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Abstract

The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the
response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron
tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the
structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within
2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid
helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge
images, sorted by multivariate data analysis into ,40 classes, distinct in average structure, population size and lattice
distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its
binding strength (weak or strong) to actin. ,98% of strong-binding acto-myosin attachments present after a length
perturbation are confined to ‘‘target zones’’ of only two actin subunits located exactly midway between successive troponin
complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-
myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance,
after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly
likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in
isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic
model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-
bridges. The results provide a detailed model for contraction in IFM that may be applicable to contraction in other types of
muscle.
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Introduction

One of the oldest methods for studying the mechanical

properties of active muscle is the application of a rapid mechanical

perturbation to an isometrically contracting muscle fiber. In a

steady state contraction, myosin cross-bridges generate force

asynchronously, which makes it difficult to distinguish the

structural changes associated with the individual steps of the

cross-bridge cycle because most experimental techniques typically

produce only an average measurement over the ensemble. The

application of a sudden length perturbation (e.g. 0.12 ms) to an

isometric contraction can force attached cross-bridges to respond

simultaneously [1,2].

When an isometrically contracting muscle at force T0 is allowed

to shorten abruptly by a small amount and then held constant at

the new, shorter length, tension decreases simultaneously to T1

due to the reduced load on elastic elements, which reside in the

filaments and cross-bridges (Fig. 1A). This response of the cross-

bridges is referred to as phase 1. Force then initially recovers

rapidly to T2 (phase 2), which is attributed to the active rotation of

lever arms of attached cross-bridges, followed by a slower force

recovery or even a slight reversal (phase 3) and a final, slower

asymptotic recovery to a new isometric force level T4 (phase 4) [2].

For very small step-releases of ,5 nm/half sarcomere, the phase 2

recovery is complete during the first 2 ms, indicating that

continuously attached cross-bridges undergo a power stroke to
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restore tension toward the isometric value [1,3,4]. Quick releases

$12 nm/half sarcomere drop the tension so far that the phase 2

recovery is absent and tension redevelops slowly through phases 3

and 4.

Muscle fibers become stiffer during a stretch, suggesting that

force enhancement by stretch is partly related to the recruitment of

additional elastic components [5]. When an isometrically con-

tracting muscle at tension T0 is suddenly step-stretched and held at

the new length, the force increases during the stretch from T0 to

T1 due to additional strain on the elastic elements, which consist of

myosin heads and the filaments themselves (Fig. 1B). Part of this

strain is born by the filaments, which elongate slightly and, it is

thought, second heads of actin-attached myosin, which bind the

thin filament [5]. Tension decreases from T1 to T2 during the

next few milliseconds as the thick filaments return to their original

length at the expense of the cross-bridges whose lever arms ‘‘back

bend’’ further to accommodate the higher loading force imposed

on them [5].

Myosin heads consist of a motor domain (MD), which has the

catalytic and actin binding functions, and a lever arm that

amplifies small structural changes within the MD to produce

filament sliding. The lever arm consists of a small folded domain,

dubbed the converter, a long a-helical peptide that binds the two

light chains, an essential light chain, ELC, and a regulatory light

chain, RLC. Attached fluorescent or paramagnetic probes can

monitor separately the MD and the lever arm.

Fluorescence polarization measurements show that probes

bound to the RLC of myosin in muscle fibers tilt in response to

quick length changes during active contraction [6,7,8]. Similar

measurements on contracting/active muscle fibers labeled at

Cys707 of the myosin MD show no change in probe orientation in

response to length changes [9], suggesting that the myosin head

contains an internal hinge, probably between the nucleotide-

binding domain and the light chain region. Motions of the lever

arm around this hinge rather than changes in MD orientation may

underlie force generation. The detected orientations of probes

attached to light chains for active isometric contraction showed a

broad distribution of tilt angles. Based on stiffness information and

filament compliance, it was estimated that the lever arms of 20%

of the heads tilt in response to a length step during active

contraction [8]. However, how much of this motion is passively

linked to filament sliding and how much to active force generation

still remains a question.

X-ray diffraction of frog muscle has been used to probe with

sub-ms precision the mechanically induced changes in average

cross-bridge conformation that occur in synchrony with the

induced force transients. Because of spacing differences,

reflections on either the thick and thin filament can be used

to identify changes occurring separately in either the lever arm

or the myosin MD. Intensity of the M3 meridional X-ray

reflection at 14.5 nm axial spacing, IM3, arises from the

arrangement of myosin heads on the thick filament [10] and

is used to report changes in tilt of cross-bridges during a force

transient. A decrease in IM3 indicates tilting of myosin heads

away from 90u and more parallel to the filament axis, which

spreads the projection of their cross-bridge mass more uniformly

along the filament axis [11,12]. Conversely, intensity increases

in the 37–38 nm, 5.9 and 5.1 nm layer lines can detect

ordering of the MD interaction with the actin subunits.

When an active muscle fiber is rapidly shortened, IM3 decreases

with about the same time course as the phase 2 rapid force

recovery, but no detectable change in intensity occurs during the

,0.1 ms length step itself [12]. Thus, the myosin head movements

underlying the intensity decrease appear associated only with the

slightly delayed active force generation early in phase 2, not with

the length step and its elastically coupled, prompt force changes

[12]. In contrast, when a quick stretch is applied to active muscle

fibers, part of the intensity decrease of the 14.5 nm reflection

occurs during the stretch, which reports the distortion of myosin

heads due to the instantaneous elasticity of muscle and a small and

fast reversal of the working stroke [13]. On the other hand, an X-

ray study on muscle fibers utilizing a rapid temperature-jump to

induce a tension rise found that the largest effect was found on the

actin based layerlines rather than IM3 suggesting that a disordered

to ordered transition of the MD on actin, rather than a simple

lever arm tilt, was associated with the tension increase [14].

Evidence for this disorder-to-order transition of the MD early in

force generation had also been provided by earlier EPR studies

[15,16].

X-ray diffraction has the advantage that the diffraction

intensities can be recorded in real time from intact muscle fibers,

but with the limitation that the measurements are an average of

the ensemble of cross-bridges within the filament lattice. While

shifts in this average can be detected, it is not straightforward to

Figure 1. Typical mechanical traces. (A) Following a quick release
of 4.5 nm/half sarcomere from isometric tension. (B) Following a quick
stretch of 3 nm/half sarcomere from isometric tension. Adapted from
reference [2].
doi:10.1371/journal.pone.0039422.g001
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translate such shifts into changes of individual cross-bridges or the

range and distribution of changes across the ensemble [17]. X-ray

techniques are sensitive to the mass of the entire head, and do not

resolve which fragments of the head bend or tilt. For example, IM3

measures the ordered mass along the 14.5 nm axial periodicity,

but this mass could be due to myosin heads ordered with respect to

the actin subunits and thus generating force, or they could be

disordered with respect to the actin subunits, as would be typical of

weak myosin-thin filament interactions. Like X-ray diffraction,

electron microscopy (EM) also measures the cross-bridge ensemble

but with the distinct difference that individual cross-bridges can be

visualized at the same time.

Insect flight muscle (IFM) possesses a highly ordered para-

crystalline arrangement of myosin and actin filaments that

provides detailed X-ray diffraction patterns [18] and electron

micrographs [19,20]. Its filament arrangement is ideal for EM

because the placement of an actin filament exactly midway

between myosin filament pairs permits visualization of all the

cross-bridges that attach to it within a section 25–30 nm thick.

IFM also permits comparison of two activation pathways, one

mechanically triggered by stretching partly activated muscle at

pCa ,6.0, referred to as stretch activation, the other an isometric

contraction induced by saturating calcium at pCa ,4.5, that is

mechanically equivalent to the same state in vertebrate striated

muscle.

Lethocerus IFM exhibits force transients, similar to those of

vertebrate skeletal muscles [1,21]. Step changes in sarcomere

length of 100 ms duration can be imposed on fibers in Ca2+-

activating solution at the plateau (T0) of isometric tension. The

quick recovery rate increases in the isometric contraction

transients, going from the largest stretch to the largest release,

indicating that the cross-bridge kinetics of Lethocerus IFM have a

strain dependence similar to that in skeletal fibers from vertebrate

muscle.

The fully Ca2+-activated isometric contractions in IFM have

been developed as an experimental model, called High Static

Tension (HST), to indicate maximum active force with no stretch

activation [22,23]. Our recent EM study of isometric HST (iso-

HST) utilized improved data collection, dual axis electron

tomography and focused classification of the cross-bridge distri-

bution within the 38.7 nm structural repeats [24,25]. This work

resolved the actin subunits on the thin filament thereby enabling

the fit of an actin filament atomic model to the density

independent of the presence of strong-binding myosin heads, in

turn enabling the separate identification of both strong- and weak-

binding attachments. Strongly bound cross-bridges were found

only in the region exactly midway between successive troponin

(Tn) complexes. This region is defined as the target zone [26].

Two types of weak-binding attachments were found in and near

the target zone, one set attached to actin, the other set contacting

tropomyosin (TM). Yet another set of apparently weak attach-

ments were observed contacting Tn. Quasiatomic models of

strongly bound attachments show a 77u sweep of lever arms

spanning a 12–13 nm power stroke. A plausible sequence of weak-

binding attachments toward the strong-binding configuration

suggested that the weak-to-strong transition involved primarily

azimuthal movements of myosin which may explain temperature

jump experiments on isometrically contracting muscle [14] as well

as providing a mechanism for myosin heads to cycle in place

during active contraction [23].

Here we report on further investigations into the HST state of

IFM using a 2 ms duration stretch (str-HST) or release (rls-HST)

and their effect on both the structure and distribution of cross-

bridges as they adjust to the mechanical perturbation. Changes

relative to iso-HST include some new structures and a significant

change in the distribution and frequency of previously observed

structures. An increase in the number of two-headed attachments

occurred after a quick stretch. Following a quick release the

number of mask motifs in which myosin heads from successive

14.5 nm levels (crowns) contact a single target zone, as well as

myosin heads contacting Tn (troponin bridges) increased. After a

mechanical transient, there was also a dramatic change in the

number and distribution of weak attachments in or near the target

zone. Changes to the cross-bridge lever arm were comparatively

small but consistent with the axial direction of the imposed length

step.

Results

Tension Transients
The experiments reported here were severely constrained by the

combined requirements for low-noise tension records of 10-mN

resolution from single fibers slam-frozen with 1-ms precision and

high-quality EM images of optimally oriented single-filament

layers that were minimally perturbed by the slam-freezing impact.

Although each experiment was repeated on at least 10 fibers,

many with good mechanical traces failed to produce good quality

EM specimens. The two specimens analyzed here were the best. In

the step-stretch experiment (str-HST), the fiber was stretched 0.5%

in 2 ms (Fig. 2A), and slam-frozen at the new length 5.5 ms later

(Table 1). The force peaked at the end of the stretch, and had

declined to near the pre-stretch level at the moment of freezing

impact. In the step-release experiment (rls-HST), the fiber was

released by 0.75% in 2.5 ms and the freezing impact occurred

6.5 ms later (Fig. 2B).

With the measured tension values and the known information

on the filament arrangements in IFM (Table 1), the force

generated by individual cross-bridges can be estimated by

following previous calculations for iso-HST [22]. The force per

strong-binding attachment varied from 2.66 pN for rls-HST to a

maximum of 3.35 pN for iso-HST. For the three experiments, the

mean is 3.0760.36 pN, similar to values reported for vertebrate

myosin [27,28,29,30] although smaller forces have been reported

for smooth muscle myosin II [31,32].

Microscopic Appearance of iso-, str-, and rls-HST
The tomograms from all three HST states appear similar, with

numerous cross-bridges bound to the thin filament (Fig. 3A–C).

The 14.5-nm shelves of myosin heads on the thick filament are

most visible in rls-HST, which had the lowest tension and the

fewest attachments to actin, suggesting that the better-defined

shelves are due to unattached heads that return to their original

14.5 -nm shelves.

Myosin head binding occurs all along the thin filament but is

most frequent at the target zone, midway between the Tn

complexes (Fig. 3D–F). A visual comparison of the class averages

gives the impression that the cross-bridge lever arms in str-HST tilt

upward toward the M-line (anti-rigor) more than those from rls-

HST (Fig. 3E, F). However, the quantitative comparisons

described below suggests that the average M-ward shift of the

lever arm angle is quite small and the visual impression results

mainly from certain stand alone, one-headed attachments,

reinforced by a shift in the distribution of cross-bridge attachments

along the actin filament toward the M-line for str-HST and toward

the Z-line for rls-HST. Other differences are more striking, such as

changes in the distribution of two-headed cross-bridges, weak-

binding cross-bridges, and mask motifs.

Muscle Structure after a Mechanical Perturbation
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Distribution of Myosin-Actin Attachments
In an active contraction, we expect to find both weak and strong

attachments to actin. As before [24,25], we defined strong-binding

attachments as those in which the myosin atomic model can be fit

to the density without moving the MD away from the rigor acto-

S1 structure [33], whereas weak-binding attachments are those

that required moving the MD. We further divided weak

attachments in or near the target zone depending on whether

the MD contacted actin or tropomyosin (TM). Type 1 attach-

ments contact actin and were only found in the target zone. Type

1 weak-binding attachments had their MD positioned on actin in a

manner suggestive of a pre-power stroke stage. Hereafter, we will

refer to these weak attachments as ‘‘pre-stroke’’ bridges acknowl-

edging that this is a putative assignment. Type 2 attachments

contact TM rather than actin and were found in and outside the

target zone, but always on the M-line side. Hereafter we will refer

to these weak attachments a ‘‘TM-bridges’’, leaving open to

question the mechanism by which they are maintained in contact

with the thin filament.

Stretch or release did not significantly affect the number of

strong-binding cross-bridges compared to iso-HST (Table 1),

although the slightly smaller number of strong attachments in str-

and rls-HST is consistent with the lower tensions in these states at

the moment of freezing. In all three states, almost all strong-

binding attachments are found on actin subunits H-K (Fig. 4, right),

which confirms our prior identification of these subunits as the

target zone [25]. The only violation of this restriction was a single

strong-binding class average in str-HST found on actin subunit G

just M-ward of the target zone representing only 1.8% of the total

strong-binding attachments. Among the four target zone subunits,

there are slightly more strong attachments on the M-ward subunits

H/I in iso- and str-HST (Fig. 4A & B), whereas there are more on

the Z-ward subunits J/K in rls-HST (Fig. 4C). Thus, stretch shifts

the distribution of strong binding cross-bridges slightly M-ward,

whereas release shifts it slightly Z-ward.

In contrast to the subtle effects on strong binding, stretch or

release dramatically reduced the number and altered the

distribution of weak-binding cross-bridges, especially within the

target zone as can be seen by comparing the occupancy of weak-

binding attachments at the target zone subunits H-K in iso-HST

(Fig. 4A, left) to the occupancy in str- and rls-HST (Fig. 4B & C,

left). In iso-HST, 29% of all target-zone attachments are weak-

binding [25], but only 5% and 6% of the target zone attachments

are weak binding in str- and rls-HST. Outside the target zone,

stretch or release varied the distribution of weak-binding

attachments less dramatically. In both states, the number of

cross-bridges on actin subunits D/E, F/G, and L/M were roughly

similar to those seen in iso-HST. Z-ward of the target zone, stretch

or release reduced the number of cross-bridges at actin subunits

N/O. Near the Tn complex at subunits R/S, stretch reduced the

number of cross-bridges whereas release increased the number of

cross-bridges relative to iso-HST.

Pre-stroke and TM-bridges responded differently to stretch or

release (Table 2). In iso-HST, 72% of the weak-binding

attachments within the target zone are pre-stroke cross-bridges,

whereas the remaining 28% are TM-bridges. Most TM-bridges

are found outside of the target zone, on the M-ward side [25].

Although a step release decreased the total number of weak

attachments, it did not change the relative proportion of pre-stroke

versus TM-bridges (71% : 29%). In contrast, a step stretch appears

to have selectively reduced the number of pre-stroke bridges

(14%), leaving TM-bridges (86%) to make up the majority of

Figure 2. Experimental mechanical traces. (A) str-HST. (B) rls-HST.
In both cases, the tension scale unit is mg. Scale for the length plot is
arbitrary. See Table 1 for values in other units and for the actual length
change.
doi:10.1371/journal.pone.0039422.g002

Table 1. Summary of fiber mechanics of iso-, str- and rls-HST.

str-HST rls-HST iso-HST1

Step length (%) 0.50 0.75 –

Step length (nm/half sarcomere) 6 9 –

Step time (ms) 2.0 2.5 –

Impact time (relative to start of
step)

7.5 9 –

Tension before step (mg) 44 62 –

Peak tension after step (mg) 57 39 –

Tension at impact (mg) 48 44 58.5

Tension at impact (mN) 470 431 573

Target zone attachments/
repeat2

1.89 2.157 3.012

Strong binding attachments/
repeat2

1.833 2.022 2.134

Force/target zone attachment
(pN)4

3.10 2.49 2.37

Force/strong binding attachment
(pN)4

3.20 2.66 3.35

1from reference [22].
2A repeat represents a 38.7 nm length of the thin filament.
3Includes out-of-target-zone attachments on actin subunit G.
4Based on 5.76108 thick filaments/fiber cross section and 7.1 myosin heads per
thin filament half repeat [22].
doi:10.1371/journal.pone.0039422.t001
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Figure 3. Projection images from each HST state. (A-C) Projection images of regions from each tomogram. (A) iso-HST state; (B) rls-HST;(C) str-
HST. (D-F) Projection images from 15 reassembled primary mask class averages from each state. (D) iso-HST state; (E) rls-HST; (F) str-HST. In D-F, one
mask motif structure has been outlined in each panel. Paired brackets show the location of the actin target zone; black arrows the Tn complex and
white arrowheads the myosin head origins. Orientation has Z-line at the bottom, M-line at the top. Bar in the top panels is 50 nm.
doi:10.1371/journal.pone.0039422.g003
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weak-binding attachments in str-HST. TM-bridges in str-HST

were also more broadly distributed, being found at subunits E-I, in

contrast to subunits F-H in iso-HST and only subunit G in rls-

HST (Table 2).

Reassembled Class Averages
Each raw repeat within the tomogram may contribute to several

class averages, such as left- and right-side primary class averages,

as well as troponin bridge classes. We reassembled the class

averages to which an individual repeat contributed back into the

original repeat, which improves the signal-to-noise ratio while

retaining the rich variations in cross-bridge structure present in the

tomograms [24]. The entire range of class averages can be

represented by 40 reassembled repeats for str-HST (Figs. 5) and 35

reassembled repeats for rls-HST (Figs. 6). Three repeats each of

str- and rls-HST including the single out-of-target zone strong

binding class average (str-127) are shown at higher resolution in

Figure 7.

Among the 40 reassembled repeats of str-HST (Figs. 5, 7), 13

were devoid of cross-bridges (e.g. repeats 8, 106, 120, 122, 150,

206, and 380). Eleven repeats contained two-headed cross-bridges

(e.g. 1, 14, 100, 115, 128, 170, 218, 219, 306, 340, and 346). Six

repeats contained troponin bridges (e.g. 1, 2, 3, 4, 8, 12, and 14).

Four repeats contained mask motifs (e.g. 25, 104, 122, and 346).

The rest contained one-headed, strong- or weak-binding myosin

heads of various forms.

Among the 35 reassembled repeats of rls-HST, 8 lacked any

cross-bridges (e.g. 99, 109, 123, 134, 167, and 243). Four repeats

contained two-headed bridges (e.g. 1, 60, 65, and 182). Eleven

repeats contained troponin bridges (e.g. 1, 2, 3, 4, 8, 20, 22, 29, 43,

47, and 65). Twelve repeats contained mask-motifs (e.g. 1, 3, 8, 22,

51, 77, 182, 187, 189, 201, 213, and 224). The rest contained one-

headed, strong- or weak-binding cross-bridges of various forms.

The individual cross-bridge forms are discussed below.

Two-Headed Cross-bridges
Two-headed cross-bridges have both heads of a myosin

molecule bound to adjacent actin subunits on one side of the

actin filament (Table 3). In all three states, two-headed attach-

ments were observed only in the target zone, never outside it.

Three different varieties of two-headed bridges are possible based

on the apparent binding strength of the MD to actin as defined

Figure 4. Distribution of cross-bridges for each actin subunit in
the 38.7 nm axial period. The actin subunit designations are the
same as those used for iso-HST [25]. Occupancy is given as a frequency,
which means the total number of myosin heads, both weak and strong-
binding, is divided by the total number of repeats in the data set for
each state. On the right side are the occupancies for strong-binding
attachments; on the left side are the occupancies for weak-binding
attachments. Actin subunits H-K are target zone subunits; actin
subunits R and S are bound to the Tn head complex. Orientation has
Z-line at the bottom, M-line at the top. (A) iso-HST; (B) str-HST; (C) rls-
HST.
doi:10.1371/journal.pone.0039422.g004

Table 2. Summary of weak attachments for iso-, str- & rls-
HST1.

State Map ID # found Subunit2 Type3 Displacement4

Isometric5 63 F 2 5.0–6.7 nm

57 G 2 4.2–4.4 nm

43, 99 H 2, 1 0.7–4.5 nm

123 I 1 0.2–2.6 nm

164 J 1 0.6–2.5 nm

23 K 1 0.6 nm

stretch 25 26 E 2 8.2 nm

129 23 E 2 4.0 nm

144 28 F 2 4.2 nm

44 41 G 2 2.6 nm

348 36 H 2 3.2 nm

144 43 I 2 2.5 nm

104 31 K 1 7.1 nm

release 236 39 G 2 2.7 nm

222 47 J 1 4.2 nm

224 49 K 1 2.3 nm

1These are obtained from the primary mask class averages.
2Actin subunit as defined in Figure 4.
3Type 1 are found in the target zone and are potential prepower stroke cross-
bridges. Type 2 have their MDs contacting TM rather than actin.
4Center of the MD from its center when in the strong binding position.
5Summarized from Table 1 of reference [25].
doi:10.1371/journal.pone.0039422.t002
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above (strong-strong, strong-weak, or weak-weak pairs). All three

were observed in iso-HST [25]. In contrast, only strong-strong

two-headed attachments were observed in str- and rls-HST

(Table 3). If all two-headed cross-bridges are compared without

consideration of myosin head binding strength, the order is

isometric.stretch.release. The order is stretch.isometric.re-

lease if only double strong attachments are considered. The lever

arm axial angles of two-headed bridges show little difference

between iso-HST and str-HST. rls-HST shows a large shift toward

the rigor angle.

Mask Motifs
We define the term ‘‘mask motif structure’’ to consist of two

target zone or near target-zone attachments along a single actin

strand, with the thick filament origins of the two attachments

coming from successive 14.5 nm crowns. A complete mask motif

would then consist of a pair of mask motif structures, such as rls-51

(Fig. 6), and resemble a harlequin mask. Mask motif structures are

most frequent in iso-HST, less frequent in rls-HST, and least

frequent in str-HST (Table 3). Most mask motif structures in str-

(81%) and rls-HST (87%) have the two heads strongly bound to

the two adjacent actin subunits within the target zone, e.g. rls-22

(Fig. 7), with a single exception found in str-HST, e.g. str-25

(Fig. 7). In contrast, 27% of the mask motifs in iso-HST featured

two heads that were separated by an unoccupied actin subunit so

that the Z-ward member was strongly bound within the target

zone and the M-ward member weakly bound outside the target

zone.

Weak Actin-Myosin Attachments
The range of structural variation in weak-binding attachments

can be appreciated by superimposing the quasiatomic models onto

a common origin. With the MDs superimposed onto that of the

scallop transition state structure (Fig. 8A), the image can be

interpreted as inherent flexibility of the myosin head. The axial

and azimuthal ranges after the length perturbation follow the same

trends seen in iso-HST [25]. Axially, most weak attachments have

the same lever-arm angle as the scallop transition state, and are

thus not seen in the figure. Those that differ are distributed on

either side of the scallop structure. Azimuthally in all three states,

pre-stroke atomic models are anticlockwise with respect to the

scallop structure and TM-bridge models are clockwise. Because

most of the weak-binding bridges in str-HST are TM-bridges,

their lever arm positions (Fig. 8A, gold) appear azimuthally

clockwise with respect to the scallop structure. In contrast, more

of the weak-binding bridges in rls-HST are pre-stroke bridges

(Fig. 8A, gray) and therefore their lever arm angles appear

anticlockwise with respect to the scallop structure.

Alternatively, the weak-binding quasi-atomic models can be

aligned onto to a single actin subunit (Fig. 8B), in which case the

variability of actin attachment is revealed. With this alignment, the

models demonstrate the dominance of TM bridge attachments,

which are seen as axially dispersed about the scallop structure.

When viewed down the filament axis, the models describe a wide

azimuthal arc about the central actin subunit. Pre-stroke

attachments would need to move azimuthally clockwise around

the actin subunit to convert to the strong-binding position, as

previously described [25]. Although there may be some bias from

the way the atomic models were constructed, we note that the

surface of the lower 50 kDa domain of myosin nearly always faces

the thin filament for all the HST weak binding bridges in and near

the target zone. The upper 50 kDa domain rarely forms the

contact site with actin.

Axial Distribution of Lever Arm Angles
Previous X-ray diffraction studies of rapid stretches or releases

in vertebrate muscles indicated that the lever arms of attached

myosin heads tilt axially during both elastic and active force

transients [5,12,34,35], but because X-ray diffraction is indirect, its

interpretation model-dependent, we sought to measure the

indicated tilt by direct imaging of cross-bridges freeze-trapped

late in the phase 2 response. We superimposed our quasiatomic

models of all strong-binding attachments onto actin subunit I, and

then superimposed all the MDs of the weak-binding attachments

onto the MD of the strong-binding attachments. The weak-

binding attachments might then be interpreted as reporting the

intrinsic flexibility of myosin heads and the strong-binding

attachments as reporting conformational changes required for

force production in situ (Fig. 9).

When so aligned, the lever arms in all three states sweep out a

broad axial range (,80u) that is centered near to perpendicular

(Fig. 9A, C, & E), consistent with previous studies [23]. Section

compression could have enlarged the axial angular range by 66u,
as discussed previously [25]. Using the axial coordinate of residue

840 (Holmes structure) and 835 (scallop structure), the strong-

binding lever arms sweep out an axial distance of 12 nm in str-

HST and 13 nm in rls-HST. By comparison, the myosin crystal

structures bracket an axial displacement between the same two

residues of 6.2 nm. Weak-binding myosin heads within the target

zone sweep out a smaller axial range, 27u (5 nm) for str-HST and

9u (2 nm) for rls-HST, than the strong-binding heads.

The distribution of strong-binding attachments appears bimod-

al, with peaks at 90u and 110u, which may be expected given that a

cross-bridge binding to the target zone has a binary choice

between two actin subunits that are about 20u apart axially. The

different modes of the angular distributions, 90u in str-HST and

110u in rls-HST, are also consistent with the subunit distribution

(Fig. 4, right), which shows more strong-binding attachments

on M-ward subunits H/I in str-HST and more on Z-ward

subunits J/K in rls-HST.

As expected, stretch shifted the mean axial tilt in the anti-rigor

direction, and release in the rigor direction, but these changes

were unexpectedly small and not statistically significant (Table 4).

However, the extreme angles in the distribution also increased or

decreased depending on whether the muscle fiber had been

Figure 5. Reassembled averaged repeats for str-HST. Each reassembled repeat is a combination of one left-side and one right-side primary
class and if necessary, between one and four troponin bridge class averages. Three repeats are included in Figure 7 and two, similar in appearance to
150 and having no myosin head attachments have been removed for considerations of space. These plus the three in Figure 7 include all the repeats
to which quasiatomic models were built. The number in the upper right hand corner is the number assigned to the repeat. These numbers are
referred to in the text and correspond to one of the raw repeats. Along the top two rows are those repeats with bridging density to the Tn complex.
Quasiatomic models were not built for Tn bridges. Row 2 also contains all the mask motifs. Row 3 and the first two repeats in row 4 contain all the
two-headed bridges. The rest are one-headed attachments of one form or another. The last two rows and the two repeats not included contain all
the repeats that have no bridging density of any kind on one or more sides. Color scheme: strong-binding cross-bridges are red, weak-binding cross-
bridges are magenta. Actin subunits are light green and light blue respectively with the target zone actins colored darker shades. Tn is colored
orange, TM is colored yellow.
doi:10.1371/journal.pone.0039422.g005
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stretched or released. For example, the minimum of 50u (rigor-like)

in rls-HST was not seen in str-HST, whereas the maximum of

140u (anti-rigor) in str-HST was not seen in rls-HST.

As a further effort to identify lever arm angle differences

between stretch and release, we focused on the stand-alone one-

headed strong attachments and excluded two-headed attachments

or mask motifs, in which the lever arm angles are necessarily

coupled, potentially obscuring the effects of stretch and release.

Thus, the stand-alone attachments should be the best candidates

to show the response to the length step direction with least

ambiguity. However, between str- and rls-HST there is only a 5u
difference in the mean and a 20u difference in the mode, indicating

at most a 20u difference between the two groups (Fig. 10). That the

observed lever arm angle differences are smaller than indicated by

X-ray diffraction of frog muscle is likely due to the freezing impact

times occurring later than ideal (1–2 ms after length step) and the

,7-fold faster kinetics of the Phase 2 to Phase 3 transition

expected in IFM at 23uC as compared to the ,4uC of the classic

frog muscle experiments.

Azimuthal Distribution of Lever Arm Angles
Cylindrically averaged X-ray diffraction patterns cannot readily

give information about the azimuthal changes in cross-bridge

structure during contraction, and the only way to get azimuthal

information is by imaging real cross-bridges in action as we have

done. Azimuthally, the strong-binding cross-bridges sweep out a

very broad range (,140u) and are strongly biased anticlockwise

(smaller azimuthal angles) with respect to the starting crystal

structures regardless of stretch or release (Fig. 9B, D, & F, purple).

Although the two crystal structures differ from one another by only

4u azimuthally [33,36], very few of the observed strong-binding

attachments have lever arms positioned azimuthally like the crystal

structures, indicating that the crystal structures do not reflect the

normal in situ constraints experienced by working IFM cross-

bridges. Although the azimuthal ranges in all three states are

similar, stretch and release has a large effect on the distribution of

azimuthal angles of strong-binding attachments. In iso-HST, the

mode is 60u, compared to ,120u in the starting crystal structures.

A step stretch brings the azimuthal mode to 90u and closer to the

crystal structures. In contrast, a step release reduces the azimuthal

mode to 30u indicating greater azimuthal alteration. The

frequency of very small azimuthal angles seen in rls-HST is partly

explained by the altered distribution of strong-binding attachments

within the target zone. In rls-HST more attachments are on the Z-

ward subunits J/K, which have less favorable azimuths for myosin

attachment than do subunits H/I, relative to the cross-bridge

origins on the adjacent thick filaments.

The azimuthal lever arm changes for weak-binding heads were

much more modest and more symmetrical about the starting

crystal structure. For the combined weak-binding heads from all

three states (Fig. 9H, red), 64% fall within 610u and 86% fall

within 620u of the starting myosin structure. The azimuthal mode

for weak-binding bridges in iso- and rls-HST is 120u and

represents attachments that did not need their lever arms

azimuthally rotated away from the starting crystal structure in

order to fit within the EM density. Even str-HST had a large

fraction of weak attachments that could be fit without modifying

the crystal structure.

Discussion

When compared with iso-HST, a length perturbation resulted

in changes to two important features of the structure: (1) the

myosin head occupancy of actin subunits (or the associated Tn

molecules) outside of the target zone and (2) the relative

proportions of strong and weak-binding cross-bridges within the

target zone. The highly restricted target zone of strong-binding

heads in iso-HST is also found following a length perturbation but

with a small expansion by one actin subunit following a stretch

that added comparatively few strong-binding heads. Active myosin

heads that attached to the target zone in iso-HST originated from

a narrow zone on the thick filament which resulted in a wide and

highly skewed distribution of azimuthal lever arm angles when

compared to myosin head structures found in crystals. This feature

is preserved following the length perturbation. The axial

distribution of lever arm angles changed following the length

perturbation by only a small amount but this change was

consistent with expectations based on the direction of length

perturbation and the time lapse before freezing.

Changes in Actin Occupancy
Filament sliding caused by the length perturbation results in a

small shift of the centroid of target zone labeling by strong-binding

cross-bridges, while the overall position and span of the target zone

within the 38.7 nm repeat remains largely unchanged and

confined to just four actin subunits. The actin occupancy by

strong attachments within the target zone shifted rather obviously

toward the M-line for str-HST, and more subtly toward the Z-line

for rls-HST (Fig. 4).

The distribution of weak-binding bridges is distinctly asymmet-

ric with respect to the target zone. In all three HST states, on the

M-ward side of the target zone, we frequently find weak binding

bridges, which contact TM rather than actin. Z-ward of the target

zone, we observe a near vanishing number of weak attachments on

actin subunits L and M. With the exception of iso-HST, we

observe few attachments on actins N and O, which are even

further away. Thus, weak-binding bridges are favored in the

direction toward which target zones move during sarcomere

shortening and distinctly unfavored in the opposite direction.

There may be a simple geometrical explanation to this observation

based on the azimuthal origins of myosin heads and the actin

azimuth, or it may be something else.

Changes in Strong-Binding Cross-bridges
The character and distribution of the strong-binding cross-

bridges changed significantly in response to the length perturba-

tion. Two-headed cross-bridges were most common in iso-HST,

but if the binding strength of the individual heads is taken into

account two-headed, strong-binding cross-bridges were most

prevalent in str-HST and least prevalent in rls-HST. If it is

assumed that mixed two-headed attachments are a signature of

isometric contraction, the fact that in str- and rls-HST, both heads

of two-headed cross-bridges were always strong binding is

consistent with tension at the instant of freezing having not yet

developed to the new isometric level. The higher number of two-

headed bridges in str-HST compared to rls-HST suggests that a

step-stretch promotes two-headed bridge formation, while a step-

release results in the loss of two-headed bridges. An increase in

Figure 6. Reassembled averaged repeats for rls-HST. Same labeling and color scheme as for Figure 5. The top two rows contain Tn-bridge
averages; row 3 contains two-headed bridge averages and mask motif structures; row 4 contains mask motif structures, while rows 5 and 6 are largely
one-headed bridges of various types. The bottom row largely contains classes, which had no bridge marking on one or both sides.
doi:10.1371/journal.pone.0039422.g006
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two-headed, strong-binding cross-bridges has previously been

proposed to explain changes in the X-ray diffraction pattern of

active, stretched vertebrate striated muscle fibers [5]. The limited

size of the IFM target zone (two actin subunits) means that only a

limited number of two-headed cross-bridges can form after a

stretch and that these second heads must be partners of heads

already attached to Z-ward target-zone actins and thus must

attach to M-ward target zone actins in agreement with previous

interpretations [5]. There is at the moment no earlier observation

relating to the loss of two-headed bridges following a release.

Lever arm angles in two-headed cross-bridges are coupled.

When two-headed bridges in the three states are compared, iso-

and str- have similar average angles while for rls-HST, the average

angles were significantly more toward rigor or the end of the

power-stroke (Fig. 9), consistent with the direction of the length

perturbation. The lever arm angles of two-headed str-HST bridges

were not significantly different from iso-HST probably because

they may be displaying an upper limit for bending specific to two-

headed binding.

In str-HST, in addition to an increase in two-headed, strong-

binding cross-bridges, a small fraction of strong-binding heads was

found just M-wards of the target zone on actin subunit G (Fig. 4).

Thus, the muscle’s response to lengthening during isometric

contraction has a second component: enlargement of the target

zone. Both responses would make sense as muscles are typically

designed to generate sufficient tension to shorten when activated.

If instead the muscle is forcibly lengthened while activated, it

would need to increase the force it was producing by adding more

strong-binding myosin heads either within the existing target zone,

or by increasing the size of the target zone. The small number of

weak-binding cross-bridges on the Z-ward side of the target zone

suggest that few heads are poised to quickly bind in the target zone

following a stretch making the best available alternative the

addition of second heads or M-ward enlargement of the target

zone. The observed effects of two-headed cross-bridges and target

zone expansion might appear greater with a shorter time delay

between the length step and the freezing impact.

Changes to Pre-stroke Bridges
Dramatic differences in the number and distribution of target

zone, weak-binding cross-bridges were observed after the length

perturbation when compared with iso-HST. We previously

described two types of weak-binding attachment within or near

the target zone in iso-HST [25] based on whether the MD

contacted actin or TM. Pre-stroke attachments contact actin and

their confinement to the target zone supports their assignment as

the weak-binding precursor to a strong-binding attachment. By

contrast TM-bridges would probably have to bind a different actin

subunit Z-ward of their current location to form strong

attachments. After a length perturbation, either a stretch or a

release, pre-stroke weak-binding attachments virtually disappear.

This disappearance is not coincident with a large decrease in

weak-binding, nonspecific attachments outside of the 4 target zone

actins where the number of attachments remains roughly constant.

Strong binding bridges change little.

This behavior can be qualitatively interpreted within the context

of a comprehensive model of vertebrate muscle sarcomere

dynamics that accounts for most of the known features of the

Figure 7. Quasiatomic models built for three str- and three rls-HST reassembled repeats. The top row contains mask motifs; the bottom
row contains two-headed bridges. The three rls-HST models also have troponin bridge density, which is lacking in the str-HST models. Color scheme
and labeling is same as for Figures 5 and 6 except that the ELC is colored dark blue and the RLC is colored cyan. Each of these is shown as Movies S1,
S2, S3, S4, S5, S6.
doi:10.1371/journal.pone.0039422.g007

Table 3. Summary of 2-headed & mask motif structures.

str-HST iso-HST rls-HST

2-headed

1All 33.8 42.9 11.1

2Double strong 33.8 27.2 11.1

3M/Z angles 82u/108u 89u/114u 62u/88u

Mask Motifs

1All 11.8 85.4 38.1

4Both on target zone 9.5 62.1 33.1

Values are calculated as: (number of structures)/(number of repeats) * 100.
Because a single repeat might have two 2-headed bridges, the theoretical
maximum is 200% (as seen in rigor). The same argument applies to mask motifs.
1Includes all two-headed or mask motif attachments.
2Means both heads are strong attachments.
3The mean lever arm axial angle of heads bound to target zone actin subunits H
and I on the M-ward side compared with that on actin subunits J and K on the
Z-ward side.
4Indicates both attachments occur on target zone actins H-K.
doi:10.1371/journal.pone.0039422.t003

Figure 8. Composite views of weak-binding cross-bridge
models. Axial views are oriented with Z-band at the bottom; azimuthal
views are looking down the filament towards the Z-band. All weak-
binding models were built starting from the scallop transition state
structure (magenta) docked in the strong-binding configuration. In all
panels, gold = str-HST, gray = rls-HST. (A) Weak-binding cross-bridge
models superimposed onto the scallop MD. (B) Weak-binding models
superimposed onto actin subunit I. The largest azimuthal MD
displacements for pre-stroke and TM-bridges (filled and open arrows,
respectively) were both found in str-HST.
doi:10.1371/journal.pone.0039422.g008
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contraction mechanism [37,38]. To the extent that the mechanical

kinetics and strain dependence of IFM are similar to vertebrate

skeletal muscle, the occupancy of the weak and strong cross-bridge

states and their changes upon quick stretches and releases can be

considered. In this discussion, we use the kinetic scheme and strain

dependent rate constants as illustrated in Figure 1 of [38]. In this

Figure 9. Angular ranges of lever arm angles for target zone bridges. iso-, str- and rls-HST are shown separately as well as the combined
data from all three states. Panels A, C, E and G show axial lever arm angles, computed from the projection of the lever arm axis onto the fiber axis.
Panels B, D, F and H show azimuthal lever arm angles after all primary mask class averages are transformed to thin filament actin subunit I. Sketches in
the upper left hand of A and B show the angle convention. Vertical lines represent the initial structures used for the model building, red for rigor acto-
S1 and magenta for the scallop transition state docked onto actin in the strong-binding configuration. Percentage value is calculated as: (number of
attachments of this type in this range)/(total number of attachments of this type in this state) * 100. In this convention, the axial lever arm angle of
the Holmes S1 structure is 70.5u and of the scallop transition state structure, 107u.
doi:10.1371/journal.pone.0039422.g009
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comprehensive model the equivalent of pre-stroke, weak-binding

bridges equilibrate with detached cross-bridges at rate constants of

,50 s21–200 s21 (sum of k34 and k43) in the 65 nm range of the

target zone. These rates are comparable or somewhat faster than

the time (8 ms) between the length steps and freezing in our

experiment. Pre-stroke bridges in the model would have different

outcomes for stretches and releases. For a 6–9 nm stretch, such as

applied in our experiment, the detachment rate increases to 103–

104 s21 (k43), suggesting that pre-stroke weak attachments would

all detach between stretch and freezing, as observed. Their

displacement by .5 nm would place all of those initially bound to

M-ward target zone actins (H and I) outside of the target zone on

the M-ward side, from which position they would reform as TM-

bridges not pre-stroke bridges. For a 6–9 nm release, the

detachment rate also increases to 104 s21, but the conversion

from weak to strong binding is even faster, .105 s21 (k45),

indicating that most of the pre-stroke attachments would convert

to strong binding ones. Those bound to Z-ward target zone actins

that don’t convert to strong binding, would be displaced to a

position opposite actin subunits L and M and not rebind. Thus

pre-stroke attachments are expected to disappear for both

directions of length changes.

For stretch, strong-binding bridges near the beginning of the

working stroke can convert to weak attachments at 103 s21 and

then detach (k54 followed by k53). If originally bound to M-ward

target-zone actins, those that detach would not rebind as pre-

stroke bridges but probably reform as TM-bridges outside the

target zone. Strong-binding bridges toward the end of the working

stroke are expected to tilt backwards at ,103 s21 (k75). For release,

strong-binding bridges complete their stroke and detach rapidly at

102–103 s21 (k81). Not too many of them would reattach between

the length step and freezing, requiring ATP hydrolysis at 50–

100 s21 (k13) and weak binding at 40 s21–100 s21 (k34). After the

length step, many that detach would also find themselves outside

the target zone and unable to rebind since weak actin attachments

occur only rarely on actin subunits L and M located Z-ward of the

target zone. The combination of these events and the conversion

of weak to strong cross-bridges after release, seems to keep the

number of strong-binding bridges roughly constant.

The Smith et al. model [37,38] predicts very few weak binding

cross-bridges outside of what we term as the target zone (65 nm).

The asymmetry of non-target zone weak attachments we observed

indicates that no single equilibrium constant can adequately

describe binding to individual actin subunits and that there is a

significant geometrical or steric effect that influences weak binding,

and thus the TM-bridges may re-equilibrate before the system is

frozen.

TM-bridges are a novel type of cross-bridge. If they detach at a

rate slower than 500 s21 during the 2 ms release step, and instead

diffuse along the thin filament, they would hold the cross-bridge in

position for pre-stroke cross-bridge formation within the target

zone (increasing k34). It is likely that these heads would also

convert to strong binding before freezing. The possibility that TM-

bridges may be comparatively unperturbed by the length step

itself, changing instead to pre-stroke attachments which then

convert rapidly to strong binding has not yet been considered in

any kinetic scheme.

Relationship to IFM Contraction
Many of the differences between str- and rls-HST may be

understandable in terms of the typical shortening distance (TSD)

of IFM. During oscillatory contractions, IFM fibers shorten much

less than vertebrate striated muscle fibers. The amount of reported

shortening varies between species but values ranging from 1–5%

are typical [39,40,41,42]. A shortening of 3% for Lethocerus IFM

(half sarcomere length of 1.3 mm) equates to a filament sliding of

39 nm/half sarcomere, which matches the half repeat of the actin

filament. Relaxed IFM fibers have very short I-bands compared to

vertebrate striated muscle fibers consistent with short oscillatory

contractions.

Wray’s match/mismatch hypothesis was offered as an explana-

tion for stretch activation [43], but several aspects of cross-bridge

structure and distribution found here in HST fibers can be

explained within that context. Wray’s hypothesis states that as the

filaments slide past each other the alignment of target zones

relative to the thick filament origins of myosin heads changes from

a region of best match with the shortest reach to a target zone to a

region of worst match with the longest reach. The axial

displacement between best match and worst match is approxi-

mately half of the actin crossover period, or 19.3 nm. Wray’s

model did not define the portion of the thick filament surface from

which myosin heads can attach to actin target zones. The crowns

on the thick filament, which comprise the 4-fold symmetric origins

of myosin heads every 14.5 nm axially, rotate in succession by

33.75u in a right-handed fashion [44]. The fact that mask motifs

with strong-binding M-ward and Z-ward bridge pairs form on

individual target zones means that the optimal myosin head

origins must be contained within an arc of at least that angular

width. As shown in iso-HST, this arc begins approximately at the

interfilament axis.

A plausible length of the TSD in Lethocerus fibers can be derived

from the helical spacings of the filaments and the length of the

working stroke observed here. The sequence of events during

shortening is shown in the animated Powerpoint S1. We assume

Table 4. Summary of axial lever arm tilt angles.

str-HST iso-HST rls-HST

mean 97 96 93

min 63 54 54

max 135 147 135

st. dev. 18 23 21

doi:10.1371/journal.pone.0039422.t004

Figure 10. Axial angles of target zone stand alone strong
attachments for str-HST and rls-HST. Bins are centered at 10u
increments. Vertical red and magenta lines mark the lever arm angles of
the two initial models (rigor and transition state). Mean values: 97u (str-
HST) and 92u (rls-HST).
doi:10.1371/journal.pone.0039422.g010

Muscle Structure after a Mechanical Perturbation

PLoS ONE | www.plosone.org 14 June 2012 | Volume 7 | Issue 6 | e39422



that the pair of thick filaments (A and B) flanking a thin filament

are axially aligned and with two crowns (1 and 2) positioned

azimuthally so that heads from one myosin molecule in each

crown can strongly bind their respective target zones (actin

subunits H-K). We define the starting position of the TSD at z = 0

as the position where a strong-binding, target-zone attachment

from crown 1 of thick filament B (crown 1B) can just be formed on

M-ward target-zone actin subunit H. An axial translation of the

thin filament by 2.75 nm enables a strong-binding attachment to

be formed by a myosin head from crown 1A on target zone

subunit I on the opposite side of the thin filament. If each head

attached on the M-ward target zone actin subunits has a working

stroke of 12 nm, actin subunit H can be transported 12+2.75 nm

at which point myosin heads on crown 2 of thick filament B can

attach actin H once the first heads are released. Even before this

has occurred, second heads of myosins already attached by the first

head to actins H and I can attach to Z-ward actin subunits J and

K. Thus, a pair of axially aligned crowns interacting with the pair

of M-ward target zone actin subunits move the thin filament more

than 14.5 nm, which is enough to enable heads from crown 2 to

attach actin. Myosin heads on crown 1 of both thick filaments

attaching to Z-ward target zone actins do not contribute to the

TSD. With a 12 nm working stroke, they merely sustain the

shortening process. However, their contribution becomes more

important if the working stroke is shorter than 12 nm. A myosin

head from crown 2 of thick filament B can move target-zone actin

subunit H a further 12 nm to position z = 14.5+12 nm. The

second head from crown 2B attaching to Z-ward target zone actin

J can move actin H a further 5.5 nm to z = 32 nm. Finally, the

second head from crown 2A provides an additional 2.75 nm

displacement through executing a working stroke on target zone

actin K for a total displacement of 34.75 nm. Since myosin head

origins and actin targets do not precisely align within the 116 nm

axial period, some further extension of the shortening distance can

be expected. Further shortening to 38.7 nm would allow these

events to repeat on the next target zone, but this may not be

consistent with shortening deactivation.

This TSD predicts that the target zone actin occupancy would

change as the muscle shortens. At the beginning of the TSD, the

first strong-binding attachments would occur on the M-ward

actins, H and I, of the target zone. As the muscle shortens further

and the match between origins and actin targets improves to its

maximum, the peak of occupancy for strong-binding attachments

would shift more toward the center of the target zone with equal

numbers of M-ward and Z-ward target-zone attachments. This is

probably the position that produces maximum isometric tension.

Further shortening reduces the match between myosin head

origins and targets, with the peak of occupancy shifting toward the

Z-ward actins, J and K. Eventually the target zone would move

beyond the region of match to a fully mismatched position.

Stretching the muscle is essentially working backwards through

the sequence; hence the peak of occupancy for strong-binding

attachments shifts toward the distribution found at the beginning

of the contraction, i.e. toward the M-line side of the target zone as

observed here in str-HST. The opposite, a quick release, allows the

muscle to shorten, thereby shifting the peak of occupancy toward

the end of the TSD and thus toward the Z-line. That the centroid

never shifted completely from M-ward to Z-ward actin subunits or

vice versa is explicable by the relatively short length steps, 6–

9 nm/half sarcomere, used in the present experiments and the

possibility that the isometric tension which formed the starting

point for the length perturbation was trapped near the center of

the best match zone.

This model incorporates a relay mechanism in which the target

zone is ‘‘relayed’’ from one 14.5 nm crown of myosin heads to the

next, with myosin heads on the next M-ward crown attaching

before the ones in the preceding, Z-ward crown detach. Such a

mechanism was proposed when mask motifs were first identified in

IFM treated with AMP-PNP [45].

In the TSD model described above, the first myosin heads

(crown 1) to bind the target zone would originate azimuthally

,34u from the inter-filament axis, which is a position least optimal

for strong binding to actin. However, the first actin subunit on the

M-line side of the target zone has a more optimal azimuth for

strong binding than the Z-ward actin subunit, which would help

ameliorate this disadvantage. Myosin heads originating from the

preceding crown (crown 0) would have no myosin head origins

that fall within the allowed region. As filament sliding progresses

and the target zone is brought within reach of crown 2, the

accessible myosin from this crown would have a much more

favorable azimuth for target zone binding. The next crown after

this (crown 3) would have no myosin head origins within the

observed 34u range. Not all target zones on a thin filament would

be accessible by myosin heads originating from two successive

crowns and this may explain why not all cross-bridges are part of

mask motifs near the isometric tension level.

TM bridge attachments were altered significantly following the

length perturbation consistent with the hypothesized relay

sequence. We consider these weak-binding bridges to be

candidates for strong-binding bridges once the target zone moves

closer to them. Because of their location M-ward of the target zone

and the right-handed twist of the thin filament, when they swing

outward, they strike TM rather than actin and thus do not

progress further toward strong binding. Their numbers are much

higher in str-HST and are lowest in rls-HST. The difference

between str- and rls-HST TM-bridges can be understood as an

effect of the length perturbation either advancing (rls-HST) or

reversing (str-HST) the shortening events. Early in the sequence, it

would be advantageous to have myosin heads, meaning TM-

bridges, lying in wait for the target zone to move toward them so

that they could bind strongly to continue the shortening process.

Conversely, toward the end of the shortening cycle, there is less

need for such attachments as it is desirable for tension to drop, a

phenomenon known as shortening deactivation.

Stretching the muscle moves the target zone toward a position

earlier in the TSD facilitating formation of TM-bridges from those

target-zone heads that detach as tension drops. Releasing the

muscle moves the target zone toward the end of the shortening

cycle thereby ‘‘consuming’’ the available TM-bridges by present-

ing them with a favorably placed target zone to which they can

bind strongly. The necessity for TM-bridges waiting to bind target

zone actins to sustain further shortening would be expected to

diminish closer to the end of the sequence.

Perhaps even more surprising is the broad azimuthal

distribution of strong-binding attachments. Compared to the

two crystal structures used as initial atomic models, the lever arm

azimuths of strong-binding attachments are strongly skewed in

the anticlockwise direction (looking Z-wards) thus confirming the

observation made previously for iso-HST [25]. Weak-binding

attachments, on the other hand, are spread roughly symmetri-

cally about the initial models (Fig. 9). The strong anticlockwise

spread of the lever arms was previously observed in quasiatomic

models of rigor IFM both when swollen in low ionic strength

[46] and when subjected to a stretch [47], but its significance

could not be evaluated because there was no control group of

either unattached or weakly attached myosin heads and at the

time there was no acto-S1 structure, which later showed that
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IFM myosin S1 is almost indistinguishable from other acto-S1

structures [48]. For the present results the weak-binding

attachments serve as a control group. We do not believe that

the wide azimuthal range is an error in either classification or

model building although the range may have been expanded by

10u–20u due to section compression. Thus, we think the wide

range represents real structure and have suggested that it may

reflect the weak to strong transition [25], an azimuthal

component to the working stroke [49] or both.

Could the azimuthal changes in the lever arm reflect storage

of elastic energy? Were this so, str-HST would be predicted to

show a distribution biased toward smaller angles (i.e. more

anticlockwise and more distorted) since elastic energy has been

added to the fibers by means of the stretch. What little bias there

is for str- compared to iso-HST is toward higher angle (more

clockwise), just the opposite of expectation. The orientations in

rls-HST, in which the release has dissipated elastic energy, are

also the opposite of expectation since their distribution is biased

toward smaller angles.

It seems more likely that the azimuthal changes might act as a

trigger for promoting the conversion to strong binding.

Conclusion
Compared to low angle X-ray experiments, the other popular

technique to study the muscle cross-bridge structures in situ, EM

has the advantage of direct visualization, which makes it possible

to identify structure variations within an ensemble, even for

sparsely populated forms, instead of the average structure. Our

analysis allows us to locate and enumerate particular cross-bridge

forms. The mechanical traces indicate that after the length

perturbation, both str- and rls-HST were well on their way toward

establishing a new isometric tension level for the new sarcomere

length, a conclusion born out by the structures observed. That

weak binding, pre-power-stroke attachments disappeared after the

length step is consistent with expectations based on the rates of

conversion from weak to strong binding. Myosin head binding

throughout the 38.7 nm repeat is indicative of a myosin head relay

mechanism that occurs over small changes in sarcomere length.

Materials and Methods

Collection of Live Giant Waterbugs
No specific permits were required for the collection of live giant

waterbugs of species Lethocerus indicus. Live giant waterbugs were

purchased by an agent from local farmers in Thailand where they

are collected as a food item in the local diet. Lethocerus indicus is not

on the global endangered species list either globally or locally in

Thailand (http://www.earthsendangered.com/list.asp). Live giant

waterbugs were imported into the USA under a USDA permit

PPQ26. Giant waterbugs are considered to offer no agricultural

threat or interest in the USA.

Rapid Freezing and Freeze Substitution
Single fibers, diameter 60–70 mm, length 12–16 mm, were

dissected cold and glued to transducer pins with no stretching,

keeping 5–6 mm clear between glued ends for slam-freezing.

Rapid freezing with simultaneous monitoring of fiber tension up to

the moment of freezing impact was performed on a Heuser

Cryopress [50]. Specific modifications made to the freezing head

for this work have been described in detail, as have specifics of the

specimen manipulation prior to and subsequent to freezing

[22,51]. The fastest length perturbation that could be applied

with this system was 2 ms duration due to the amount of damping

that could be applied to the bimorph transducer.

Electron Tomography
Details of all the data collection and subvolume analysis have

been described [24]. Three pairs of tilt series were collected and

three dual axis tomograms were reconstructed for both str-HST

and rls-HST. A total of 1157 cross-bridge repeats were extracted

for alignment and MDA from the three str-HST tomograms. A

total of 782 cross-bridge repeats were extracted for alignment and

MDA from the three rls-HST tomograms.

Repeat Subvolume Processing
Subvolume processing for str- and rls-HST followed the same

general procedures used for iso-HST [24,25]. Repeat sub-volumes

were centered on the actin target zones spaced 38.7 nm apart

axially and contained a 60.7 nm axial length of the actin filaments,

their bound cross-bridges and adjacent thick filament segments.

All subvolumes were aligned onto the actin filament using

multireference alignment and classification. The alignment and

classification masks were the same except for the edge apodization

applied to the alignment mask. Both str- and rls-HST repeats were

aligned in the final step to the same thin filament reference to

simplify quasiatomic model building.

We performed 12 independent applications of MDA and

classification using 12 different masks to define specific regions. To

identify the major cross-bridge forms in and around the target

zone, two primary masks covered the space between thick and thin

filaments over an axial distance corresponding to six actin subunits

on the left or right side respectively. All quasiatomic cross-bridge

models were built from these two classifications, which we refer to

as ‘‘primary classes.’’ We generated 20 primary class averages

from each side of rls-HST, and 30 primary class averages from

each side of str-HST as permitted by the greater number of str-

HST repeats available. Four additional masks were used for the

troponin region, four masks were specific for actin subunits outside

of the target zone and two masks were used for the surface of the

thick filament. Class averages from the primary mask and Tn

region classifications were subsequently reassembled to make

composite class averages [24]. All the structures described in this

report come from these reassembled repeats.

Quasiatomic Models
Quasiatomic models were built in a hierarchical fashion [24].

The thin filament atomic model was fit to the global average of all

repeats. The F-actin atomic model based on PDB - 1M8Q was

constructed of 16 G-actin monomers built with the 28/13 helical

structure appropriate to IFM thin filaments [52]. This enabled

placement of two pairs of Tn models [53] one pair on each end of

the filament. Although not resolved in the reconstruction, the TM

location is important for structure interpretation. Thus, TM in the

high [Ca2+] position [54] was built into the thin filament along

with a fragment sufficient to cover the extra pair of Tn and actin

subunits.

For cross-bridges whose lever arm orientations were angled

toward the rigor configuration, we used an atomic model adapted

from the Holmes et al. rigor acto-S1 complex [33] (available at

ftp://149.217.48.3/pub/holmes). For cross-bridges whose lever

arms appeared to be perpendicular to the thin filament or were

angled opposite to rigor, we used the transition state of scallop

myosin S1, PDB - 1DFL [36], after aligning its MD to the Holmes

rigor MD position.

To distinguish weak from strong binding we evaluated the

fitting of the MD first. If the starting model’s MD fit the density

without modification, it was kept in this effectively strong-binding

configuration, and only the lever arm adjusted using as pivot

points residues 710, 780 and 806. If the MD required movement,
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the attachment was considered weak and all subsequent manip-

ulations were done using the scallop S1 structure. For these weak-

binding bridges, the entire S1 structure was first moved as a single

rigid body; its lever arm position was then adjusted if necessary

using residues 706, 775 and 806 as pivot points. Manual fitting was

done using the X-ray crystallography model fitting program O

[55].

Models were built separately into those classes obtained by the

left-side and right side primary mask class averages. These models

were then combined as necessary to produce all of the complete

quasiatomic models. Verification of the location of the C-terminus

of the myosin heads was done by computing separately class

averages using the mask specific for the surface of the thick

filament backbone, and readjusting the lever arm if indicated [24].

We checked the origins of cross-bridges against the original raw

repeats if there was any remaining doubt.

All figures and movies of quasiatomic models were made in

chimera [56].

Supporting Information

Movies S1 This movie corresponds to repeat rls-22 shown in

Figure 7. It shows on the left a mask motif structure composed of a

pair of strong binding cross-bridges. A single headed cross-bridge

is shown on the right. All the cross-bridges are strong binding. A

Tn bridge is present on the lower left side of the thin filament, but

without an associated atomic model. The coloring scheme is the

same as for Figure 7. Movie made in chimera [56].

(MOV)

Movies S2 This movie corresponds to repeat rls-47 shown in

Figure 7. It shows a pair of single headed, strong binding cross-

bridges in the target zone and a Tn bridge on the left side, but

without an associated atomic model. The coloring scheme is the

same as for Figure 7. Movie made in chimera [56].

(MOV)

Movies S3 This movie corresponds to repeat rls-65 shown in

Figure 7. It shows a double-headed cross-bridge on the left side

and a single-headed cross-bridge on the right side, all with strong

binding myosin heads. A Tn bridge is shown in the lower right

hand side but without an associated atomic model. The coloring

scheme is the same as for Figure 7. Movie made in chimera [56].

(MOV)

Movies S4 This movie corresponds to repeat str-25 shown in

Figure 7. It shows a pair of single-headed cross-bridges in the

target zone and a TM bridge above the target zone on the left

hand side. The coloring scheme is the same as for Figure 7. Movie

made in chimera [56].

(MOV)

Movies S5 This movie corresponds to repeat str-127 shown in

Figure 7. It shows a pair of single headed cross-bridges but the one

on the left is bound to out-of-target zone actin subunit G. This is

the only example of an out-of-target-zone, strong-binding cross-

bridge found among any of the str- or rls-HST class averages. The

coloring scheme is the same as for Figure 7. Movie made in

chimera [56].

(MOV)

Movies S6 This movie corresponds to repeat str-128 shown in

Figure 7. It shows a single-headed, strong-binding cross-bridge on

the left and a double-headed, strong-binding cross-bridge on the

right. The coloring scheme is the same as for Figure 7. Movie

made in chimera [56].

(MOV)

Powerpoint S1 This file illustrated the typical shortening

distance as described in section on the Relationship to IFM

contraction. The individual slides of the Powerpoint file are

described within the file itself.

(PPT)
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