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Abstract

Primary cicatricial alopecia (PCA) is a group of inflammatory hair disorders that cause scarring and permanent hair loss.
Previous studies have implicated PPARc, a transcription factor that integrates lipogenic and inflammatory signals, in the
pathogenesis of PCA. However, it is unknown what triggers the inflammatory response in these disorders, whether the
inflammation is a primary or secondary event in disease pathogenesis, and whether the inflammatory reaction reflects an
autoimmune process. In this paper, we show that the cholesterol biosynthetic pathway is impaired in the skin and hair
follicles of PCA patients. Treatment of hair follicle cells with BM15766, a cholesterol biosynthesis inhibitor, or 7-
dehydrocholesterol (7-DHC), a sterol precursor, stimulates the expression of pro-inflammatory chemokine genes. Painting of
mouse skin with 7-DHC or BM15766 inhibits hair growth, causes follicular plugging and induces the infiltration of
inflammatory cells into the interfollicular dermis. Our results demonstrate that cholesterologenic changes within hair follicle
cells trigger an innate immune response that is associated with the induction of toll-like receptor (TLR) and interferon (IFN)
gene expression, and the recruitment of macrophages that surround the hair follicles and initiate their destruction. These
findings reveal a previously unsuspected role for cholesterol precursors in PCA pathogenesis and identify a novel link
between sterols and inflammation that may prove transformative in the diagnosis and treatment of these disorders.
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Introduction

Primary cicatricial alopecia (PCA) is a group of rare in-

flammatory disorders that is characterized by the permanent

destruction of the hair follicle. Ultimately, the hair follicle is

replaced with fibrous tissue, and progressive and permanent hair

loss occurs [1–3]. The etiology and pathogenesis of PCA remain

unclear, but PCA is currently treated as an inflammatory disorder

[2,4]. The treatment options for PCA are limited and are not very

effective in controlling the disease progression. A dearth of

information about the underlying molecular pathogenesis has

constituted the major obstacle in identifying effective new

treatments.

The diagnosis of PCA currently relies upon clinical observation

and histological analysis of the inflammatory cell infiltrate in the

infundibulum, which is the permanent portion of the hair follicle

(HF). Depending on the type of principal inflammatory cell

detected during the active phase of the disease, PCA is classified

into three categories: lymphocytic, including lichen planopilaris

(LPP), frontal fibrosing alopecia (FFA) and central centrifugal

cicatricial alopecia (CCCA); neutrophilic, including folliculitis

decalvans (FD) and tufted folliculitis (TF); and mixed, including

dissecting cellulitis (DC) [5]. In none of the PCA subtypes do we

know exactly why hair follicles begin to attract an inflammatory

infiltrate. Furthermore, the cellular composition of the inflamma-

tory infiltrate and the nature of its activated state are not well

characterized. Thus, it is not surprising that halting or reversing

the inflammation in PCA is often difficult.

The failure of the affected follicles to regenerate in PCA is

thought to be the result of irreversible changes in the permanent

portion of the hair follicles (HF), where the ‘‘bulge stem cells’’ are

located [6,7]. HF bulge stem cells are a unique population of adult

stem cells that are multi-potent and play a major role in skin

architecture, physiology and wound healing [8,9]. The permanent

loss of hair follicles in PCA is therefore a disastrous event for

normal skin function and regeneration. If the HF bulge stem cells

are destroyed, there is no possibility for hair follicle regeneration,

and permanent hair loss ensues. Thus, PCA offers an excellent

model for understanding disease mechanisms where epithelial

stem cell populations are targeted by an inflammatory attack.

Our previous studies implicated the peroxisome proliferator-

activated receptor gamma (PPARc), a transcription factor that

belongs to the nuclear receptor family, in the pathogenesis of

PCA [10]. Nuclear receptors affect transcription through

multiple modes of action, including direct activation of genes,

ligand-independent repression, ligand-dependent repression, and
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trans-repression [11]. Members of the nuclear receptor family,

including PPARc, modulate the expression of lipogenic and

inflammatory genes and have emerged as important regulators of

metabolic and inflammatory signaling. We previously reported

a loss of PPARc signaling in the PCA subtype LPP. Indeed, the

deletion of PPARc in K15-bulge stem cells in mutant mice

results in an LPP-like skin phenotype with progressive hair loss,

perifollicular inflammation and scarring alopecia [10]. Gene

expression profiling of the skin from PPARc knockout mice and

from scalp tissue in patients affected with LPP consistently

showed decreased expression of PPARc-regulated lipid metabolic

genes and increased expression of inflammatory genes [10].

Although PPARc has emerged as an important regulator of

lipogenic and inflammatory genes [11], the precise link between

specific lipid metabolic pathways and inflammation in the skin

and skin appendages is not fully understood [12].

In this manuscript, we demonstrate that the cholesterol

biosynthesis pathway is altered in all subtypes of PCA. We further

show that changes in cholesterol biosynthesis within hair follicle

cells trigger a pro-inflammatory response and induce the re-

cruitment of innate immune cells that initiate the destruction of

hair follicles in mouse skin and in PCA. Our results reveal

a previously unidentified role for cholesterol precursors in PCA

pathogenesis and identify a novel link between sterols and

inflammation that may prove transformative in the diagnosis

and treatment of these disorders.

Results

Altered Cholesterologenic Program in PCA
To identify the pathways underlying PCA pathogenesis, we

analyzed the gene expression profiles of paired unaffected (non-

lesional) and affected (lesional) scalp tissues from 12 lymphocytic

(LPP, CCCA, FFA) and 3 neutrophilic (TF) PCA patients. These

tissues were compared to normal scalp tissue (N= 10 pooled) from

healthy individuals using Affymetrix microarrays. Principal

component analysis based on all downregulated genes and all

samples revealed a 68.5% variation between diseased and normal

samples in the first two principal components (Figure 1A–1D). The

unaffected (green ovoid) and affected (red ovoid) samples in each

PCA subset, including LPP (Figure 1A), CCCA (Figure 1B), FFA

(Figure 1C) and TF (Figure 1D), formed distinct groups and

showed a partial overlap. In contrast, the normal controls (N= 10

pooled, blue ovoid) were well separated from both the unaffected

and the affected samples from the patients (Figure 1A–1D). In LPP

(Figure 1A), the normal controls lie within the plane of unaffected

samples. This is due to the smaller number of gene expression

changes in unaffected LPP compared to normal samples. These

analyses indicate a distinct gene expression profile of unaffected

scalp skin in all PCA subtypes. This gene expression profile has

some similarities to that of the affected scalp skin from the same

patients, but is markedly different from the profile of normal

healthy controls.

The most extensively downregulated gene clusters in PCA are

shown as a heat map (Figure 1E) and consist of 39 genes dedicated

to lipid metabolism. The majority of the altered transcripts

belonged to the cholesterol biosynthesis pathway. The remaining

transcripts were associated with a few predominant pathways,

including fatty acid metabolism, the aldehyde dehydrogenase-

related pathway for the oxidation of endogenous and xenobiotic

aldehydes and pathways involving the cytochrome P450 super-

family of enzymes, which catalyze many reactions in the synthesis

of cholesterol, steroids and other lipids. The downregulation of

genes involved in cholesterol biosynthesis in both unaffected and

affected tissue from patients with PCA suggests that these genes

are involved in the early changes in PCA pathogenesis.

The decreased expression of genes related to cholesterol

biosynthesis in PCA was confirmed in an independent set of

PCA samples by microarray analysis (Table S1) and real-time

PCR (Figure 1E). As shown in Table S1, the number of

cholesterol biosynthesis genes affected and the extent to which

they are downregulated differ in the different PCA subtypes. The

genes that encode DHCR7, HMGCS1 and SC5DL are down-

regulated in all subtypes; ACAT2, FDPS and PMVK are

downregulated in lymphocytic but not in neutrophilic PCA;

MVK is downregulated only in neutrophilic PCA; and MVD is

downregulated only in FFA (Gene names are included in

Glossary S1). We validated the microarray data using the real-

time PCR with primers specific for the two cholesterol bio-

synthesis genes, DHCR7 (Figure 1F) and EBP (Figure 1G).

DHCR7 was significantly downregulated in both the lymphocytic

and neutrophilic types of PCA, as shown in Figure 1F. In

contrast, the expression of EBP differed in the different subtypes.

EBP was significantly downregulated in the lymphocytic PCA

subtypes CCCA and FFA. However, the expression of EBP did

not significantly change in neutrophilic PCA. These data suggest

that, although cholesterol biosynthesis is decreased in all PCA

subtypes, different genes in this biosynthetic pathway are affected

in the different subtypes (Table S1 & Figure 1F–1G).

To determine the biological relevance of the gene expression

changes in PCA, we analyzed the microarray data with the

Ingenuity Pathway Analysis (IPA) software (www.ingenuity.com,

Ingenuity Systems Inc., Redwood City, CA, USA). IPA provides

the ability to map differentially expressed genes to fixed canonical

pathways and Toxlists. IPA-ToxH is a data analysis capability

within IPA that identifies biological mechanisms that are related to

toxicity (Toxlists) (on a molecular, cellular, and biochemical level).

Figure 2 summarizes the most significant Toxlists associated with

the gene expression changes observed in unaffected and affected

tissues from patients with LPP, CCCA, FFA and TF. Cholesterol

biosynthesis appears at the top of the Toxlist (Figure 2A–2F)

suggesting that it is the most significant toxic pathway associated

with the lymphocytic PCA subtypes. The other significant

pathways in lymphocytic PCA include fatty acid metabolism,

oxidative stress response, mitochondrial dysfunction and LXR/

RXR activation. In contrast, the oxidative stress response and

hypoxia-inducible factor (HIF) signaling are the most significant

toxic pathways associated with neutrophilic PCA (Figure 2G–2H).

As shown in Figure 2A–2F, although the Toxlists are remarkably

similar, there are also distinct differences between the different

subtypes of lymphocytic PCA.

Together, these observations suggest that cholesterol biosynthe-

sis is significantly decreased in PCA and is the most significant

toxic pathway associated with the lymphocytic PCA. The

cholesterol biosynthesis pathway is also affected in neutrophilic

PCA, albeit to a lesser extent. We have therefore identified a ‘‘pre-

PCA’’ gene expression signature in uninvolved tissue from PCA

patients. This signature is comprised of downregulated cholesterol

biosynthesis genes that may represent the earliest changes in

disease pathogenesis.

Increased Expression of Adaptive and Innate Immune
Genes in PCA
The comparison of gene expression profiles of PCA scalp skin

with healthy control skin by microarray analysis revealed that the

most prominently upregulated genes are those involved in the

immune and inflammatory responses (Figure 3). A principal

component analysis based on all upregulated genes in all samples

Sterols and Innate Immune Response in PCA
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revealed a near-complete separation of the affected tissue from the

unaffected and normal tissue in all PCA subtypes (Figures 3A–3D).

As shown in Figures 3A–3D, the unaffected tissue from PCA

patients (green ovoid) lies on the same plane as the pooled normal

control tissue (N=10 pooled, represented by the blue ovoid).

These data suggest that the expression of inflammatory genes is

altered in the affected tissue of PCA patients, and there is no

significant difference in the expression of inflammatory genes

between the unaffected tissue of PCA patients and normal

controls. The differential expression of immune response gene

clusters in the affected, but not unaffected, scalp skin of PCA

patients suggests that the inflammatory changes occur in the

‘‘active disease’’ and do not represent the earliest changes in PCA

pathogenesis.

A pathway analysis of the microarray data from affected scalp

tissue revealed that the innate and the adaptive immune pathways

are both upregulated in PCA (Figure 3E–3H). In LPP (Figure 3E),

the upregulated inflammatory pathways include the antigen

presentation pathway, communication between adaptive and

innate immune cells, B-cell development, interferon signaling,

crosstalk between dendritic and NK cells and Toll-like receptor

(TLR) signaling. The upregulated inflammatory pathways in

CCCA (Figure 3F) include atherosclerosis and integrin signaling,

lipid antigen presentation by CD1, CD28 signaling in T helper

Figure 1. Decreased expression of genes related to cholesterol biosynthesis and lipogenesis in PCA. Principal component analysis of
microarray data (downregulated genes) from lymphocytic (1A–1C) and neutrophilic (1D) cicatricial alopecia was performed with the Partek Genomics
Suite. The results of the analysis for LPP are shown in 1A, for CCCA in 1B, for FFA in 1C and for TF in 1D. The horizontal axis corresponds to principal
component 1 (PC1), the vertical axis corresponds to PC2 and the depth axis corresponds to PC3. The points are colored by group status: blue
represents normal samples (pooled), green represents unaffected samples and red represents affected cicatricial alopecia samples. The clustering of
data by samples suggests similarities in gene expression profiles. Unaffected and affected samples are clustered together in each subtype, which
suggests that the expression profiles of genes involved in cholesterol biosynthesis and lipogenesis are not significantly different among these
samples. The normal scalp tissue was significantly different from the unaffected and affected scalp samples from patients with LPP, CCCA, FFA and TF.
(E) Heat map of the 39 most significantly downregulated genes in patients with LPP (6 affected and 5 unaffected scalp samples) CCCA, FFA and TF (3
affected and 3 unaffected scalp samples each). The majority of the genes participated in cholesterol biosynthesis. The color bar below indicates the
level of expression. (F) Real-time PCR validation of DHCR7 gene expression in normal skin and in the PCA subtypes LPP, CCCA, FFA, TF and DF
(*p,0.05, **p,0.01). Compared with normal tissue, DHCR7 expression was significantly decreased in all PCA samples. The unpaired t-test was used
for statistical analysis. (G) Real-time PCR validation of EBP gene expression in skin from normal controls and patients with the PCA subtypes LPP,
CCCA, FFA, TF and DF (*p,0.05, **p,0.01). EBP expression was significantly decreased in the PCA subtypes TF, FFA and CCCA but not in DC, FD or
LPP. The unpaired t-test was used for statistical analysis. See also Figure S1 and Table S1.
doi:10.1371/journal.pone.0038449.g001
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cells and NFkB and JAK/Stat signaling. In FFA (Figure 3G), the

major upregulated pathways include JAK/Stat signaling, B-cell

development, NK cell signaling, T-cell receptor and NFkB

signaling. The upregulated pathways in neutrophilic PCA (TF)

(Figure 3H) include B-cell development, T-cell receptor signaling,

NK cell signaling, T helper cell differentiation and IL-17A.

The predominantly upregulated inflammatory genes in PCA

are shown as a heat map (Figure 3I). Various genes were identified

in the ‘‘immune cluster,’’ including genes whose products control

the innate immune responses, such as the interleukin/Toll-like

receptor superfamily, interferon inducible proteins, and mono-

cyte/macrophage related proteins. Genes whose products are

required for the adaptive immune response, such as chemokine/

cytokine family members, T and B cell activation and survival

genes, genes encoding MAP kinases, members of the tumor

necrosis factor superfamily and the major histocompatibility

complex class I and class II genes, were also overexpressed in

PCA. The microarray data were validated by performing real-time

PCR for TLR4, TLR6, IFNa, IFNa7, NFkB and IFNc in tissues

from patients with lymphocytic and neutrophilic PCA. As shown

in Figure 4A–4H, real-time PCR with target-gene-specific primers

confirmed that Toll-like receptor (TLR4, TLR6), interferon (IFNa,
IFNa7, IFNc), pro-inflammatory cytokine (NFkB) and macrophage

activation factor (MMD, MCP1) genes are all significantly

upregulated in affected PCA tissue compared with unaffected

tissue from the same patients.

Intriguingly, the IFN signaling pathway and its target genes that

serve as a link between innate and adaptive immunity were

upregulated in affected but not unaffected tissue from patients with

all PCA subtypes (lymphocytic, neutrophilic and mixed), as shown

in Figures 4C, 4D, 4F & 4I. Interferons can modulate the

expression of several hundred genes encoding proteins that

participate in the antiviral defense, inflammation, adaptive

immunity and angiogenesis. The result is a characteristic pattern

of mRNA expression known as the "interferon signature." The

upregulation of interferon signature genes in LPP was confirmed

using IPA (Figure 4I, Table S2). The interferon-responsive

signature genes upregulated in LPP include type II interferon

(IFNc)-responsive genes (IRF1, TAP1, IFITM1, PSMB8, IFI35,

and IRF9) and type I interferon (IFNa)-responsive genes (IFIT1,

OAS1, IFITM1, MX1, IFIT3, IRF9, IFI35, and PSMB8), as shown

in Figure 4I and Table S2.

These data provide evidence for the involvement of the innate

and adaptive immune responses in the pathogenesis of PCA.

Figure 2. Ingenuity Pathways Analysis of the top toxic pathways in cicatricial alopecia. IPA-ToxH, a data analysis capability tool within the
Ingenuity Pathways Analysis, was used to analyze the microarray data and to determine the toxicity associated with the observed gene expression
changes in PCA. The figure shows the top toxicity lists (Toxlists) associated with gene expression changes in samples from unaffected and affected
scalp areas in patients with LPP, CCCA, FFA and TF. Cholesterol biosynthesis appears to be the most significant toxicity-related pathway associated
with the lymphocytic PCA subtypes.
doi:10.1371/journal.pone.0038449.g002
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Sterol Intermediates of Cholesterol Biosynthesis Induce
a Pro-inflammatory Response in Hair Follicle Cells in vitro
Given the reciprocal expression pattern for genes related to

cholesterol biosynthesis (downregulated) and inflammation (upre-

gulated) in PCA, we hypothesized that a mechanistic link exists

between these diverse signaling pathways in hair follicles. To test

this hypothesis and to determine the physiological relevance of

decreased cholesterol biosynthesis in PCA, we studied the effects of

the cholesterol biosynthesis inhibitor BM15766 (a pharmacological

inhibitor of the enzyme DHCR7), and 7-dehydrocholesterol (7-

DHC) (a cholesterol precursor) on human hair follicle outer root

sheath (HHFORS) cells in vitro. The cholesterol biosynthesis

pathway involves $20 enzymatic reactions. As shown in Figure

S1, the last step in cholesterol biosynthesis is the conversion of 7-

DHC to cholesterol by 7-dehydrocholesterol reductase (DHCR7).

We selected the DHCR7 inhibitor BM15766 and the cholesterol

precursor 7-DHC for our studies because our data showed that the

expression of DHCR7 was consistently and significantly decreased

in all tested PCA samples (Figure 1F & Table S1). We suspected

that decreased expression of DHCR7 would cause an accumula-

tion of the cholesterol biosynthesis intermediate 7-DHC in hair

follicle cells.

Treatment of HHFORS cells with 7-DHC or BM15766

induced a pro-inflammatory response, as determined by global

gene expression profiling and real-time PCR (Figure 5). An IPA

analysis of the microarray data for 7-DHC- or BM15766-treated

HHFORS cells revealed a significant increase in the expression of

inflammatory genes (Figures 5A & 5B). We found that the most

significant pathways affected in 7-DHC-treated cells were the cell

mediated-immune response, immune cell trafficking, inflammato-

ry disease, the inflammatory response and the humoral immune

response (Figure 5A). The most significant pathways affected in

BM15766-treated cells were immune cell trafficking, the in-

flammatory response, immune cell disease, immunological disease

and the hematological response (Figure 5B). Intriguingly, the most

significant predicted networks identified by IPA analysis included

Figure 3. Increased expression of immune and inflammatory genes in PCA. The principal component analysis results for upregulated genes
from lymphocytic (A) LPP, (B) CCCA, (C) FFA and (D) neutrophilic (TF) cicatricial alopecia are shown. The normal and unaffected samples are clustered
together in each subtype, which suggests that the expression of immune and inflammatory genes is not significantly different among these samples.
Most samples from affected scalp areas in patients with PCA are clustered separately from normal controls and from samples of unaffected scalp skin
from PCA patients, which suggest that the expression of these genes differs between affected and unaffected samples. The top canonical pathways
from gene expression profiles in patients with (E) LPP, (F) CCCA, (G) FFA and (H) TF are shown. Red represents upregulated and green represents
downregulated genes in these pathways. The yellow graph line in E, F, G and H represents –log (p values). (I) Heat map of the most significantly
altered immune and inflammatory genes in LPP (6 affected and 5 unaffected samples), CCCA, FFA and TF (3 affected and 3 unaffected samples each)
is shown. The color bar below indicates the level of expression.
doi:10.1371/journal.pone.0038449.g003
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the TLR4 network in 7-DHC-treated cells (Figure 5C, Table S3)

and the TLR6 network (Figure 5D, Table S3) in BM15766-treated

cells.

Real-time PCR confirmed that the expression of innate immune

and pro-inflammatory genes significantly increased in 7-DHC-

and BM15766-treated HHFORS cells compared with untreated

or vehicle-treated controls (Figure 5E–5I). The expression of TLR4

was significantly increased in HHFORS cells treated with 7-DHC

(,5-fold, p,0.05) or BM15766 (,18-fold, p,0.05), as shown in

Figure 5E. In contrast, TLR6 was specifically upregulated in cells

treated with BM15766 (,1.6-fold, p,0.01), but not in cells treated

with 7-DHC. After treatment with 7-DHC or BM15766, IFN-

a (,3-fold, p,0.05 and ,3.5-fold, p,0.05; Figure 5G), IFN-a7
(,3.5-fold, p,0.05 and ,4-fold, p,0.05; Figure 5H) and NFkB

(,1.7-fold, p,0.05 and ,2.25-fold, p,0.05; Figure 5I) were all

significantly upregulated in HHFORS cells, respectively. In

addition, real-time PCR showed that the expression of the TGFb1

gene was significantly upregulated in hair follicle cells after

treatment with BM15766 (Figure S2). These data suggest that the

inhibition of endogenous cholesterol biosynthesis or the accumu-

lation of cholesterol precursors induces a pro-inflammatory

response in human hair follicle cells in vitro.

Sterol Intermediates of Cholesterol Biosynthesis Inhibit
Hair Growth and Trigger an Innate Immune Response in
Mouse Skin
We next determined whether BM15766 and 7-DHC have the

same effects on mouse skin in vivo (Figure 6). Mouse hair cycle

stages are naturally synchronized in individual mice. However,

animals of the same age and from the same litter can exhibit

heterogeneity with respect to hair follicle cycling. Therefore, mice

in the telogen phase of hair growth cycle (7 weeks old) were

depilated to synchronize their hair cycle stages and painted every

day for 14 days with 7-DHC (a cholesterol precursor; see

Figure 4. Innate immune genes are upregulated in PCA. Real-time PCR validation of (A) TLR4, (B) TLR6, (C) IFNa, (D) IFNa7, (E) NFkB, (F) IFNc, (G)
MMD and (H) MCP1 in mixed (DC, DF), neutrophilic (TF, FD) and lymphocytic (FFA, LPP, CCCA) PCA. These genes are significantly upregulated in
affected tissue compared to unaffected tissue from the same patients (*p,0.05, **p,0.01). The unpaired t-test was used for statistical analysis.
Differences in the pattern of expression of these genes were observed in the different PCA subtypes. (I) IPA identified the interferon signaling
pathway or the ‘‘interferon-responsive signature’’ in the gene expression profiles of LPP. The intensity of the node color red indicates the degree of
upregulation, and the intensity of the color green indicates the degree of downregulation. Genes shown as uncolored nodes were not identified as
differentially expressed in our experiment and were integrated into the computationally generated networks based on the evidence stored in the IPA
knowledge base, which indicated a relevance to this network. The node shapes denote enzymes, phosphatases, kinases, peptidases, transmembrane
receptors, cytokines, transporters, translation factors, nuclear receptors and transcription factors. The interferon target genes IRF1, IRF8, IFNA5, IFNAR2,
IFIT3, IFITM1, MX1, OAS1 and IFI35 are significantly upregulated in LPP. See also Table S2.
doi:10.1371/journal.pone.0038449.g004
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Figure 6A), BM15766 (an inhibitor of cholesterol biosynthesis;

see Figure 6B) or vehicle (ethanol or DMSO; see Figures 6A &

6B). The mice were then monitored for hair re-growth.

Histological changes were monitored by H&E staining of

paraffin-mounted mouse skin sections. At the end of 14 days,

hair growth was fully restored in the vehicle-treated mice.

Ethanol-treated mice are shown in Figure 6A and DMSO-

treated mice in Figure 6B. In stark contrast, the hair follicles in

mice treated with 7-DHC (Figure 6A) or BM15766 (Figure 6B)

did not re-grow. We therefore determined whether BM15766 or

7-DHC had an effect on catagen induction or on hair follicle

stem cells. As shown in Figure S2, real-time PCR showed that

the expression of the TGFb1 gene was significantly increased in

mouse skin tissue after treatment with BM15766. In addition, the

expression of SOX9 was significantly decreased both in

HHFORS cells in culture and in mouse skin after treatment

with 7-DHC and BM15766 (Figure S2).

H&E staining of mouse skin treated with 7-DHC or BM15766

showed epidermal thickening, follicular plugging and an increased

number of histiocytes in the dermis (Figure 6C & 6D). Tissue

macrophages in the inter-follicular dermis and surrounding hair

follicles were detected at higher magnification (100X) in H&E

stained skin sections from mice treated with 7-DHC or BM15766

(Figure 6E & 6F).

Macrophages are crucial initiators and regulators of the innate

and adaptive host defenses in the skin. Therefore, to corroborate

the H&E data, we stained the mouse skin sections with antibodies

to F4/80, which is a transmembrane protein present on the

surface of mouse macrophages. As shown in Figure S3, F4/80-

positive cells were observed in mice treated with 7-DHC and

BM15766 but not in vehicle-treated controls. Flow cytometry

analysis also revealed a significantly increased number of

macrophages (F4/80+ cells) in mouse skin that had been treated

with 7-DHC (8% increase; see Figure 6G) or with BM15766 (9%

Figure 5. Sterol intermediates of cholesterol biosynthesis trigger an inflammatory response in hair follicle cells. Inflammatory and
immune responses were the top biological functions affected by treatment of HHFORS cells with (A) 7-DHC or (B) BM15766. The most significant
biological functions affected, their p values and the number of differentially expressed genes (molecules) after each treatment were identified using
IPA. The difference between vehicle and 7-DHC or BM15766 treatments was defined as significant if a 1.5-fold or greater difference in the average
hybridization signal intensity with a p,0.05 using a two-tailed unpaired t-test was observed. Predicted interaction networks in hair follicle cells after
treatment with (C) 7-DHC and (D) BM15766 are shown. The TLR4 gene network was activated after 7-DHC treatment, and the TLR6 network was
activated after BM15766 treatment. Solid lines denote a direct relationship, and dotted lines denote an indirect relationship between two genes in
the network. A red node denotes an upregulated gene, and a green node denotes a downregulated gene, with the difference in intensity reflecting
the degree of change in the expression of differentially expressed genes in our dataset. The inflammatory functions and disease (fx) associated with
each TLR network were determined using IPA. See also Table S3. The real-time PCR validation of (E) TLR4, (F) TLR6, (G) IFNa, (H) IFNa7 and (I) NFkB gene
expression in 7DHC- and BM15766-treated hair follicle cells (*p,0.05, **p,0.01) is shown. The unpaired t-test was used for statistical analysis.
doi:10.1371/journal.pone.0038449.g005

Sterols and Innate Immune Response in PCA
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increase; see Figure 6H) compared with vehicle alone (Figure 6G

& 6H). To determine if macrophages were present in the tissue of

patients with PCA, we stained scalp skin sections from patients

with lymphocytic and neutrophilic PCA with antibodies to CD68,

a 110-kD transmembrane glycoprotein that is highly expressed in

human monocytes, including tissue macrophages. Figure S4 shows

a microphotograph of CD68+ cells in the lymphocytic (LPP,

CCCA, and FFA) and neutrophilic (TF) subtypes of PCA. These

results suggest a role for macrophages in the pathogenesis of PCA.

To elucidate the mechanisms and signaling pathways un-

derlying our findings, we performed gene expression profiling and

IPA analysis to compare mouse skin that had been treated with 7-

DHC and BM15766 with untreated controls. The inflammatory

and immune pathways that were upregulated in 7-DHC-treated

mouse skin included acute phase response signaling, SLE

signaling, dendritic cell maturation and interferon signaling

(Figure 7A). Pathways that were upregulated in BM15766-treated

mouse skin included IL-10 signaling, T- and B-cell signaling in

RA, IL-6 signaling and dendritic cell maturation (Figure 7B). As

observed in vitro, we identified upregulation of TLR (Figure 7C,

Table S4) and interferon signaling networks (Figure 7D, Table S4)

in 7-DHC - treated mouse skin.

As shown in Figures 7E-L, real-time PCR confirmed the

microarray data showing that innate immune response genes,

specifically TLR and IFN genes are significantly upregulated with

sterol treatment. We observed that TLR4 (,3-fold, p,0.05), TLR6

(,3-fold, p,0.05), IFNa1 (,1.4-fold, p,0.01), IFNa7 (,1.5-fold,

p,0.01) and NFkB (,1.7-fold, p,0.05) were significantly

upregulated in BM15766-painted mouse skin. In contrast, TLR4

Figure 6. Sterol intermediates of cholesterol biosynthesis inhibit hair growth and activate the inflammatory response in C57BL/6J
mice. (A) Topical 7-DHC and (B) BM15766 treatment inhibited hair growth compared with vehicle treatment (ethanol or DMSO). Hair growth was
restored in vehicle-treated but not in 7-DHC and BM15766 treated mice. (C, D) Histology of mouse skin treated with ethanol, DMSO, 7-DHC and
BM15766 (20X). H&E staining of vehicle-treated mice showed normal hair follicles and sebaceous glands. In contrast, H&E staining of mice treated
with 7-DHC and BM15766 showed hyperkeratosis as well as dystrophic hair follicles and sebaceous glands. Scale bar = 50 mm. (E, F) H&E staining
showed peri-follicular and inter-follicular inflammation in mouse skin that had been treated with 7-DHC (406). At higher magnification (1006),
infiltration of tissue histiocytes is observed. (G, F) A higher percentage of F4/80 cells was present in mouse skin treated with 7-DHC (Q5-LR) and
BM15766 (Q4-LR) than in the vehicle-treated mouse skin. See also Figures S3 and S4.
doi:10.1371/journal.pone.0038449.g006

Sterols and Innate Immune Response in PCA

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e38449



(,1.6-fold, p,0.01) and IFNa1 (,2.2-fold, p,0.05) were signif-

icantly upregulated in 7-DHC-painted mouse skin.

Discussion

The central finding of this study is that cholesterologenic

changes within hair follicle cells trigger an innate immune

response that leads to the induction of TLR and IFN gene

expression and the recruitment of macrophages that surround the

hair follicles and initiate their destruction.

Although PCA is a group of inflammatory hair disorders,

several unanswered but critical questions remain regarding the

nature and role of the inflammatory infiltrate in the natural history

of this disease. Several questions remain unanswered, including

whether the inflammatory reaction represents a primary or

secondary event in the disease pathogenesis, whether the in-

flammation is triggered by changes within hair follicles or by

exogenous factors (e.g., pathogens) and how much of the

inflammatory reaction reflects an autoimmune process. This study

provides a framework for addressing these complex issues.

Our data suggest that cholesterol precursors generated within

hair follicle cells trigger the initial inflammatory response and

induce the recruitment of tissue macrophages in mouse skin and in

PCA. These conclusions are based on several observations. Using

a global gene expression analysis, we first showed that the

expression of genes related to cholesterol biosynthesis is signifi-

cantly decreased in unaffected and affected scalp tissue from PCA

patients, which suggests that these expression changes are early

events in the pathogenesis of this disease. We further demonstrated

that innate and adaptive immune genes and pathways are

upregulated in lesional tissue, and there is a reciprocal expression

pattern of cholesterologenic and inflammatory gene expression in

PCA. Our data suggest that changes in expression of cholesterol

biosynthesis genes are a hallmark of all PCA subtypes and underlie

the pathogenesis of this group of alopecia. Our previous studies

Figure 7. Inflammatory pathways and networks activated in C57BL/6J mouse skin after topical treatment with 7-DHC and
BM15766. (A) The most significant signaling pathways altered by 7-DHC treatment participated in the inflammatory and immune responses and
were identified using IPA. Fisher’s exact test was used to calculate p values to determine the probability that the association between the genes in
the dataset and the pathway could be explained by chance alone. The yellow line indicates the threshold of significance (p,0.05) and represents the
ratio of the number of molecules from the data set that map to the pathway to the total number of molecules that map to the pathway. (B) The top
differentially regulated pathways in BM15766-treated mouse skin. The majority of the upregulated pathways participated in the inflammatory and
immune responses. (C, D) The top two predicted networks in 7DHC-treated mouse skin, determined using IPA. The TLR4 and IFN gene networks are
significantly upregulated by 7-DHC. Solid lines denote direct relationships between genes. Dotted lines denote an indirect relationship between two
genes. A red node denotes an upregulated gene, and a green node denotes a downregulated gene. See also Table S4. Real-time PCR validation of (E)
TLR4, (F) TLR6, (G) IFNa, (H) IFNa7, (I) NFkB, (J) IFNc, (K) MMD and (L) MCP1 gene expression in mouse skin treated with 7-DHC or BM15766 compared
with vehicle-treated (ethanol or DMSO) controls (n = 3; *p,0.05, **p,0.01). The unpaired t-test was used for the statistical analysis. Treatment with 7-
DHC and BM15766 can induce the expression of some or all of these genes.
doi:10.1371/journal.pone.0038449.g007
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[10] showed that the hair follicles and sebaceous glands of PPARc
knockout mice (a mouse model of scarring alopecia) have

decreased expression of lipid metabolic genes and increased

expression of inflammatory genes suggesting that these changes are

caused by loss of PPARc signaling [10].

Based on our current observation that the cholesterol bio-

synthesis pathway is decreased in all PCA subtypes, we explored

the possibility of a mechanistic link between cholesterol bio-

synthesis and the inflammatory response in PCA. We treated hair

follicle cells in vitro with BM15766, a cholesterol biosynthesis

inhibitor, or 7-DHC, a cholesterol precursor, and we observed

that these substances induced a pro-inflammatory response with

increased expression of TLR and IFN genes. Our findings that the

TLR4 gene network is activated after treatment with 7-DHC and

that the TLR6 network is activated after treatment with BM15766

(causes accumulation of 7-DHC & 8-DHC) may help to explain

the pathogenesis of PCA. Our data suggest that different sterols

induce diverse chemokine and cytokine profiles. These observa-

tions are relevant to PCA because different sterols generated in the

subtypes of PCA may contribute to the clinical and histological

differences among the different disease entities.

We next asked whether the association between cholesterol

biosynthesis and the inflammatory response observed in vitro

could be reproduced upon treatment with BM15766 or 7-DHC in

vivo. Intriguingly, the expression of TGFb1, a catagen inducer

[13] was significantly upregulated both in HHFORS cells and in

mouse skin after treatment with BM15766. In addition, the

expression of SOX9, a hair follicle bulge stem cell marker [14] was

significantly downregulated in both human hair follicle cells and in

mouse skin upon treatment with 7-DHC and BM15766. A

histological analysis of the mouse skin that had been treated with

BM15766 and 7-DHC showed follicular plugging, epidermal

thickening and an inflammatory infiltrate in the inter-follicular

dermis. These data suggest that inhibition of cholesterol bio-

synthesis with BM15766 or treatment with the intermediate 7-

DHC inhibits hair growth and arrests the hair growth cycle in

mouse skin. F4/80 staining of the inflammatory infiltrate showed

that macrophages are the first inflammatory cells to appear upon

treatment of mouse skin with BM15766 or 7-DHC. Intriguingly,

we observed the CD68+ staining of scalp tissue from patients with

neutrophilic and lymphocytic PCA, which suggests a role for

macrophages in the pathogenesis of PCA.

We further observed that BM15766 and 7-DHC-treated mice

express prominent transcriptional signatures related to TLR and

IFN signaling in their skin. TLRs are inflammatory molecules that

bridge the innate and adaptive immune systems in humans and

activate multiple inflammatory pathways [13–15]. TLRs co-

ordinate the systemic defense against pathogens and may

recognize self-lipids, proteins and endogenous nucleic acids [16].

Data originating predominantly from animal models of autoim-

mune disease and anecdotal data from human patients suggest

that the inappropriate activation of TLR pathways by endogenous

or exogenous ligands may lead to the initiation and/or perpetu-

ation of autoimmune responses and tissue injury. TLRs in non-

immune cells have been implicated in multiple autoimmune and

inflammatory diseases, including Hashimoto’s thyroiditis (TLR3 in

thyrocytes) [17], colitis (TLR4 in intestinal epithelial cells [18] and

type 1 diabetes (TLR3 in pancreatic ß-cells) [19]. In each case, the

pathological expression of the TLR in non-immune cells is

associated with an autoimmune/inflammatory disease. Therefore,

the induction of TLRs by 7-DHC and BM15766 in hair follicle

cells in vitro and in mouse skin in vivo in the present study is

a novel observation.

We demonstrated that the inhibition of cholesterol biosynthesis

or treatment with cholesterol precursors in hair follicle cells

induces the expression of IFN and its target genes in mouse skin

and in tissue from patients with PCA. Intriguingly, the gene

expression profiling of tissue from patients with LPP, CCCA, FFA

and TF revealed the upregulation of interferon genes in all

subtypes. However, an ‘‘interferon-responsive signature’’ of in-

terferon target genes was clearly detected in LPP. Our data show

for the first time that LPP has an gene expression signature that is

related to the ‘‘interferon response’’ that is commonly observed in

autoimmune diseases [20]. Analyses of additional samples may be

necessary to identify similar signatures in other PCA subtypes. The

‘‘interferon response signature’’ is emerging as a common di-

agnostic feature of diverse autoimmune diseases, such as type 1

diabetes (T1D) [21], autoimmune thyroid disease [22], systemic

lupus erythematosus (SLE) [23], rheumatoid arthritis (RA) [24],

scleroderma [25], Sjogren’s syndrome [26], dermatomyositis [27]

and psoriasis [28], as well as animal models of autoimmune

diseases. Our data show a direct link between sterols and the

activation of the TLR and IFN signaling pathways in mouse skin

and in LPP. The TLR and IFN gene expression signatures in PCA

are similar to those observed in many autoimmune diseases.

However, it remains to be determined if PCA are indeed

autoimmune diseases.

In conclusion, our data suggest that cholesterologenic changes

are the primary events in the pathogenesis of PCA and trigger an

inflammatory response in human hair follicle cells and in mouse

skin. One mechanism by which sterol precursors might induce the

expression of TLR and IFN genes could be via the activation of

liver X receptors (LXR). LXRs are nuclear receptors activated by

sterol intermediates of cholesterol biosynthesis [29]. They function

as cholesterol sensors and regulators [30] and also control

transcriptional programs involved in the inflammatory response.

Although LXR has been reported to have anti-inflammatory

effects [31,32], LXR-dependent gene expression is important for

macrophage survival and the innate immune response [33], [34–

36].

Cholesterol is a multifunctional molecule that acts as an

essential membrane component, a cofactor for signaling molecules

and a precursor of steroid hormones [37,38]. Although its role in

the skin and skin appendages is incompletely understood,

cholesterol is essential for epidermal barrier function [39] and

forms an integral component of the hair follicle [40]. Several

human malformation syndromes are caused by inherited enzyme

defects in cholesterol biosynthesis and lead to a deficiency of

cholesterol as well as increased levels of bioactive or toxic

precursor sterols [41]. Three of these syndromes, CHILD,

CDPX2 and desmosterolosis, exhibit multiple cutaneous abnor-

malities, including alopecia, and there are reports of scarring

alopecia in patients with CDPX2 [41]. Recent studies by Evers

et al [42] described hair growth defects in an Insig-deficient mouse

model. These mice display defects in postnatal hair follicle cycling

that result from the accumulation of cholesterol precursors; the

defects could be rescued after treatment with simvastatin. Despite

these reports, the role of cholesterol and other lipids in the

pathogenesis of cutaneous disorders is not fully appreciated. Our

study shows a direct link between the sterol precursors of

cholesterol biosynthesis and hair disease in humans and may have

implications for other skin and hair diseases that are immune-

mediated, but whose mechanisms remain poorly defined.

This study reveals a previously unknown role for sterol

intermediates of cholesterol biosynthesis in PCA pathogenesis

and identifies a novel link between skin sterols and inflammation

that may prove transformative in the diagnosis and treatment of
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these disorders. We conclude that the cholesterol biosynthetic

pathway is impaired in the skin and hair follicles of PCA patients.

Furthermore, investigations of PCA therapies should consider skin

sterol levels as a potential therapeutic target and as a disease

biomarker. A promising therapeutic strategy for PCA could be the

restoration of cholesterol homeostasis in hair follicle cells by

clinically available agonists of PPARc or antagonists of LXR

which are nuclear receptors that modulate this pathway

[10,43,44].

Materials and Methods

Human Tissue
All research involving human subjects for this study has been

conducted with written approval by the Case Institutional Review

Board (IRB Protocol Number: 08-05-03). For research involving

human participants, informed written consent has been obtained

and all clinical investigation has been conducted according to the

principles expressed in the Declaration of Helsinki. The diagnosis

of PCA was based upon clinical observation and histopathologic

findings of a lymphocytic, neutrophilic or mixed-cell infiltrate in

the infundibular or the permanent portion of the hair follicles, as

previously described [5]. The patients recruited for this study had

early-active lesions that were judged to be clinically representative

of lymphocytic (LPP, FFA, CCCA), neutrophilic (TF, FD) or

mixed (DC) PCA. For microarray analysis, two 4-mm scalp

biopsies were obtained, one from the affected area of the scalp and

another from the clinically unaffected scalp. The affected biopsy

specimens were obtained from the ‘‘active border,’’ which is an

area with inflammation and retained (but decreased) hair follicles.

These samples were paired with samples from clinically unaffected

areas in the same patient. Scalp biopsy specimens from healthy

volunteers (age-, sex- and race-matched) were included as controls.

The normal controls examined had no evidence of hair or skin

disorders. Scalp biopsies were obtained from patients seen at the

clinics of the University Hospitals of Cleveland or at the University

of California at San Francisco. All patients had active disease with

itching, burning, pain, progressive hair loss, a positive pull test and

evidence of inflammation. The patients were 18 years or older and

were able to give informed consent, and the patients were

evaluated in a standard manner that included a medical history;

detailed hair questionnaire; treatment history; an examination of

the hair, scalp, and skin and scalp photographs. All biopsies were

performed under the approval of the Institutional Review Board

and after appropriate consent had been obtained from patients

and volunteers. All tissue samples were stored at 280uC until

processed. These biopsies were utilized for total RNA extraction,

microarray analysis and real-time PCR.

Animals
All animal work has been conducted according to relevant

national and international guidelines. All animal protocols for this

study have been conducted with written approval by the Case

Western Reserve University Institutional Animal Care and Use

Committee (IACUC). Female C57BL/6J mice (Jackson Labora-

tory, Bar Harbor, Maine), aged 7 weeks, were randomly

distributed into four groups. They were housed in groups of 5

with standard diet food pellets and water available ad libitum.

Depilation to synchronize the hair cycle was performed as

previously published [45,46]. All of the hairs in the head region

were removed by shaving, followed by treatment with a depilatory

agent (NairTM hair remover, Church and Dwight Co. Inc.

Princeton, NJ, USA) to reveal pink skin. To compare the effects of

different treatments on the hair cycle, the mice were treated

topically with vehicle alone, with the sterol intermediate 7-DHC

(Sigma-Aldrich, St. Louis, Missouri) or with the cholesterol

biosynthesis inhibitor BM15766 (Sigma-Aldrich, St. Louis, Mis-

souri) for 15 days. Each mouse was treated topically (painted every

day on the head region) with the vehicle alone (ethanol: water 1:1)

or with 25 mM 7-DHC. The other animals were treated with

vehicle alone (DMSO: water 1:1) or with 4 mM BM15766. After

15 days of topical treatment, the mice were euthanized. Skin from

the painted region was harvested and stored at 280uC for

microarray and qRT-PCR analysis or embedded in paraffin for

histological sectioning. The sections were stained with hematoxylin

& eosin (H&E) using standard protocols for histological analysis.

Human Hair Follicle Outer Root Sheath Cells (HHFORS
cells)
HHFORS cells (ScienCell Research Laboratories, Carlsbad,

CA) were grown in mesenchymal stem cell media (ScienCell

Research Laboratories, Carlsbad, CA) with growth supplements

(heat-inactivated FBS, penicillin, streptomycin and mesenchymal

stem cell growth supplement) per the manufacturer’s instructions.

Third- or fourth-passage cells were seeded at a density of 0.66106

cells per p100 plate. Ethanol was used to dissolve 7-DHC (Sigma-

Aldrich, St. Louis, Missouri), and BM15766 (Sigma-Aldrich, St.

Louis, Missouri) was dissolved in DMSO. The final ethanol and

DMSO concentrations never exceeded 0.1% and did not affect the

experiments. HHFORS cells in serum-free medium were treated

with 7DHC, BM15766 or vehicle alone. A literature search

revealed that the effects of 7-DHC and BM15766 had not been

previously studied in HHFORS cells. We therefore conducted

time- and concentration-varying treatments using the VybrantH
MTT Cell Proliferation Assay Kit (Invitrogen, Grand Island, NY;

data not shown) to determine the optimal concentrations of 7-

DHC (25 mM), BM15766 (4 mM) or vehicle alone and the optimal

time of treatment (16–24 hours) for these experiments. Harvested

cells were used for RNA isolation followed by microarray and RT-

PCR analysis.

RNA Isolation & Microarray Analysis
RNA isolation and microarray analysis were performed as

described previously [10]. The total RNA from each biopsy was

extracted using TRIzol reagent (Life Technologies, Inc., Gaithers-

burg, MD, USA) per the manufacturer’s instructions. The RNA

extraction was followed by purification using RNeasy Mini

columns (Qiagen, Inc., Valencia, CA, USA). The RNA was

quantified by spectrometry and used for microarray and real-time

PCR experiments. The microarray experiments were performed

with fresh frozen scalp tissue biopsies from patients with LPP

(paired affected N=6 & unaffected N=5), CCCA (paired affected

N=3 and unaffected N=3), FFA (paired affected N=3 and

unaffected N=3) and TF (paired affected N=4 and unaffected

N=3). These samples were compared to normal (control) scalp

tissue (N=10, pooled) by interrogating the Affymetrix GeneChip

oligonucleotide array Human U133 Plus 2.0 (Affymetrix, Santa

Clara, CA). Human hair follicle cells treated with 7-DHC and

BM15766 were used for RNA isolation with the RNeasy Mini

column and microarray analysis with the HG U133 Plus 2.0

Array.

The Mouse Gene 1.0 ST Array (Affymetrix, Santa Clara, CA)

used for our studies provided whole-transcript coverage. Each of

the 28,853 genes is represented on the array by approximately 27

probes spread across the full length of the gene to provide a more

complete and accurate picture of gene expression than that

possible with 3’-based expression array designs. Sense DNA targets

were generated from as little as 100 ng of total RNA isolated from
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skin tissue painted with 7-DHC and BM15766. Mice treated with

7-DHC (N=5) and BM15766 (N=5) were compared with

vehicle-treated controls.

Hybridization to the oligonucleotide arrays and subsequent

washing and detection were performed as described in the

Affymetrix Expression Analysis Technical Manual (Affymetrix).

Array images were acquired using a GeneChip Scanner 3000

(Affymetrix), and the images were analyzed with the Genechip

Operating Software (GCOS) and Expression Console. The image

from each GeneChip was scaled such that the average intensity for

all of the arrays was adjusted to a target intensity of 500 arbitrary

units to account for the inherent differences between the chips and

their hybridization efficiencies. The GeneChip array analysis

yielded the hybridization intensity for each represented gene as the

signal intensity. A multi-group Significance Analysis of Micro-

arrays (SAM) approach [47] was undertaken to select a set of genes

that was consistently differentially expressed among the unaffected

and affected PCA and healthy scalp skin, with a false discovery

rate (FDR) of ,0.003. The difference between PCA and the

normal controls was defined as significant for a 2-fold or greater

difference in the average hybridization signal intensity with

p,0.05 using a two-tailed unpaired t-test.

The Ingenuity Pathways Analysis (IPA) application (Ingenuity

Systems, www.ingenuity.com) was used to identify functional

significance, cellular location, and role in various biological and

metabolic processes of the selected gene products. Details of the

analytic methods and IPA data interpretation have been pre-

viously described [10]. Partek Genomics Suite (Partek Inc., St.

Louis, Missouri) was used for hierarchical clustering and principal

component analyses. Microarray data files from affected, un-

affected and normal samples were imported into Partek for

principal component analysis. All of the data sets were subjected to

multi-way ANOVA, and transcripts with signals differing among

groups with a certainty greater than p#0.05 were selected for

further study. A hierarchical cluster analysis was performed with

Pearson’s dissimilarity and complete linkage.

Quantitative Real-time RT-PCR
FAM-labeled PCR primers and TaqMan hydrolysis probes for

all target genes and 18S rRNA or transferrin receptor (TFRC)

controls were purchased from Applied Biosystems (Life Tech-

nologies Corporation, Carlsbad, California). Real-time PCR was

performed on an ABI StepOneTM Sequence Detection System

(Applied Biosystems, Carlsbad, California) according to the

recommendations of the manufacturer. The expression of the

target genes in all samples, including PCA (LPP, CCCA, FFA,

DC, DF and TF) samples, control samples and samples from

mice treated with 7-DHC, BM15766 or vehicle were quantified

by the DDCT method, as described in the ABI StepOneTM

Sequence Detection System manual (Applied Biosystems, Carls-

bad, California).

Histological Analysis
Mice treated with 7DHC and BM15766 were euthanized, and

skin samples from the head region were harvested and placed in

formalin overnight. Fixed skin samples were embedded in paraffin

according to procedures used for routine histology and stained

with H&E. For immunostaining of macrophages in PCA paraffin

sections, CD68 mouse monoclonal antibodies (ab955; diluted

1:100; Abcam, Cambridge, MA) were used. Macrophages in

paraffin-embedded sections of mouse skin tissue were detected

using rat monoclonal antibodies to F4/80 (ab6640; diluted 1:100;

Abcam, Cambridge, MA). Twenty-four-bit images were captured

at 206 and 406 on an Olympus BX-60 upright microscope

attached to a Retiga Exl Aqua camera (Q imaging Vancouver,

BC).

F4/80 Staining of Mouse Skin and Flow Cytometry
Cell suspensions were prepared from mouse skin that had been

painted with the sterol intermediate 7-DHC or with the cholesterol

inhibitor BM15766. Isolated cells were washed with RPM1/5%

FBS and re-suspended in the same medium. The cells were

counted and used for F4/80 flow cytometry. The cells were

incubated with FC blocker (eBiosciences, San Diego, CA) for

20 min. After 20 minutes, the anti-mouse F4/80 antigen Alexa

FluorH 647 (eBioscience, San Diego, CA) or propidium iodide (BD
Pharmingen San Diego, CA) was added. The samples were

incubated for 30 minutes at 4uC with rotation. After 30 min,

samples were washed with PBS twice and filtered with a 40-mm
cell strainer. The filtered samples were analyzed with flow

cytometry using the Accuri V6 flow cytometer (Ann Arbor, MI).

Supporting Information

Figure S1 Schematic representation of the cholesterol
biosynthesis pathway. Cholesterol biosynthesis involves the

coordinated regulation of .20 enzymatic reactions. The early

steps in endogenous cholesterol biosynthesis involve the conversion

of acetyl-CoA to mevalonic acid via HMG-CoA. Statins inhibit

the enzyme HMG-CoA reductase. The late steps involve the

conversion of lathosterol to 7-dehydrocholesterol (7-DHC). The

enzyme DHCR7 then converts 7-DHC to cholesterol. The

cholesterol biosynthesis inhibitor BM15766 is a pharmacological

inhibitor of the enzyme DHCR7.

(TIF)

Figure S2 Real-time PCR validation of TGFb1and SOX9
gene expression in HHFORS cells and in mouse skin
(*p,0.05, **p,0.01) after treatment with 7-DHC and
BM15766. Compared with untreated samples, TGFb1 gene

expression was significantly increased both in HHFORS cells and

in mouse skin after treatment with BM15766. No significant

change in TGFb1 gene expression was observed after treatment

with 7-DHC. In contrast, SOX9 gene expression was significantly

decreased both in HHFORS cells and in mouse skin after

treatment with BM15766 and with 7-DHC. The unpaired t-test

was used for statistical analysis.

(TIF)

Figure S3 F4/80 staining of mouse tissue after treat-
ment with 7-DHC and BM15766. Macrophages in paraffin-

embedded sections of mouse skin were detected using rat

monoclonal antibodies to F4/80. Infiltration of macrophages

was observed in mouse skin treated with 7-DHC and BM15766,

but not in vehicle-treated controls (ethanol and DMSO). Twenty-

four-bit images were captured at 206 and 406 on an Olympus

BX-60 upright microscope attached to a Retiga Exl Aqua camera

(Q Imaging, Vancouver, BC).

(TIF)

Figure S4 CD68 staining of paraffin sections of normal
scalp tissue and scalp tissue from patients with PCA
(LPP, CCCA, FFA, and TF). CD68+ cells were clearly observed

in LPP, CCCA and TF; fewer CD68+ cells were observed in FFA.

Twenty-four-bit images were captured at 406 on an Olympus

BX-60 upright microscope attached to a Retiga Exl Aqua camera

(Q Imaging, Vancouver, BC).

(TIF)
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Table S1 The expression of cholesterol biosynthesis
genes is decreased in PCA. The degree of change of 14

differentially expressed cholesterol biosynthesis genes in LPP,

CCCA, FFA and TF is shown (N= 10 for each subtype). Although

cholesterol biosynthesis genes are downregulated in all subtypes of

PCA, different sets of genes are downregulated in different

subtypes.

(TIF)

Table S2 Interferon response genes in PCA. The expres-

sion of interferon signaling genes in LPP, CCCA, FFA and TF is

shown. The expression of these genes in samples from patients

with PCA is compared with that in normal tissue. Interferon

response genes are significantly upregulated in LPP. Fewer

interferon-responsive genes are differentially expressed in the

other PCA subtypes. (ND= No change detected.)

(TIF)

Table S3 Expression of genes in the TLR4 and TLR6
networks. The TLR4- and TLR6-predicted networks were

generated using IPA. The identity of the genes and the degree

of change in the TLR4 network (Figure 5C) induced by treatment

of HHFORS cells with 7-DHC and in the TLR6 network

(Figure 5D) after treatment of HHFORS cells with BM15766 are

shown.

(TIF)

Table S4 Expression of genes in the TLR and IFN
networks that are activated upon treatment of mouse
skin with 7-DHC. The identity of the genes and the degree of

changes in the TLR and IFN networks that are activated after

treatment of mouse skin with 7-DHC are shown. Several

inflammatory genes, including interferon responsive genes, are

upregulated in both networks.

(TIF)

Glossary S1 A list of all abbreviations, gene symbols
and gene names included in the manuscript are shown
in the glossary.
(PDF)
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