 shows an example: if we

choose w12, we see that it overlaps w23, which overlaps w34, so the

final area we would have to chop is wunion.

Wavefront unioning was motivated by the observation that once

two expanding wavefronts overlap, the fluid in each one has

affected the fluid in the other, so they can no longer be treated

separately.

Wavefront unioning turns out to be essential for the stability of

the simulation. Without wavefront unioning, it is possible to chop

out an area that contains unbalanced pressure momentum and

pressure energy, even in a perfectly ‘‘flat’’ fluid that has no density

or pressure gradient. This imbalance can cause a newly-created

cell’s velocity to be abnormally high, which causes a glitch in the

simulation where fluid cells pile up or spread out in an unphysical

way.

Consider figure 19 panel A, which shows three cells c1, c2, and

c3 with r = 1, u = 0, and p = 1. We call this the ‘‘213 problem’’

because the widths of the cells are 2, 1, and 3 from left to right.

Assume that all three cells were created at time t = 0, and that

the speed of sound a = 1. Since there is no density or pressure

gradient, chopping out a new cell anywhere in this fluid should

result in a new cell with r = 1, u = 0, and p = 1.

Let us consider wavefront w23 expanding from the right side of

c2 and see if this is true. At time t = 2, w23 will contain equal and

opposite amounts of pressure momentum from c1 and c3, since

Ppr1 = 2 and Ppl3 = 22. The pressure momenta Ppl2 and Ppr2 from

c2 will cancel since the whole cell is covered, so the overall pressure

momentum Pp = Ppr1+Ppl2+Ppr2+Ppl3 contained in w23 is zero, as

shown by the dotted line at t = 2. So far, so good.

Figure 16. Chopping pressure momentum and pressure energy
vectors. Panel A shows a single cell c1 with the right side chopped off.
Panel B shows the chopped mass, momentum, energy, pressure
momentum Pp, and pressure energy Ep that are now contained in the
chopped cell part c1c, which will be flattened into a new cell along with
any other cells chopped out by the same wavefront. The amounts of
mass, momentum, and energy transferred to c1c are proportional to the
width of c1c, but the amounts of pressure momentum and pressure
energy transferred to c1c are proportional to the time since the creation
of c1.
doi:10.1371/journal.pone.0039999.g016
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At time t = 2.5, the pressure momentum Ppr1 from c1 is still 2,

since it ran out of pressure momentum to contribute at t = 2. But

the pressure momentum Ppl3 from c3 is 22.5, since it will not run

out until time t = 3.0. Figure 19 panel B shows how the wavefront’s

left and right pressure momenta Ppl = Ppl2+Ppl3 and Ppr = Ppr1+Ppr2

increase as the wavefront expands, with Ppr leveling off at t = 2

when Ppr1 stops increasing.

So if we chop out a new cell at time t = 2.5, it will have an

overall pressure momentum Pp of 20.5, as shown by the dotted

line at t = 2.5. This will make the new cell move to the left, even

though there is no pressure gradient in the fluid! Unioning w23

with w12 (not shown) fixes this problem.

The analysis of the 213 problem shows that if we run a

simulation without wavefront unioning, it will show occasional

unphysical glitches. Since mass, momentum, and energy are all

strictly conserved, the glitches sometimes smooth out over time,

but if a glitch is big enough, it may create a large local gradient

and significantly slow down simulation. Wavefront unioning

avoids this problem.

Discrete Event Simulation
RRM uses a discrete event simulation flow. We keep a priority

queue of events, sorted in order of increasing event time. There

are two kinds of events: particle events, where particles intersect

cells, and wavefront events, where one of the particles in the

wavefront exceeds the maximum error metric.

Particle events merely transfer particles from their current cell to

the intersected cell, which changes their speed and the rate at

which they accumulate error. Wavefront events chop new cells out

of the fluid.

Figure 20 shows what the event queue might look like for the

previous example of the 213 problem at time t = 0, if we assume

that the wavefront w23 would chop out a new cell at time t = 1.5.

For simplicity, we show only the events associated with wavefront

w23. In a real simulation there would be a wavefront between each

pair of cells, so the event queue would be much more cluttered.

The first event transfers particle pl from c2 to c1. The second

event uses wavefront w23 to chop a new cell out of the fluid. The

third event is removed at the same time the second event is

processed, since a wavefront’s tracer particles are removed in the

chopping process.

Here is how we determine the event times. When we create a

wavefront with its pair of tracer particles, we find the intersection

time tintersection of each particle with the nearest cell edge in its

direction of travel, and the time tmax error when the error metric of

each particle will exceed the maximum error metric. Figure 21

shows all four of these times for particles pl and pr in wavefront

w23.

We enqueue the two tracer particles as events, using the

intersection times as the event times. We also enqueue the

wavefront as an event, using the soonest of the max error times as

the event time.

wavefront event time te~ min (tmaxerrorl,tmaxerrorr) ð18Þ

Each time we pull an event off the event queue, we check

whether the event is a particle intersecting a cell, or a wavefront

whose particle is reaching the maximum error metric. If a particle

has intersected a cell, we transfer it into the intersected cell,

recalculate the event time, and requeue the particle.

If either particle in a wavefront has reached the maximum error

metric, we union the wavefront with any overlapping wavefronts,

chop and flatten the area of the union into a new cell, and insert

the new cell into the fluid. Then we create a new wavefront for

each edge of the new cell and insert the corresponding events into

the event queue. Finally, we transfer any particles caught in the

chopped-out area into the new cell, which changes their speeds to

the local speed of sound in the new cell, recalculates their event

times, and requeues them.

RRM Algorithm Flowchart
For reference, figure 22 is a flowchart that outlines the entire

RRM algorithm.

Results

We tested RRM on nine standard test problems, and plotted

RRM’s results (solid lines) against the output of Toro’s Riemann

solver (dashed lines). The two match closely in most cases, with

some exceptions discussed below.

In the following tests, RRM typically uses a maximum of 200 to

400 cells during the simulation, depending on the maximum error

metric we set. Most of those cells are concentrated in areas of high

gradient, with only a few wide cells in flat areas. We set the

maximum error metrics to obtain good results in a relatively short

time. In the error analysis section that follows these test results, we

will justify our choices of these maximum error metrics and show

how the quality of the results varies as the maximum error metrics

are varied.

Test 1
Figure 23 shows test 1, which is Sod’s problem [3] with the

initial conditions (rl, ul, pl) = (1.0, 0.0, 1.0) and (rr, ur, pr) = (0.125,

0.0, 0.1). The maximum error metrics for r, u, and p are (Dmax r,

Dmax u, Dmax p) = (1.0e-5, 1.0e-3, 1.0e-3). The results are for time

t = 1.5.

These results are typical of RRM, and match the Riemann

solver’s results closely with two exceptions: the s-shaped contact,

and the slight peak where the shock shows a finite thickness.

The s-shaped contact occurs because unlike a Riemann solver,

RRM is not adiabatic across contacts, and models heat diffusion as

a side effect of the algorithm. Wavefronts are created at contacts

the same as at any other cell edges, so new cells are created across

contacts, and gradual diffusion is the result.

We could easily make RRM adiabatic across contacts by adding

a rule that when a tracer particle reaches a contact, its error metric

is set to the maximum. This would insure that new cells are always

created on one side of the contact or the other, keeping the contact

sharp. We have not tried this yet, so RRM’s current behavior is

more like a real fluid than a Riemann solver in this respect.

Shocks in RRM have a finite thickness that manifests as a thin

peak at the shock front. The shock thickness decreases as the

accuracy is increased. This is because RRM creates new cells at

the shock front at a rate proportional to the accuracy, and the

more frequently cells are created there, the more quickly the

change in density, velocity, and pressure is propagated to the area

behind the shock. In the limit of infinite accuracy, the shock would

be infinitely thin as it is in the Riemann solver’s results.

Shocks in a real fluid also have a finite thickness of a few mean

free paths, for a similar reason. It takes fluid atoms or molecules a

few collisions to transition from their state in front of the shock to

their state behind the shock. But because real fluids are not

continuous, the shock thickness at a given set of conditions is

essentially fixed by the fluid’s physical properties.

Unlike contacts, shocks in RRM will always be sharply defined,

because they are formed by the edge of a supersonic cell pushing

into slower fluid. Our wavefronts always travel at the local speed of
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sound a, so shocks are naturally self-forming because nearby

wavefronts cannot outrun them.

Test 2
Figure 24 shows test 2, which is a modified version of Sod’s

problem due to Laney [19]. This problem has a 100-to-1 pressure

differential instead of the 10-to-1 differential of Sod’s problem.

The initial conditions are (rl, ul, pl) = (1.0, 0.0, 1.0) and (rr, ur,

pr) = (0.01, 0.0, 0.01). The maximum error metric is (Dmax r, Dmax u,

Dmax p) = (1.0e-4, 1.0e-4, 1.0e-3), and the results are for time

t = 1.5.

This test shows that RRM can handle strongly supersonic flows.

We can see that the contact is s-shaped as usual, and there is just a

hint of a u peak at the shock front, but otherwise the results are in

agreement with the Riemann solver. The velocity at the shock

front is higher than in the original Sod’s problem, as we expect due

to the greater pressure differential.

Test 3
Figure 25 shows test 3, which is a modified version of Sod’s

problem where the entire fluid moves right with u = 1.0. The initial

conditions are (rl, ul, pl) = (1.0, 1.0, 1.0) and (rr, ur, pr) = (0.125, 1.0,

0.1). The maximum error metric is (Dmax r, Dmax u, Dmax p) = (5.0e-

5, 1.0e-3, 1.0e-3), and the results are for time t = 1.5.

This test shows one of the benefits of the fully Lagrangian

nature of RRM. Since the cells all move to the right with u = 1.0,

the shock front does not have to cross cell edges during the

simulation, so the shock is just as sharp as in the u = 0 case. The u

curve is identical to the u = 0 case, but shifted upwards by 1.0.

Test 4
Figure 26 shows test 4, which is test problem 1 from page 225 of

Toro’s book on Riemann solvers and numerical methods [1]. The

initial conditions are (rl, ul, pl) = (1.0, 0.75, 1.0) and (rr, ur,

pr) = (0.125, 0.0, 0.1). The maximum error metric is (Dmax r, Dmax u,

Dmax p) = (1.0e-5, 1.0e-4, 1.0e-4), and the results are for time

t = 0.8.

This test is similar to Sod’s problem, but the left cell is initially

ramming into the right cell, so the velocity at the shock front is

somewhat higher.

Figure 17. Error metric growing as particles cross cell edges.
Panel A shows two particles pl and pr traveling through the fluid as part
of wavefront w23. Panel B shows the particles’ error metrics Dpl and Dpr

growing as the particles travel, and demonstrates how the error metric
of each particle in a wavefront is tracked separately. Note how the slope
of the error metric across each cell is proportional to the difference in
the cells’ density r, velocity u, and pressure p at the edge the particle
crossed to get into the cell.
doi:10.1371/journal.pone.0039999.g017

Figure 18. Wavefront unioning. A fluid divided into four cells c1, c2,
c3, and c4. Wavefront w12 overlaps wavefront w23, which overlaps
wavefront w34, so we must chop out the union wavefront wunion to
properly account for the effects of each wavefront on the others.
doi:10.1371/journal.pone.0039999.g018

Figure 19. The ‘‘213 problem’’. Panel A shows a fluid divided into
three cells c1, c2, c3 of widths 2, 1, and 3 from left to right (hence the
name ‘‘213 problem’’). All three cells were created at time t = 0, and all
three have density r = 1, pressure p = 1, and velocity u = 0. In a
simulation without wavefront unioning, if wavefront w23 chopped out a
new cell at time t = 2.5, that new cell would have a net momentum of
20.5. Panel B shows that this is because the rightward momentum Ppr

from c1 levels off at t = 2.0, while the leftward momentum from c3

continues to increase until t = 3.0. This demonstrates that wavefront
unioning is required to avoid unphysical changes in cell velocity during
simulation.
doi:10.1371/journal.pone.0039999.g019
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Test 5
Figure 27 shows test 5, which is test problem 2 from Toro’s

book [1]. The initial conditions are (rl, ul, pl) = (1.0, 22.0, 0.4) and

(rr, ur, pr) = (1.0, 2.0, 0.4). The maximum error metric is (Dmax r,

Dmax u, Dmax p) = (1.0e-5, 1.0e-5, 1.0e-5), and the results are for

time t = 0.6.

This test creates a near-vacuum in the center, which can cause

problems in the iteration schemes that some Riemann solvers use

to find p. RRM does not have any special difficulty with vacuum

areas, either as part of the initial conditions, or evolved during the

simulation as we see here.

Note that in this test we set Dmax u relatively low. This is to

resolve the velocity features near the origin that are far from the

large density and pressure gradients on either side.

Test 6
Figure 28 shows test 6, which is a modified ‘‘converging’’

version of test problem 2 from Toro’s book [1]. The initial

conditions are (rl, ul, pl) = (1.0, 3.0, 0.4) and (rr, ur, pr) = (1.0, 23.0,

0.4). The maximum error metric is (Dmax r, Dmax u, Dmax p) = (5.0e-

4, 5.0e-4, 5.0e-4), and the results are for time t = 1.1.

This is a test of symmetry and momentum conservation, to

make sure that two colliding cells will pile up into one stationary

mass with sharp edges.

Test 7
Figure 29 shows test 7, which is test problem 3 from Toro’s

book [1]. The initial conditions are (rl, ul, pl) = (1.0, 0.0, 1000.0)

and (rr, ur, pr) = (1.0, 0.0, 0.01). The maximum error metric is

(Dmax r, Dmax u, Dmax p) = (1.0e-5, 5.0e-3, 1.0e-2), and the results

are for time t = 0.04.

The solution to this test requires a strong shock to be placed

very close to a contact. Since RRM is spatially adaptive, it simply

creates many new cells between the shock and the contact to get

the required accuracy.

Test 8
Figure 30 shows test 8, which is test problem 4 from Toro’s

book [1]. The initial conditions are (rl, ul, pl) = (5.99924, 19.5975,

460.894) and (rr, ur, pr) = (5.99242, 26.19633, 46.0950). The

maximum error metric is (Dmax r, Dmax u, Dmax p) = (5.0e-4, 1.0e-2,

1.0e-2), and the results are for time t = 0.15.

The solution to this test has two rightward-traveling shocks with

a contact between them, which can be smeared out by some non-

adaptive methods. As usual, the shocks are sharply resolved and

the contact is s-shaped due to RRM’s modeling of heat diffusion.

Test 9
Figure 31 shows test 9, which is test problem 5 from Toro’s

book [1]. The initial conditions are (rl, ul, pl) = (1.0, 219.59745,

1000.0) and (rr, ur, pr) = (1.0, 219.59745, 0.01). The maximum

error metric is (Dmax r, Dmax u, Dmax p) = (1.0e-5, 1.0e-2, 1.0e-2),

and the results are for time t = 0.03.

The initial values of this test were designed to give an almost

stationary contact at the origin, which causes difficulties for some

numerical methods. RRM handles stationary contacts the same as

it does moving contacts, due to the Lagrangian nature of the

simulation.

Absolute Error Analysis
To analyze RRM’s error as compared to a Riemann solver, first

we will show qualitatively how the accuracy of the simulation

decreases as the maximum error metrics are increased. Then we

will define a quantitative measure of the error between RRM’s

solution and that of the Riemann solver, and show how it

decreases as each of the maximum error metrics is decreased. We

will also show how the number of cells in the simulation increases

as the error is reduced.

Figure 32 shows test 1 again, at the same accuracy as before, but

this time only drawing one dot per cell (except for the edge cells,

which have a dot on each side). The results are for time t = 1.5.

We can see that almost all of the approximately 800 cells are

concentrated along the expansion fan and at the contact, with only

one or two cells for each flat area. This illustrates how well RRM

concentrates its computational effort on the active areas of the

fluid.

Figure 33 shows test 1 again, but with the accuracy reduced by

increasing the maximum error metric to (Dmax r, Dmax u,

Dmax p) = (1.0e-3, 1.0e-2, 1.0e-2) to show how the simulation

begins to degrade. The results are for time t = 1.5.

At this accuracy, the widths of the fluid cells are directly visible

in the jagged curve of the expansion fan, and the contact is mostly

smeared out. As expected, the shock thickness is greater due to the

Figure 20. Simulation event queue. Queue of events associated
with wavefront w23 in the previous example of the 213 problem. Events
are ordered by increasing time, and the simulator always executes the
event at the head of the queue.
doi:10.1371/journal.pone.0039999.g020

Figure 21. Particle intersection time and maximum error time.
This figure shows all four possible event times for a single wavefront.
Consider a fluid divided into four cells c1, c2, c3, and c4. Wavefront w23

contains particles pl and pr. Particle pl intersects cell c1 at time tintersection l,
and reaches the maximum error metric at tmax error l. Particle pr intersects
cell c4 at time tintersection r, and reaches the maximum error metric
at tmax error r.
doi:10.1371/journal.pone.0039999.g021
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decreased accuracy. The shock front is also ‘‘blown back’’ so that it

trails a constant distance behind the correct location. This is

because the shock in RRM is a dynamic phenomenon with no

special-case code. If the accuracy is not set high enough, fluid will

pile up at the shock front where it cannot be redistributed fast

enough to maintain the correct wave shape.

Figure 34 shows test 1 yet again, but with the accuracy further

reduced by increasing the maximum error metric to (Dmax r, Dmax u,

Dmax p) = (1.0e-2, 1.0e-2, 1.0e-2) to show a more extreme failure.

The results are for time t = 1.5.

The jagged expansion fan is even more pronounced here, since

the cells are even larger. The contact is completely gone, the shock

is blown back even further, and the spike at the shock front is even

higher, since more fluid is piled up there.

Of course, we would never run a real simulation at such low

accuracy. These figures are merely to show how the weaknesses of

RRM differ from those of other methods. In particular, though

RRM is a conservative method, that alone is does not guarantee

correct shock placement as it does in FDM and FVM. But shocks

in RRM remain very sharp even at very low accuracy, and there

are no Gibbs oscillations near the shocks. This is because our cells

are a piecewise-linear representation of the primitive variable

values of the fluid.

Now we present a more quantitative analysis. We define.

e(x,t)~uRRM (x,t){uRiemann(x,t) ð19Þ

to be the vector error between the primitive variable values in

RRM’s solution and the primitive variable values in the Riemann

solver’s solution. Then we define a maximum integral error norm

emaxinorm~ max

ð
e(x,t)k kdx

� �
ð20Þ

to represent the maximum value, from the start time to some

chosen end time, of the spatial integral of the norm of the error

e(x,t) over the whole fluid.

Note that we choose the maximum integral error norm instead

of the simpler maximum error norm.

emaxnorm~ max ( e(x,t)k k) ð21Þ

Figure 22. RRM flowchart. Flowchart showing the outline of the
complete RRM algorithm.
doi:10.1371/journal.pone.0039999.g022

Figure 23. Test 1: Sod’s test problem at high accuracy. Sod’s
problem with initial conditions (rl, ul, pl) = (1.0, 0.0, 1.0) and (rr, ur,
pr) = (0.125, 0.0, 0.1), with maximum error metric (Dmax r, Dmax u,
Dmax p) = (1.0e-5, 1.0e-3, 1.0e-3), at time t = 1.5. This test shows typical
RRM results: an s-shaped contact because RRM is not adiabatic across
contacts, and a slight peak at the shock due to finite shock thickness.
doi:10.1371/journal.pone.0039999.g023
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because the maximum error norm for RRM is typically the thin

peak right at the shock front, which is of almost constant height

(though decreasing thickness) as simulation accuracy is increased.

Figure 35 shows emaxinorm and the maximum number of cells

nmax vs. the maximum density error metric Dmax r for Sod’s

problem. Dmax r is swept from 1.0e-1 to 1.0e-5, while Dmax u and

Dmax p are held constant at 1.0e-1. Simulation was from time

t = 0.0 to t = 1.5.

We can see that once Dmax r gets smaller than about 1.5e-4, the

maximum number of cells in the simulation (which is a good proxy

for the computational effort required) increases rapidly to maintain

the approximately logarithmic decrease in maximum integral

error norm. This computational effort goes into squaring off the

contact, which is inherently diffusive in RRM.

Since emaxinorm is integrated over a width of 10, emaxinorm = 0.1

corresponds to an average absolute density error of 0.01, or about

1%. But the error is not evenly distributed. Most of the error is

around the s-shaped contact, with a lesser amount near the shock

front due to the transition region.

Figure 36 shows emaxinorm and the maximum number of cells

nmax vs. the maximum velocity error metric Dmax u for Sod’s

problem. Dmax u is swept from 1.0e-1 to 1.0e-5, while Dmax r and

Dmax p are held constant at 1.0e-1. Simulation was from time

t = 0.0 to t = 1.5.

Note that we get less than a decade of decrease in maximum

integral error norm as we decrease Dmax u, and for values lower

than about 4.0e-4 we get very little additional benefit, though we

increase computation effort by a factor of 5. This is because the

velocity gradient across the contact is small, so decreasing Dmax u

will not cause more cells to be created there.

Figure 37 shows emaxinorm and the maximum number of cells

nmax vs. the maximum pressure error metric Dmax p for Sod’s

problem. Dmax p is swept from 1.0e-1 to 1.0e-5, while Dmax r and

Dmax u are held constant at 1.0e-1. Simulation was from time

t = 0.0 to t = 1.5.

We see similar behavior to the Dmax u sweep, where we get

about one decade of decrease in the maximum integral error

Figure 24. Test 2: Modified Sod’s test problem with 100-to-1
pressure differential. A modified version of Sod’s problem with initial
conditions are (rl, ul, pl) = (1.0, 0.0, 1.0) and (rr, ur, pr) = (0.01, 0.0, 0.01),
with maximum error metric (Dmax r, Dmax u, Dmax p) = (1.0e-4, 1.0e-4,
1.0e-3), at time t = 1.5. This test shows that RRM still gives good results
on a problem that has a 100-to-1 pressure differential instead of the 10-
to-1 differential of Sod’s problem.
doi:10.1371/journal.pone.0039999.g024

Figure 25. Test 3: Modified Sod’s test problem with initial
u = 1.0. A modified version of Sod’s problem where the entire fluid
moves right with u = 1.0, with initial conditions (rl, ul, pl) = (1.0, 1.0, 1.0)
and (rr, ur, pr) = (0.125, 1.0, 0.1), with maximum error metric (Dmax r,
Dmax u, Dmax p) = (5.0e-5, 1.0e-3, 1.0e-3), at time t = 1.5. This test shows
one of the benefits of the fully Lagrangian nature of RRM. Since the cells
all move to the right with u = 1.0, the shock front does not have to cross
cell edges during the simulation, so the shock is just as sharp as in the
u = 0 case.
doi:10.1371/journal.pone.0039999.g025
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norm, with little further improvement as Dmax p is reduced further.

Again, this is because there is little pressure gradient across the

contact, so reducing Dmax p cannot improve the contact shape.

Figure 38 shows emaxinorm and the maximum number of cells

nmax vs. all three maximum error metrics Dmax r, Dmax u, and

Dmax p for Sod’s problem. All three maximum error metrics are

swept from 1.0e-1 to 1.0e-5 in tandem. Simulation was from time

t = 0.0 to t = 1.5.

This last graph shows that if all three maximum error metrics

are decreased together, we can get a bit less error than if they are

decreased separately. This indicates that there is some interaction

between their effects, though it is small for this test case.

Taken together, the previous four figures demonstrate that for

this particular test case, RRM’s error decreases almost logarith-

mically as Dmax r is decreased logarithmically, whether by itself or

in combination with the other maximum error metrics. However,

other tests are sensitive to different maximum error metrics. For

example, test 5 is sensitive to Dmax u, because its solution has

velocity features near the origin that are far from the largest

density or pressure gradients.

The maximum number of cells used by the simulation goes up

almost logarithmically as the maximum error metrics are decreased

logarithmically. And since the current RRM implementation

performs O(n) operations per new cell created, where n is the

number of cells in the fluid, this implies that the computational effort

goes up logarithmically as well. This restricted our ability to run

simulations with more than about 1000 cells in a reasonable time,

which we define to be less than 5 minutes on one core of a 2.4 GHz

Intel Core2 Quad CPU.

Future RRM implementations could perform as few as O(log n)

or even O(1) operations per new cell created, if they used a more

sophisticated data structure for cell intersection. We have so far

avoided improving this data structure, since it makes the code

much more difficult to maintain and alter for research purposes.

A note on the error-reducing efficiency of Dmax r, Dmax u, and

Dmax p in RRM is appropriate here. In the sweeps of Dmax u and

Dmax p above, we see that the integral error norm decreases by

fewer orders of magnitude than the number of cells increases by.

This may simply show that decreasing the maximum error metrics

of velocity and pressure does not efficiently reduce an error which

is mostly in the density near the contact. Indeed, it appears that

reducing Dmax r reduces the integral error norm more efficiently,

Figure 26. Test 4: Toro test 1. Toro’s test problem 1, with initial
conditions (rl, ul, pl) = (1.0, 0.75, 1.0) and (rr, ur, pr) = (0.125, 0.0, 0.1), with
maximum error metric (Dmax r, Dmax u, Dmax p) = (1.0e-5, 1.0e-4, 1.0e-4),
at time t = 0.8. This test is similar to Sod’s problem, but the left cell is
initially ramming into the right cell, so the velocity at the shock front is
somewhat higher.
doi:10.1371/journal.pone.0039999.g026

Figure 27. Test 5: Toro test 2. Toro’s test problem 2, with initial
conditions are (rl, ul, pl) = (1.0, 22.0, 0.4) and (rr, ur, pr) = (1.0, 2.0, 0.4),
with maximum error metric (Dmax r, Dmax u, Dmax p) = (1.0e-5, 1.0e-5,
1.0e-5), at time t = 0.6. This test shows that RRM can correctly handle the
near-vacuum state created in the center.
doi:10.1371/journal.pone.0039999.g027
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by approximately one order of magnitude as the number of cells

increases from 100 to 1000. But for fewer than 100 cells, the error-

reducing efficiency of Dmax r is not as great. Overall, the error-

reducing efficiency of the maximum error metrics in RRM is not

yet fully understood.

These results indicate that RRM requires some further

refinement if it is to efficiently produce results at any desired

precision. If we assume the RRM implementation can be

improved so that it performs only O(1) operations per cell, we

would still like to insure that the number of cells always increases

at a rate slower than the integral error norm decreases. One

possibility is to adapt RRM to produce results more like those of a

Riemann solver. As mentioned earlier, it would be straightforward

to split new cells across contacts to maintain their sharpness, which

would reduce a major source of error. Another possibility is to

attempt to develop a new analytical solution to the Riemann

problem that incorporates heat diffusion across contacts, and

measure RRM’s error against that instead.

Conservation Error Analysis
Conservation error is the difference between the conserved

quantities currently present in all cells, and the original conserved

quantities at the start of the simulation, assuming any boundary

effects are properly accounted for. We define one conservation

error for each conserved quantity:

mass conservation error emass(t)~Mf (t){Mf (0)

momentum conservation error emomentum(t)~Pf (t){Pf (0)

energy conservation error eenergy(t)~Ef (t){Ef (0)

ð22Þ

where Mf(t) is the total fluid mass, Pf(t) is total fluid momentum,

and Ef(t) is total fluid energy, all functions of time.

Figure 39 shows the three conservation errors for Sod’s problem

over the first five seconds of flow time, at a time resolution of 0.01

seconds.

This graph shows that mass, momentum and energy are all

conserved to within about 66.0e-14. Total mass in the simulation

is 11.25 kg, total momentum is 0.0 m?s, and total energy is 27.5 J.

Figure 28. Test 6: Toro test 2 converging. A modified ‘‘converg-
ing’’ version of Toro’s test problem 2, with initial conditions (rl, ul,
pl) = (1.0, 3.0, 0.4) and (rr, ur, pr) = (1.0, 23.0, 0.4), with maximum error
metric (Dmax r, Dmax u, Dmax p) = (5.0e-4, 5.0e-4, 5.0e-4), at time t = 1.1.
This is a test of symmetry and momentum conservation, to make sure
that two colliding cells will pile up into one stationary mass with sharp
edges.
doi:10.1371/journal.pone.0039999.g028

Figure 29. Test 7: Toro test 3. Toro’s test problem 3, with initial
conditions (rl, ul, pl) = (1.0, 0.0, 1000.0) and (rr, ur, pr) = (1.0, 0.0, 0.01),
with maximum error metric (Dmax r, Dmax u, Dmax p) = (1.0e-5, 5.0e-3,
1.0e-2), at time t = 0.04. This test’s solution contains a strong shock very
close to a contact. Since RRM is spatially adaptive, it simply creates
many new cells between the shock and the contact to get the required
accuracy.
doi:10.1371/journal.pone.0039999.g029
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The first detail to note about this graph is that the conservation

error is roughly two orders of magnitude larger than the floating-

point precision efp, which on our test machine is about 2.22e-16

for 64-bit IEEE floating point.

This is due to our use of the primitive variable form of the Euler

equations in the current RRM implementation. The conserved

quantities are derived from the primitive variable values of cell

width, density, velocity, and pressure in a series of floating-point

operations, each of which may be incorrect by roughly efp. It takes

only a few multiplicative operations for the error to grow to the

observed value. Fortunately, since the signs of the individual errors

are essentially random, the overall error does not tend to grow

over time.

If we instead used the conservation form of the Euler equations

in the RRM implementation, with a careful treatment we could

get the error down to a smaller multiple of efp. But since the error

is already small in an absolute sense and does not grow over time,

we chose to stay with the primitive variable form because it is

simpler to code.

The second detail to note about the conservation error graph is

the overall trends of the lines. The mass and energy lines are as

expected, with floating-point truncation error causing random

fluctuation about the horizontal axis. However, the momentum

line differs, showing instead a fluctuation around approximately

emomentum = 0.5e-14.

This is due to the initial conditions and time evolution of Sod’s

problem. At time t = 0, the density and pressure are between 0.1

and 1.0, and calculating with these numbers to get mass and

energy results in some nonzero error. However, the initial

velocities are exactly zero, so initially emomentum will also be exactly

zero. As the simulation proceeds and cell velocities increase, the

effective baseline of emomentum is raised, since the calculations

leading to momentum are no longer involve exact values of zero.

Other test problems show variations on this behavior, but no

problems tested so far show any time trend in conservation error.

Figure 30. Test 8: Toro test 4. Toro’s test problem 4, with initial
conditions (rl, ul, pl) = (5.99924, 19.5975, 460.894) and (rr, ur,
pr) = (5.99242, 26.19633, 46.0950), with maximum error metric
(Dmax r, Dmax u, Dmax p) = (5.0e-4, 1.0e-2, 1.0e-2), at time t = 0.15. The
solution to this test has two rightward-traveling shocks with a contact
between them. As usual, the shocks are sharply resolved and the
contact is s-shaped due to RRM’s modeling of heat diffusion.
doi:10.1371/journal.pone.0039999.g030

Figure 31. Test 9: Toro test 5. Toro’s test problem 5, with initial
conditions (rl, ul, pl) = (1.0, 219.59745, 1000.0) and (rr, ur, pr) = (1.0,
219.59745, 0.01), with maximum error metric (Dmax r, Dmax u,
Dmax p) = (1.0e-5, 1.0e-2, 1.0e-2), at time t = 0.03. The initial values of
this test were designed to give an almost stationary contact at the
origin, which causes difficulties for some numerical methods. RRM
handles stationary contacts the same as it does moving contacts, due to
the Lagrangian nature of the simulation.
doi:10.1371/journal.pone.0039999.g031
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Other Boundary Conditions
So far we have considered only periodic boundary conditions,

which are simple to implement since they do not affect the

conserved quantities of the fluid. But RRM can handle many

other types of boundary conditions by adjusting the conserved

quantities of each new cell just before it is flattened. We will

illustrate three more types of boundary conditions: solid, Dirichlet,

and free.

Solid boundaries are immovable and impermeable. To make a

solid boundary, we check if each new cell touches or crosses the

boundary. If so, we set its momentum to zero, and adjust its width

so its edge just touches the boundary. Figure 40 shows Sod’s

problem with solid boundaries at x = 25 and x = 5, from time t = 0

to t = 20. The initial conditions are (rl, ul, pl) = (1.0, 0.0, 1.0) and

(rr, ur, pr) = (0.125, 0.0, 0.1). The maximum error metric is (Dmax r,

Dmax u, Dmax p) = (1.0e-4, 1.0e-2, 1.0e-2).

We can see the shock wave hit the right boundary, reflect off it,

and travel back across the fluid until it reflects off the left

boundary. If we let the simulation run indefinitely, the shock will

travel back and forth many times, until numerical dissipation

finally smooths it out. Eventually, the density and pressure will be

flat, and the velocity will be everywhere zero.

Dirichlet boundaries hold the primitive variable values of the

fluid constant at the boundaries. To make a Dirichlet boundary,

we check if each new cell touches or crosses a boundary. If so, we

set its density, velocity, and pressure to some constant boundary

values, and adjust its width so its edge just touches the boundary.

Figure 41 shows an inrush problem with Dirichlet boundaries at

x = 25 and x = 5, from time t = 0 to t = 10. The initial conditions

are (rl, ul, pl) = (0.1, 0.0, 0.2) and (rr, ur, pr) = (0.1, 0.0, 0.2). The

boundary values are (rl, ul, pl) = (0.3, 0.6, 0.4) and (rr, ur, pr) = (0.6,

20.6, 0.5). The maximum error metric is (Dmax r, Dmax u,

Dmax p) = (1.0e-4, 1.0e-3, 1.0e-3).

Figure 32. Sod’s test problem at high accuracy, showing cell
density. Sod’s problem with initial conditions (rl, ul, pl) = (1.0, 0.0, 1.0)
and (rr, ur, pr) = (0.125, 0.0, 0.1), with maximum error metric (Dmax r,
Dmax u, Dmax p) = (1.0e-5, 1.0e-3, 1.0e-3), at time t = 1.5. Each of the
approximately 800 cells is shown by a single dot, except the two edge
cells which have two dots apiece. This figure shows that RRM is good at
concentrating cells (and thereby computational effort) in areas of
primitive variable gradient.
doi:10.1371/journal.pone.0039999.g032

Figure 33. Sod’s test problem at medium accuracy. Sod’s
problem with initial conditions (rl, ul, pl) = (1.0, 0.0, 1.0) and (rr, ur,
pr) = (0.125, 0.0, 0.1), with the accuracy reduced by increasing the
maximum error metric to (Dmax r, Dmax u, Dmax p) = (1.0e-3, 1.0e-2, 1.0e-2)
to show how the simulation begins to degrade, at time t = 1.5. The
shock is of increased thickness due to the lower accuracy, and is ‘‘blown
back’’ from the correct location.
doi:10.1371/journal.pone.0039999.g033
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We can see the two asymmetrical shocks propagate in from the

edges, cross near the center, and continue to the opposite edges,

where they are squelched by the boundary conditions. If we let the

simulation run longer, the continuous fluid inflow fills the area

higher and higher, with velocity everywhere zero, and density and

pressure eventually becoming flat due to diffusion.

Free boundaries let fluid flow in or out of the boundaries,

without creating any disturbance that might propagate back into

‘‘interesting’’ parts of the fluid. To make a free boundary, we

check if each new cell touches or crosses a boundary. If so, we set

its density, velocity, and pressure to those of the intersected cell

nearest the boundary (for inflow) or farthest from the boundary

(for outflow), and adjust its width so its edge just touches the

boundary. Figure 42 shows a rightward flow problem with free

boundaries at x = 25 and x = 5, from time t = 0 to t = 15. The

initial conditions are (rl, ul, pl) = (0.8, 0.8, 0.1) and (rr, ur, pr) = (0.1,

0.7, 0.05). The maximum error metric is (Dmax r, Dmax u,

Dmax p) = (5.0e-5, 1.0e-4, 1.0e-4).

We can see that fast-moving fluid flows in from the left

boundary and pushes the slower fluid in front of it, forcing it out of

the right boundary. After about t = 14 all of the fluid is in the left

state, since all the right fluid as been pushed out. Note that when

the shock hits the right boundary at about t = 4, we can see a

Figure 34. Sod’s test problem at low accuracy. Sod’s problem
with initial conditions (rl, ul, pl) = (1.0, 0.0, 1.0) and (rr, ur, pr) = (0.125, 0.0,
0.1), with the accuracy further reduced by increasing the maximum
error metric to (Dmax r, Dmax u, Dmax p) = (1.0e-2, 1.0e-2, 1.0e-2) to show a
more extreme failure, at time t = 1.5. The shock is even thicker due to
the lower accuracy, and is ‘‘blown back’’ even farther from the correct
location.
doi:10.1371/journal.pone.0039999.g034

Figure 35. Integral error norm vs. maximum density error
metric. Maximum integral error norm emaxinorm and maximum number
of cells nmax vs. the maximum density error metric Dmax r for Sod’s
problem. Dmax r is swept from 1.0e-1 to 1.0e-5, while Dmax u and Dmax p

are held constant at 1.0e-1. Simulation was from time t = 0.0 to t = 1.5.
This figure shows that the error decreases logarithmically as the
number of cells (and thus the computational effort) increases
logarithmically.
doi:10.1371/journal.pone.0039999.g035

Figure 36. Integral error norm vs. maximum velocity error
metric. Maximum integral error norm emaxinorm and the maximum
number of cells nmax vs. the maximum velocity error metric Dmax u for
Sod’s problem. Dmax u is swept from 1.0e-1 to 1.0e-5, while Dmax r and
Dmax p are held constant at 1.0e-1. Simulation was from time t = 0.0 to
t = 1.5. This figure shows that the error cannot be decreased past a
certain point solely by adjusting Dmax u, since there is little velocity
gradient across the contact (where most of the error is concentrated in
this test).
doi:10.1371/journal.pone.0039999.g036
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glitch. This is because if a cell is near the edge of the fluid, and

there is no other cell between it and the edge, we extend it to touch

the edge. In this case, it just happens to catch a narrow cell in the

transition region and widen it so it is visible.

Finally, we mention two details that apply to all three boundary

condition types discussed above. First, when producing 3D graphs

of RRM simulations, we remove the very thin cells that can occur

in the transition regions at shock fronts. This is simply to make the

graphs more legible, since otherwise these very thin cells hide the

details of the fluid behind them. You can see one of these cells at

t = 4 on the right side of the very last graph above.

Second, we note that these adjustments to the conserved

quantities of new cells require us to change the stored initial

conserved quantities of the entire fluid by a commensurate

amount, so the simulation will not fail its ongoing per-event

conservation checks. This models the mass, momentum, and

energy that are being added and removed at the boundaries.

Source Terms
Our analysis so far has only treated the Euler equations in the

homogeneous case, where no mass, momentum, or energy are

added to or removed from the fluid during the simulation, except

for a special case at the boundaries.

In the more general case, we augment the Euler equations with

source terms thus:

ðm2

m1

(u(m,t2){u(m,t1))dm~ {

ðt2

t1

(f(m2,t){f(m1,t))dt

z

ðt2

t1

ðm2

m1

s(m,t)dmdt

ð23Þ

using a new vector of source terms

s~

smass

smomentum

senergy

2
64

3
75 ð24Þ

Presenting a scheme to simulate these equations is beyond the

scope of this paper. However, we can make a few remarks about

how it might be possible.

A few cases would be simple. For example, mass or energy

source terms that are constant in space and time could easily be

implemented by adding mass or energy to new cells during

flattening.

A few more cases are somewhat difficult, but feasible using

splitting schemes similar to those described in chapter 15 of Toro’s

book [1]. For example, momentum source terms that are constant

in space and time could be implemented by changing the cells’

equations of motion from constant-velocity to varying-velocity, at

the cost of complicating the intersection calculation of particles

with cells.

The general case becomes very difficult. If spatially- and

temporally-varying source terms are allowed, cells’ masses and

energies could change in ways that would require both space and

time integration to resolve at flattening time. The intersection

calculation of particles with cells would also require solving ordinary

differential equations, rather than simple algebraic equations.

Discussion

So far we have shown that RRM gives correct results for many

standard test problems, that RRM’s error decreases steadily as we

increase the desired accuracy, and that RRM handles many

common types of boundary conditions. Now we explain the

similarities and differences between RRM and other CFD

Figure 37. Integral error norm vs. maximum pressure error
metric. Maximum integral error norm emaxinorm and the maximum
number of cells nmax vs. the maximum pressure error metric Dmax p for
Sod’s problem. Dmax p is swept from 1.0e-1 to 1.0e-5, while Dmax r and
Dmax u are held constant at 1.0e-1. Simulation was from time t = 0.0 to
t = 1.5. This figure shows that the error cannot be decreased past a
certain point solely by adjusting Dmax p, since there is little pressure
gradient across the contact (where most of the error is concentrated in
this test).
doi:10.1371/journal.pone.0039999.g037

Figure 38. Integral error norm vs. all maximum error metrics.
Maximum integral error norm emaxinorm and the maximum number of
cells nmax vs. all three maximum error metrics Dmax r, Dmax u, and Dmax p

for Sod’s problem. All three maximum error metrics are swept from
1.0e-1 to 1.0e-5 in tandem. Simulation was from time t = 0.0 to t = 1.5.
This figure shows that there is a slight synergistic effect between the
three maximum error metrics, since the minimum error achieved here is
slightly lower than when each of the three is set to 1.0e-5 individually.
doi:10.1371/journal.pone.0039999.g038
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methods in detail, list some of RRM’s limitations, and suggest

directions for future research.

Comparison with Adaptive Eulerian Methods
Simple CFD methods advance time across the whole fluid in

lockstep. But this wastes effort in smooth areas of the fluid, and

gives suboptimal resolution in steep areas. To solve this problem,

Osher and Sanders proposed locally varying time steps [20]. Such

methods can make simulation much more efficient, but they

require that special care be taken at the interfaces between areas of

differing time resolution.

Adaptive mesh refinement (AMR) methods such as the one

proposed by Berger and Oliger [21] flag points in the fluid with

high estimated error for possible refinement. Then every so often,

the flagged points are clustered together to determine the size,

shape, and orientation of a new, finer sub-mesh to cover them.

Finer sub-meshes are integrated using proportionately shorter time

steps, so AMR is adaptive in both space and time. AMR requires

special care when integrating the sub-meshes, to insure that the

boundary conditions with the rest of the fluid maintain conser-

vation.

RRM does not divide the fluid into areas of different mesh

fineness or time step size. Instead, each new cell is created at its

own individually chosen time, which need not bear any relation to

the creation times of other cells. This gives us a very fine-grained

spatio-temporal adaptivity, with the disadvantage that such a

simulation must use an event queue instead of a simple time-

stepping loop. RRM does not require a clustering algorithm, since

new cells are preferentially created in high-gradient areas. But

RRM does require the unioning of wavefronts before creating a

new cell, which is a similar operation.

RRM differs from FDM and FVM in that it does not use

numerical derivatives in the cell chopping and flattening process,

only integrals. This means that RRM does not need a flux limiter

or slope limiter to smooth spurious oscillations that can be caused

by the extremely large gradients near shocks.

Comparison with the Lattice Boltzmann Method
RRM differs from LBM firstly in that RRM is meshfree and

Lagrangian, where LBM has a mesh (though it is called a lattice in

LBM literature) and is Eulerian (since the fluid flows through fixed

lattice sites). A more interesting difference between RRM and

LBM is that in RRM, cells are free to move in any direction,

where in LBM, fluid can only move in a fixed number of directions

between adjacent sites. Fluid flows in LBM can therefore exhibit

anisotropies, depending on the choice of lattice type and

connectivity.

Cells in 2D and 3D RRM will have angular velocity, which will

complicate the flattening process somewhat, where in LBM the

collision process is much the same for all dimensionalities. Since

collision takes place only at zero-size lattice sites, angular

quantities do not arise, which keeps the programming simpler

than RRM.

Comparison with Adaptive Meshed Lagrangian Methods
To adapt to the time-varying features of a fluid, a meshed

Lagrangian method can move the mesh relative to the fluid,

change the mesh connectivity, or both.

The Arbitrary Lagrangian-Eulerian method (ALE) [22] com-

bines the Eulerian and Lagrangian forms by creating a third

‘‘referential’’ coordinate system that is independent of both the

fixed world coordinates and the moving material coordinates. This

allows cells to move independently of both the fixed coordinate

system and the material.

As an ALE simulation progresses in Lagrangian mode, the cells

can be ‘‘rezoned’’ by allowing the mesh to move relative to the

fluid, while keeping the same mesh connectivity. This rezoning

helps keep the cells from becoming tangled or degenerate, which

would prevent further simulation. Rezoning is an Eulerian process,

since it allows fluid to flow across cell edges, and it can smear out

contacts and shocks unless one is careful when rezoning near

them. For this reason, if the fluid motion is complex enough, it

may be impossible to keep the original mesh connectivity without

unacceptably degrading accuracy.

The ‘‘free Lagrange’’ methods such as FLAG [23] and

Whitehurst’s signal method [18] allow mesh points to be

dynamically linked and unlinked over the course of the simulation,

thereby changing the initial mesh connectivity as the fluid moves.

These methods use a variety of heuristics to maintain a reasonable

mesh, such as trying to keep nearest neighboring points connected,

or trying to keep the angles of mesh triangles as equal as possible.

Figure 39. Conservation error vs. time on Sod’s problem over 5
seconds. The three conservation errors for Sod’s problem over the first
five seconds of flow time, at a time resolution of 0.01 seconds. This
graph shows that mass, momentum and energy are all conserved to
within about 66.0e-14. Total mass in the simulation is 11.25 kg, total
momentum is 0.0 m?s, and total energy is 27.5 J.
doi:10.1371/journal.pone.0039999.g039
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In RRM, there is no mesh connectivity, so there is no need to

track or alter it over the course of simulation. RRM constantly

creates new cells, which has an effect similar to rezoning in that it

allows fluid to flow across the edges of chopped cells.

Moving finite element (MFE) methods [24–27] generalize the

finite element method to better track moving fluid flow features

using moving elements. MFE methods result in extremely stiff

systems of ordinary differential equations (ODEs), and so require

sophisticated implicit ODE solvers. They also require careful

tuning with user-chosen parameters to keep the elements from

becoming too small or bunching up at shocks. It is also possible to

adaptively create and destroy nodes in an MFE method, as shown

by Kuprat in 1992 [28].

Since each new RRM cell chops out and replaces what was

underneath it, cells can never bunch up, and there is only one

Figure 40. Sod’s problem with solid boundaries at x = 25 and
x = 5. Sod’s problem with solid boundaries at x = 25 and x = 5, from
time t = 0 to t = 20. The initial conditions are (rl, ul, pl) = (1.0, 0.0, 1.0) and
(rr, ur, pr) = (0.125, 0.0, 0.1). The maximum error metric is (Dmax r, Dmax u,
Dmax p) = (1.0e-4, 1.0e-2, 1.0e-2). The shock wave hits the right
boundary, reflects off it, and travels back across the fluid until it
reflects off the left boundary.
doi:10.1371/journal.pone.0039999.g040

Figure 41. Inrush problem with Dirichlet boundaries at x = 25
and x = 5. An inrush problem with Dirichlet boundaries at x = 25 and
x = 5, from time t = 0 to t = 10. The initial conditions are (rl, ul, pl) = (0.1,
0.0, 0.2) and (rr, ur, pr) = (0.1, 0.0, 0.2). The boundary values are (rl, ul,
pl) = (0.3, 0.6, 0.4) and (rr, ur, pr) = (0.6, 20.6, 0.5). The maximum error
metric is (Dmax r, Dmax u, Dmax p) = (1.0e-4, 1.0e-3, 1.0e-3). Two
asymmetrical shocks propagate in from the edges, cross near the
center, and continue to the opposite edges, where they are squelched
by the boundary conditions.
doi:10.1371/journal.pone.0039999.g041
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user-chosen parameter to set, the maximum error metric (though

this metric does have three components). And since RRM does not

use systems of equations, it does not need numerical solvers.

Comparison with Previous Meshfree Methods
Of all current CFD methods, the meshfree methods are the

most similar to RRM. Indeed, we categorize RRM itself as a

meshfree method, since it shares the characteristics of being purely

Lagrangian and not using a mesh. But as we will see, there are

many differences between previous meshfree methods and RRM

in how cells or particles are formed, how their motion is

calculated, and how long they persist during a simulation.

Previous meshfree methods and RRM both discretize a fluid

into a set of particles or cells with no connectivity between them.

In previous meshfree methods like SPH and MPS, the particles are

acted upon by forces over time, and thus change their velocities. In

contrast, once a cell is created in RRM, it moves at a constant

velocity even as parts of it are chopped away by the creation of

subsequent new cells. This means RRM does not require

integration of the equations of motion of its cells.

A major difference between RRM and SPH or MPS lies in how

the primitive variable values like density and pressure are

determined at each point in the fluid. SPH and MPS store the

conserved quantities in moving material particles. These particles

have zero extent, but a smoothing function allows us to find the

primitive variable values in the spaces between the particles. In

contrast, RRM does not store the conserved quantities of the fluid

directly. Instead, they are the result of integrating the stored

primitive variable values over the cell areas. Since the cells have

non-zero sizes, and new cells are constantly being created to fill

any gaps, we do not need a smoothing function. The tracer

particles in RRM are non-material particles that do not carry any

conserved quantities, they simply trace out the expanding acoustic

waves in the fluid.

A particle-based meshfree method like SPH can be made

adaptive by allowing the smoothing length to vary inversely with

density, as shown by Benz in 1990 [29]. This is refined by Owen

et al. in 1998 [30] to give each particle a time-varying, anisotropic

smoothing length that attempts to keep the number of neighboring

particles the same in each direction.

The motion of the tracer particles in RRM gives an effect

similar to the use of anisotropic smoothing length in adaptive SPH,

since the tracer particles sweep out an area that varies with the

local speed of sound and the local fluid motion.

SPH can also be made adaptive by splitting and merging

particles during simulation [31233]. Splitting is done in low-

density areas, and merging in high-density areas, to insure that the

number of particles is appropriate to accurately track the fluid

motion.

The previous meshfree method most similar to RRM is the

Finite Mass Method (FMM) [34,35]. FMM divides the fluid into

finite-sized cells (called mass packets in FMM papers) with an

internal distribution typically described by third-order B-splines.

These cells can move, deform, and interact during simulation. If

the cells become too deformed, the simulation is stopped, the fluid

is remeshed into new, undeformed cells and the simulation is

restarted.

Cells in RRM do not change shape, except in that parts of them

are chopped away by the creation of new cells. Therefore RRM

does not need to remesh to fix excessive cell deformation. RRM

constantly creates and destroys cells, so any excessive bunching or

gapping due to cell movement is fixed incrementally rather than

all at once in a remeshing operation.

Realm of Applicability
RRM should work for most systems of conservation equations

that have a complete wave description, which are often described

as hyperbolic. In one dimension, such a system typically has three

types of waves: entropy waves, left-propagating acoustic waves,

and right-propagating acoustic waves. In RRM, the motions of the

cells model the entropy waves, and the moving tracer particles

model the propagation of the acoustic waves.

RRM’s tracer particle methodology is useful only for compress-

ible fluids, since incompressible fluids have no acoustic waves. So

Figure 42. Rightward flow problem with far-field boundaries at
x = 25 and x = 5. A rightward flow problem with free boundaries at
x = 25 and x = 5, from time t = 0 to t = 15. The initial conditions are (rl, ul,
pl) = (0.8, 0.8, 0.1) and (rr, ur, pr) = (0.1, 0.7, 0.05). The maximum error
metric is (Dmax r, Dmax u, Dmax p) = (5.0e-5, 1.0e-4, 1.0e-4). Fast-moving
fluid flows in from the left boundary and pushes the slower fluid in front
of it, forcing it out of the right boundary. After about t = 14 all of the
fluid is in the left state, since all the right fluid as been pushed out.
doi:10.1371/journal.pone.0039999.g042
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for example, RRM should work for the compressible Navier-

Stokes equations, but not the incompressible Navier-Stokes

equations.

RRM’s ‘‘chop out and flatten’’ methodology is most applicable

to systems that are locally conservative. A system that is globally

conservative but not locally conservative cannot easily be chopped

out and flattened, since the flattening would require access to parts

of the fluid other than those that were chopped out.

Limitations
One limitation of RRM is that its data structures are complex

and difficult to code correctly. Allowing cells to move and be

chopped up over time is straightforward, but involves extra

bookkeeping that many other methods do not require. Extension

to 2D and 3D is possible, but will be even more complex since cells

must be allowed to rotate as well as translate.

Another limitation of RRM is its use of event-driven simulation.

This gives good spatial and temporal adaptivity, but it makes the

algorithm more difficult to parallelize, especially on GPGPUs

(General-Purpose Graphics Processing Units) such as NVIDIA’s

Tesla where data-dependent branching is penalized.

A final limitation applies to von Neumann boundary conditions.

Since RRM does not use spatial derivatives, it is difficult to hold

them constant at the fluid boundaries. RRM could implement von

Neumann boundary conditions with some difficulty by creating

‘‘ghost cells’’ just outside the boundaries to give the correct

behavior, but it would not fit neatly into the ‘‘adjusting the

conserved quantities of new cells’’ paradigm discussed in the above

section on boundary conditions.

Further Research
The obvious future research directions for RRM are extension

to 2D and 3D, replacement of the Euler equations with the

compressible Navier-Stokes equations, and parallelization. A not-

so-obvious direction is using RRM to simulate the behavior of

non-fluid fields containing inherent discontinuities or intractable

nonlinearity. Since RRM does not evaluate numerical derivatives

or solve systems of equations, it might be applicable to fields whose

traditional discretizations are numerically ill-behaved or difficult to

formulate.

RRM could also benefit from further investigation into its rate

of convergence. As noted at the end of the section on absolute

error, increases in computational effort do not always result in

proportional decreases in the integral error norm. More research

into this area would be helpful to insure that RRM can efficiently

achieve any desired level of error.
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