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Abstract

Complex neuronal networks are an important tool to help explain paradoxical phenomena observed in biological
recordings. Here we present a general approach to mathematically tackle a complex neuronal network so that we can fully
understand the underlying mechanisms. Using a previously developed network model of the milk-ejection reflex in oxytocin
cells, we show how we can reduce a complex model with many variables and complex network topologies to a tractable
model with two variables, while retaining all key qualitative features of the original model. The approach enables us to
uncover how emergent synchronous bursting can arise from a neuronal network which embodies known biological
features. Surprisingly, the bursting mechanisms are similar to those found in other systems reported in the literature, and
illustrate a generic way to exhibit emergent and multiple time scale oscillations at the membrane potential level and the
firing rate level.
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Introduction

In neural systems, oscillatory rhythms have essential roles in

sensory, cognitive, and motor functioning; in many experimental

conditions [1–3], diverse physiological information can be

encoded by the oscillatory activity of neuronal ensembles.

However, the mechanisms by which rhythmic dynamics are

produced vary considerably, from single pacemaker neurons,

which can be mathematically described by voltage threshold

models such as the integrate-and-fire model [4,5], or the more

biophysical Hodgkin-Huxley type model [6], to large cortical

networks, where interactions between neurons are responsible for

the rhythmic behaviors (see [7–9] and the references therein).

Single neuron oscillation dynamics are often mathematically

interpreted as a dynamic bifurcation, where an emission of an

action potential is regarded as a cycle of periodic trajectory. Based

on this idea, bifurcation theory has been widely employed to

investigate neuronal spike dynamics [10]. Conversely, a number of

network models have been proposed to realize neuronal oscillation

at diverse rhythmic ranges via adapted interactions between

inhibition and excitatory neurons [11–13]. Some of these aim to

explain the roles of different cortical rhythm ranges (d range, 1–

4 Hz;h range, 4–8 Hz;a range, 8–13 Hz;b range,13–30 Hz; and c
range, 30–80 Hz) in cognitive functions such as retrieving

memories, attention and motor control.

Thus rhythmic oscillations can be observed and studied at

different levels in neural systems, from the single neuron level, to

the neuronal population level. Synchronous spikes in a neuronal

population, which is a special case of population oscillating

dynamics, may play an essential role in neuronal computation in

cognition [14], and attention selection [15–18]. Synchronization is

a population behavior, and accordingly has to be studied at the

network level, and as shown in [19,20], synaptic interactions can

be one cause of synchronous dynamics. Synchronous bursting

emerges periodically in neuronal networks at a time scale of

minutes, much longer than the millisecond time scale of individual

neuronal spikes. Synchronous behavior can also be characterized

as metastability, i.e. a transmission between different patterns

[21,22], rather than attractors.

Some neuronal networks can exhibit rhythmic oscillations at

multiple time scales. An interesting example is reported in a recent

paper [23], in which a neuronal network model was developed to

reproduce paradoxical phenomena observed from recordings of

oxytocin-secreting neurons. Oxytocin is a hormone that is released

by neuroendocrine neurons into the blood where it can trigger

milk let-down in lactation, and it is also released within the brain,

where it has powerful behavioral effects. Notably, in humans it is

reported that oxytocin can increase the bonding and trust between

individuals. These effects have made oxytocin a key drug target for

new therapies aimed at mental disorders of social behavior such as

autism.

The oxytocin network model in [23] was developed to explain

the observed activity of oxytocin neurons in response to suckling.

When young suckle, they are rewarded intermittently with a let-

down of milk that results from reflex secretion of oxytocin; without

oxytocin, newly born young will die unless they are fostered [24].

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38402



Oxytocin is made by magnocellular hypothalamic neurons, and is

secreted from their nerve endings in the pituitary in response to

action potentials (spikes) that are generated in the cell bodies and

which are propagated down their axons to the nerve endings.

Normally, oxytocin cells discharge asynchronously at 1–3 spikes/s,

but during suckling, every 5 min or so, each discharges a brief,

intense burst of spikes that release a pulse of oxytocin into the

circulation [23]. The near-synchronous bursting is the conse-

quence of vesicles of oxytocin released from the dendrites of

oxytocin neurons as a result of spike activity, and this release of

oxytocin can activate other oxytocin neurons via its effects on

neighboring dendrites. The model revealed how emergent

synchronous bursting at a very low frequency could arise from a

neuronal network which implements all known features of the

physiology of oxytocin cells. In that model, bursting is an emergent

behavior of a complex system, involving both positive and negative

feedbacks, between many sparsely connected cells. The oxytocin

cells are regulated by independent random afferent inputs, but

they are also excited by the dendritic release of oxytocin and

inhibited by endocannabinoids, which are also produced by

oxytocin neurons as a result of spike activity. The oxytocin that is

released from the dendrites does not only have a local role; so

much is released that it can act at distant sites, where it is believed

to mediate one of the benefits of breast feeding: increasing the

bonding between mother and baby.

A simple version of the network model is illustrated in Fig. 1.

This model network has 48 cells and 12 bundles, and each cell has

two dendrites ended up in different bundles, and two cells can

interact if they share a common bundle. Each bundle contains the

same number of dendrites, which we refer to as a ‘homogeneous

arrangement of the connections’ (Fig. 1A, B). In the model, the

dendritic stores of readily-releasable vesicles are continuously

incremented by the suckling-related ‘priming’ input. Their level

increases relatively steadily between bursts despite activity-

dependent depletion, and synchronous bursts tend to occur when

the oxytocin level at the store is relatively high (Fig. 1C, D). In

addition to the synchronicity, the bursts possess the characteristic

that the inter-burst intervals are almost constant. More interest-

ingly, we observed a number of paradoxical behaviors also

observed in experimental studies. For example, increased spike

activity between bursts enhances depletion of the stores and so can

delay or even suppress bursting (Fig. 1E). Conversely, an increase

in inhibitory inputs can promote the reflex in a system which fails

to express bursting because of insufficient priming. For example,

injections of the inhibitory neurotransmitter GABA into the

supraoptic nucleus of a suckled, lactating rat can trigger milk-

ejection bursts (Fig. 1F).

This neuronal network illustrates a hierarchical rhythmic

oscillation dynamics. Each neuron discharges spikes periodically

in a way that can be regarded as oscillating dynamics at the

neuron level (the msec time scale for the inter-spike-interval); the

network population synchronizes and exhibits bursting dynamics

periodically in a way that can be regarded as oscillating dynamics

at the network level (the minute time scale of the inter-burst

intervals), comparing Fig. 1C with Fig. 1D. In general, a network

system can have diverse oscillation dynamics at different levels,

because of the interactions between individual units. Each node

oscillates and exhibits a faster rhythmic dynamics, but the network

synchronization also oscillates, with slower, rhythmic dynamics.

Different approaches have been proposed to deal with

hierarchical rhythmic dynamics, as exemplified by neuronal

bursting. The theory of slow-fast dynamical systems was

introduced to explain how a neuron model can demonstrate co-

existence of tonic spiking and bursting [25,26]. Abundant

bifurcation behaviors in oscillations including spiking and bursting

were detected in various neuron models [27–32], and are thought

to be biophysically plausible. Moreover, reduction of complex

neuronal networks to models with a few variables was performed,

and mean field models were constructed to describe the average

activity of the neuron systems [26,33–35].

In this study, we aim to explain why and how emergent bursting

occurs in the oxytocin network, and to reveal the underlying

mechanisms of a particular puzzle: how increasing excitatory

inputs can sometime stop the burst and increasing inhibitory

inputs can promote the burst. Despite the many published papers

in this area, we find that a novel approach is required. Most

theories only deal with deterministic dynamics, but in the more

biologically realistic oxytocin model, each neuron receives

stochastic (Poisson) inputs, so an approximation to simplify each

single neuron model is needed [36]. We approximate the system

by a two-dimensional slow-fast dynamical system, where the

variables used are threshold and oxytocin store level. This

simplification is achieved after elaborately testing different model

variables. The original model included many variables that were

needed to match the physiological data quantitatively, including a

hyperpolarizing after potential (HAP) and a slow afterhyperpolar-

ising potential (AHP), different delays in the systems, and variables

to model endocannabinoids actions. This complexity makes the

original model hard to deal with mathematically. After eliminating

non-essential variables, we conclude that a model incorporating

just the dynamics of the threshold and oxytocin store level can be

used to mimic the original model. Using this two-dimensional

model, we can then apply bifurcation theory to explore the

hierarchical rhythmic dynamics. We find there exists a critical

value of the input rate beyond which bursting can emerge. This

phenomenon can be described by a saddle-node bifurcation of limit

cycles. As excitatory inputs increase in frequency, synchronized

bursts arise in such a manner that the intervals between bursts are

constant. More interestingly, and counter intuitively, the bursts

disappear when the excitatory input frequency passes a larger

critical value corresponding to another saddle-node bifurcation of

limit cycles. We also detect occurrences of the subcritical Hopf

bifurcation as the input frequency varies between the above two

critical values. The saddle-node bifurcation plays a more

significant role corresponding to the generation and ending of

the bursting activity in the network.

Neuronal oscillation is a concept with many facets. The

oxytocin model is a typical example among them and has its

own specificities in comparison with other oscillating systems such

as cortical oscillations relevant for cognition, as reviewed above.

The response of the oxytocin network to an external stimulus is

much slower, in comparison with cortical oscillations and therefore

it involves very different intracellular and extracellular mecha-

nisms. We emphasize here that the underlying chemical and

physical mechanisms leading the oxytocin network to oscillate

have very little to do with mechanisms for the development of

cortical oscillations relevant for cognitions. For example, slow

oscillations such as the theta-rhythm could arise from the GABA-

slow current, as recently modeled in the decision making [5] and

theta-nested gamma oscillations [37]. Nevertheless, it is interesting

to note that the mathematical approach developed here could be

useful and serve as a general purpose tool to tackle a model, no

matter it is a simplified integrate-and-fire model network or a

biophysically realistic Hodgkin-Huxley type model network.

Finally, synchronization in the oxytocin network is bursting-to-

busting and such a mechanism of population spikes in neocortical

networks for cognition has long been postulated in the literature

[38].

Bifurcations of Bursting in a Neuronal Network
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Figure 1. Oxytocin network and its behavior at multi-time scales. (A) Schematic diagram illustrating the topology of the model network; for
each cell, two yellow squares indicate which bundles are occupied by the cell dendrites. (B) A few clusters of cells are found in the network where
neurons (circles) interact via both dendrites (lines). Such clusters may occasionally be connected through a common bundle. (C) Ratemeter records of
three representative cells showing bursts in response to simulated suckling. A clear spike at the firing rate level is observed. (D) Raster plots of the
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Methods

1 Oxytocin Neuronal Network
In [23], a neuronal network model, based on leaky integrate-fire

neurons with adaptive thresholds, dependent on the store level of

oxytocin, was proposed and shown to exhibit emergent bursting

dynamics. In this model, neurons receive random synaptic inputs

from other, external neurons (excitatory and inhibitory post

synaptic potentials, EPSPs and IPSPs). Changes in excitability of

the neurons were modeled as changes in the membrane potential

threshold for triggering spikes, and depend on previous spike

activity and on dendritic oxytocin release, which is non-linearly

related to spike activity and proportional to the size of the readily-

releasable store of oxytocin in the dendrites. As a closed loop, the

stores of oxytocin that are available for release decrease when

oxytocin is released from the dendrites but are increased as a result

of the suckling stimulus. In the current paper we consider a

simplified version of this model, which still preserves the

synchronous bursting behavior. We refer the model in [23] as

the original neuronal network (ONN) and our simplified model as

the simplified neuronal network (SNN).

The core step of our simplification is the topology of the

network. We consider a neuronal network with N neurons and nb

bundles, where each neuron has two dendrites in different bundles.

We assume that the network is homogeneously arranged, i.e. each

of the nb bundles contains the same number of dendrites. In [23],

we modeled the individual oxytocin neurons using the leaky

integrate-and-fire model, modified to incorporate activity-depen-

dent changes in excitability. The membrane potential vi of cell i

obeys

dvi

dt
~

vrest{vi

t
z
X2

j~1

aE(vE{vi)
dN

j
E,i

dt
{aI (vi{vI )

dN
j
I ,i

dt

" #
, ð1Þ

where t is the membrane time constant, vrest is the resting

potential, N
j
E,i,N

j
I ,i are independent Poisson processes with the

varied excitatory input ratelj
E,i and the fixed inhibitory input rate

l
j
I ,i, aE(vE{vrest), aI (vrest{vI ) are the magnitude of single EPSPs

and IPSPs at vrest, and vE , vI are the excitatory and inhibitory

reversal potentials. A spike is produced in cell i at time

t~ts
i , s~1,2,:::, if vi(t

s
i )~Ti(t

s
i ), where Ti(t) is the spike threshold

at time t. After a spike, vi is reset to vrest. Activity-dependent

changes in excitability and the effects of oxytocin are modeled by

effects on spike threshold. Different from the model for the

dynamical threshold in [23], we eliminate the effects of HAP and

AHP in the spike threshold, so,

Ti(t)~T0{TOT ,i(t),

Where T0 is a constant. The increase in excitability due to

oxytocin is modeled by TOT ,

dTOT ,i

dt
~{

TOT ,i

tOT

zkOT

Xnb

k~1

XN

j~1

X2

l,m~1

ck
ilc

k
jmrm

j (t), ð2Þ

Where tOT , kOT are constants, rm
j (t) is the instantaneous release

rate from dendrite m of cell j, and the sums pick up all the cells

whose dendrites share the same bundle as cell i. The network

topology is represented by matrices

Ck~fck
ijg, k~1, :::, nb; ck

ij~1 if dendrite j of cell i is in bundle

k, and zero otherwise.

The readily-releasable store of oxytocin in dendrite j of cell i is

represented by r
j
i , where

dr
j
i

dt
~{

r
j
i

tr

zkp{rj
i(t), ð3Þ

Where tr is a time constant, kp is the rate of priming due to the

suckling input, and r
j
i is the instantaneous release rate from

dendrites j. In [23], the release of oxytocin is proportional to the

readily-releasable stores:

r
j
i(t)~krr

j
i(t)
X

d(t{ts
i {D), ð4Þ

Where kr is the maximum fraction of the stores that can be

released by a spike, D is a fixed delay before release, and the

summation extends over the set fts
i vt,ts

i {ts{1
i vtrelg, with trel a

constant. This ensures that only spikes occurring at intervals of less

than trel (‘doublet’ spikes) induce any release from dendrites. Here,

we neglect the delay term D in (4) and the doublet effects by letting

trel~z?, which means that spikes occurring at intervals of any

length can induce release.

The model in [23] also took the inhibitory effects of

endocannabinoids into consideration, but here we neglect it for

simplicity.

The parameter values for simulations are as in Table 1.

The ONN in [23] displays the transition between spiking and

bursting (Fig. 2). The spiking rate is recorded on a network of 48

neurons and 12 bundles in Fig. 2A, and the voltage trace and store

level of oxytocin are shown in Fig. 2C and E. The bursting events

are essentially attributed to the drop of the spike threshold (red

line) and store level. Our simplification of the ONN does not

destroy such basic behaviors of the network in the sense that the

SNN displays similar network activity in Fig. 2B, 2D and 2F as the

ONN in Fig. 2A, 2C and 2E. As expected, the SNN fires faster

than the ONN even though the input rate l
j
E,iin the SNN (50 Hz)

is smaller than in the ONN (80 Hz), because we have discarded all

bursting terminating mechanisms related to the negative feedback

effects of the HAP and AHP on the spike threshold, the doublet

effects in the impulsive release of oxytocin and the feedback

inhibition by endocannabinoids.

Next we regard ts
i as a series of random variables, and use

Brownian motion to approximate the discrete spiking series,

resulting in the following approximated release rate:

rj
i(t)dt~krr

j
i(t)½moutput,i(t)dtzsoutput,i(t)dBi(t)�: ð5Þ

activity of all 48 cells in the network through the first simulated milk-ejection burst. Note the approximately synchronous activation of all model cells
during a burst. (E) Adding excitatory input to the network will paradoxically destroy the bursting activity. (F) Increasing inhibitory input can sometime
induce bursting.
doi:10.1371/journal.pone.0038402.g001
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Where moutput,i is the spiking rate and soutput,i is the variance of the

correlated Brownian motions Bi(t),i~1,:::,N.

Because of the assumption that the network is homogeneously

arranged and the observation that the neuronal population is

activated synchronously, we can make a useful approximation by

employing the mean field method. Explicitly, let TOT ,r, and moutput

denote the corresponding dynamical variables averaged over the

entire population, and suppose that the number of entities in the

summation in (2) is n(n~4N=nb). As a first approximation, we can

ignore the random effect and then omit all the subscripts in

TOT , i, r
j
i , moutput, i in (2), (3) and (5). A two-dimensional determi-

nant dynamical system that describes the behavior of the averaged

neuronal activity is as follows:

8><
>:

dr

dt
~ {

1

tr

zkrmoutput(t)

� �
rzkp,

dTOT

dt
~ {

TOT

tOT

zkOT krnmoutput(t)r:

ð6Þ

We make a further simplification by removing the limit on the

maximal value of the reduction of the spike threshold, which is set

to be 25 mV in [23].

2 Firing Rate Map Approximation
In the system (6), moutput(t) is an unknown term varying with

time, which makes (6) a non-autonomous system. To overcome

this difficulty, we present a method to evaluate the mean firing rate

moutput(t) of the network activity so that the system (6) becomes a

mathematically tractable autonomous system. Intuitively, the

firing rate moutput(t) varies in response to the fluctuation of the

spike threshold T(t) and the frequency of the afferent input lE . If

we write moutput(t) as a function of T and lE :

moutput~moutput(T ,lE), ð7Þ

a firing rate map, and substitute (7) in (6), we obtain the following

two-dimensional system with two parameters lE ,n:

8><
>:

dr

dt
~ {

1

tr

zkrmoutput(T0{TOT ,lE)

� �
rzkp,

dTOT

dt
~ {

TOT

tOT

zkOT krnmoutput(T0{TOT ,lE)r:

ð8Þ

To find the analytical expression of the firing rate map, we adopt a

numerical approach by simulating the leaky integrate-fire model.

Simulations of equation (1) for a single cell are conducted by fixing

T on each trial. Fig. 3A shows the relationship between moutput and

T corresponding to varied excitatory inputs.

Note that there are three discontinuities in the output rate for

varied threshold shown in Fig. 3A, resulting from the altered

mechanism of triggering a spike. The reason can be found in the

parameter setting of the integrate-and–fire model:

aE(vE{vrest)~aI (vrest{vI )~4mV (see (1) and Table 1), which

coincides with the gap between two consecutive discontinuities. To

illustrate this, consider the discontinuity at T~{58mV. Suppose

the neuron is initially in a resting state (v~vrest~{62mV) and the

threshold T is fixed below {58mV. A single excitatory input to a

neuron will result in a membrane potential increment of 4 mV,

triggering a spike. In such a case, the neuron partially loses the

dynamical behavior modeled by (1), which indicates distinct

mechanism from the case that the threshold is fixed above

{58mV. Similar explanations can be given for the other two

discontinuities.

It seems straightforward to use the discontinuous firing rate map

in the mean field model (8), but when we simulate the trajectories

of (8) (see the results section), we face the challenge that the

simulation is either computationally expensive if the output rate is

derived from each desired T and lE in Figure 3A, or far from

accurate, especially when the parameter is near the bifurcation

point if the T-axis is partitioned and the output rate is derived

from a neighboring point of the desired threshold. Furthermore, a

discontinuous vector field is intractable in the bifurcation analysis

(see the results section). Therefore, we need a continuous surrogate

for the discontinuous version of the firing rate map.

Given the shape of the firing rate map in Fig. 3A, we use a

sigmoid-like function to fit it:

moutput(T ,lE)~
1000

1z exp
T{a(lE)

b(lE)

� �zc(lE):

Here a(lE) is the center of the curve, and b(lE) is a tunable

factor that controls the sharpness, c(lE) is the term to describe the

spike activity when the spike threshold is at the initial level

T0~{50Hz. By numerical experiments, we find a(lE)~

{66z0:02lE , b(lE)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:02(lEz20)

p
and c(lE)~35

lE

200

� �5
2

.

Fig. 3B shows the plot of the constructed function moutput(T ,lE).

To summarize all procedures above, we include a flow chart

(Fig. 4). In the first step, we simplify a network model with a single

neuron of 10 variables by discarding the negative feedbacks in the

spike threshold and the doublet effects on the impulsive release of

Table 1. The Model Parameters Used For Simulations.

Name Description Value Units

N Number of cells 48

nb Number of bundles 12

t Membrane time constant 10.8 ms

vrest Resting potential 262 mV

aE (vE{vrest) EPSP amplitude 4 mV

aI (vrest{vI ) IPSP amplitude 4 mV

vE EPSP reversal potential 0 mV

vI IPSP reversal potential 280 mV

lI Inhibitory input rate 80 Hz

tOT Time decay of oxytocin-induced
depolarization

1 s

kOT Depolarization for unitary oxytocin
release

0.5 mV

D Time delay for oxytocin release 5 ms

kp Priming rate 0.5 {1s

tr Time constant for priming 400 s

kr Fraction of dendritic stores released
per spike (max)

0.045

trel Maximum inter-spike interval for
release

50 ms

doi:10.1371/journal.pone.0038402.t001
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oxytocin, and obtain a simplified network model with four

variables for each neuron. After evaluating the firing rate map,

we derive the reduced deterministic autonomous system (8) (the

mean field model) in the second step, which enables us to perform the

bifurcation analysis. A similar approach could be employed

generally to deal with other complex and stochastic neuronal

networks.

Results

1 Bifurcation Analysis
The value of the spike threshold T is closely related to the

appearance of bursting behavior. In particular, a lower value of

Tcan trigger a burst. Therefore, a systematic exploration of the

dynamical properties of the system (8) enables us to understand the

mechanism of the entire network activities.

Allowing lE (resp. n) to vary while keeping n (resp. lE ) fixed, the

system (8) displays two types of bifurcations: the saddle-node

bifurcation of limit cycles and the subcritical Hopf bifurcation. To

exemplify this conclusion of the bifurcations in Eq. (8), we first

investigate the system’s dynamical behavior by fixing n~n0~22
and varying lE .

When lE is small, the unique fixed point equilibrium in the r-

TOT plane is asymptotically stable. Thus, from the asymptotical

convergence of the trajectory if ½r(t),TOT (t)� (Fig. 5A) we conclude

that there is no bursting activity.

When lE increasingly exceeds a critical value

lc
E&60:1386343160437030, the saddle-node bifurcation of limit

cycles occurs. To demonstrate the existence of this bifurcation and

verify the stability of the bifurcated limit cycle, we construct the

Poincaré map of (8)|lE
. Denote the equilibrium point by

x0(lE)~½r0(lE),TOT ,0(lE)� and set

LlE
~f½r0(lE),TOT � D TOTƒTOT ,0(lE), TOT[Rg,

so that LlE
is a half line transversal to the vector field in the

neighborhood of the equilibrium x0(lE). Here we introduce a new

coordinate system along LlE
, where x0(lE) is an origin and nlE

is

a unit vector parallel to LlE
. Hence, a becomes the coordinate of a

point x on LlE
if x~anlE

zx0(lE) for some a§0. Now, suppose

that wlE
(t,x) represents the solution of (8)|lE

with the initial point

x. Mathematically, it can be validated that there exists a number
�tt~�tt(x)w0 such that wlE

(�tt(x),x)[LlE
and wlE

(t,x) 6 [LlE

fort[(0,�tt(x)). In other words, wlE
(�tt(x),x) is the point at which

the trajectory intersects with LlE
for the first time after it

departures from the initial point x. Thus, the coordinate �aa of

wlE
(�tt(x),x) can be uniquely determined through

wlE
(�tt(x),x)~�aanlE

zx0(lE), and consequently the Poincaré

map, denoted by P : Rz?Rz, is established by P(a)~�aa for

aw0. Fig. 6B shows the curves of the constructed Poincaré map

Pfor different values of lE , where, clearly, each intersection

between the curves and the black line P1(a)~a is a fixed point of

P. When lE is smaller, P has no fixed point for a[Rz. When

lE~lc
E , it has a unique fixed point. Since the quantity 1{DP’(a)D

at the two sides of the fixed point has different signs, this fixed

point is attracting on the right side and repelling on the left.

WhenlE becomes slightly larger than lc
E , two fixed points branch

off: one is stable and the other is unstable. These stabilities can be

derived from the sign of the above quantity at different fixed

points. For example, when lE~61Hz, the quantities at the two

fixed points are 0:94 and {4:06 respectively. Because the fixed

points of P correspond to limit cycles, the system (8)DlE~lc
E

has a

semi-stable limit cycle and the system (8)DlE§lc
E

has two bifurcated

limit cycles: the one with a larger amplitude is stable and the other

in the interior is unstable. In the simulation, the two bifurcated

limit cycles can be numerically observed (Fig. 5B).

As shown in Fig. 5C–D, the interior limit cycle gradually shrinks

to the equilibrium as lE increasingly departs from lc
E to

lh1

E &64:9Hz. When lE passes through lh1

E , a subcritical Hopf

bifurcation occurs. The stable limit cycle is preserved, but the

Figure 2. Transition between spiking and bursting in the ONN with lE~80Hz (left column) and in the SNN with lE~50 Hz (right
column). Both networks are composed of 48 neurons and 12 bundles. (A,B) Ratemeter records of 5 representative cells with time span of 600 s.
(C,D) Records of the oxytocin store level of cell 1. (E,F) Voltage trace(blue) and spiking threshold(red) of cell 1. Note that bursting events are essentially
attributed to the drop of the spiking threshold and store level.
doi:10.1371/journal.pone.0038402.g002

Figure 3. The firing rate map and its approximation. (A) The firing rate map derived from the leaky integrate-fire model (1) by simulating the
differential equation (1) with fixed T and lE on each trial. (B) The approximation of the firing rate map.
doi:10.1371/journal.pone.0038402.g003
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Figure 4. Flow chart illustrating the model simplification. First, we simplify a network model with a single neuron of 10 variables by discarding
the negative feedbacks in the spike threshold and the doublet effects on the impulsive release of oxytocin, and obtain a simplified network model
with 4 variables for each neuron. After evaluating the firing rate map, we derive the mean field model, which enables us to perform the bifurcation
analysis.
doi:10.1371/journal.pone.0038402.g004
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shrinking interior limit cycle coincides with the equilibrium, and

this makes the equilibrium unstable (Fig. 5E). The stabilities of the

equilibrium and the limit cycle attributed to the Hopf bifurcation

can be validated by calculating the first Lyapunov coefficient

(FLC). The FLC for the bifurcation point lh1

E is 0:4721w0, which

validates the existence of the subcritical Hopf bifurcation.

Interestingly, aside from the above two bifurcations, the other

two bifurcations appear almost symmetrically and consecutively.

When lE passes through lh2

E &90:9Hz, the other subcritical Hopf

bifurcation of the system (8) emerges with a positive FLC, (0.6262),

which changes the stability of the originally-unstable equilibrium

and brings an unstable limit cycle (Fig. 5F–G). Moreover, the

amplitude of the bifurcated unstable limit cycle grows until lE

increasingly approaches ln
E&99:6Hz, where the other saddle-

node bifurcation occurs. This bifurcation leads to the coalescence

and annihilation of the two limit cycles (Fig. 5H–I). The above-

expatiated bifurcation procedure of the system (8) is illustrated in

Fig. 7A.

As mentioned above, a burst is triggered if the spike threshold T
is sufficiently low, and, because of the bifurcated stable limit cycle,

there exists a stable periodic obit fluctuating between the two

critical excitation levels. This indicates that bursts can occur

continuously with an inter-burst interval that is equal to the period

of the stable periodic orbit. Fig. 7B dynamically shows the spiking

threshold and store level of the system (8) as the parameters are

taken as l~90:9Hz and n~n0. Since tr is always set much larger

than tOT , the sharp peaks in Fig. 7B (left) and the sharp valleys in

Fig. 7B (right) reflect the characteristics of the slow-fast dynamical

system.

For lEw99:6, the system (8) has no limit cycle but only one

stable fixed point. In such a case, the dynamical behavior is

analogous to that of the system with a small lE . Therefore, bursts

disappear as excitation is beyond the critical level. From the

perspective of the ONN, oxytocin is released so frequently that the

stores are not replenished fast enough to reach the critical level

required to trigger a burst. Under such conditions, bursts are rarer

and less predictable, until eventually over-excitation disrupts the

reflex secretion of oxytocin [23].

In Fig. 7C, the phase trajectories of the store level and TOT are

plotted to show the bifurcation transition regulated by the input

rate lE . Here, we fix nat 22. As shown in the inner plot of Fig. 7C,

we start with stable attractor (the green star) with lE~57Hz. By

increasing lE to 62 Hz, a value located in the bifurcation region as

shown in Fig. 7A, the phase trajectory goes to a limit cycle (the

purple curve). The bifurcation of bursting is generated. Further

increasing lE so that the rate enters the high-rate stable attractor

Figure 5. Phase portraits of the system (8) with n~n0~22 and varied lE : (A) lE~20 Hz; (B) lE~60:13865 Hz; (C) lE~60:2 Hz; (D) lE~63
Hz; (E) lE~64:9 Hz; (F) lE~90:9 Hz; (G) lE~92:5 Hz; (H) lE~99:6 Hz; (I) lE~99:7 Hz. The r-nullcline and TOT -nullcline are colored in blue and
green respectively. The red circles represent the unstable limit cycles, and the black curves stand for the orbits with the initial point (0,0).
doi:10.1371/journal.pone.0038402.g005
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region as shown in Fig. 7A, the system becomes stable again (the

red curve and star), as the bursting activity is destroyed by

overwhelming excitatory inputs. Decreasing lE to the bifurcation

region (or, equivalently, increasing the inhibitory input rate) the

system goes to a limit cycle (the blue curve) so that the bursting is

induced. This transition coincides with the phenomena shown in

Fig. 1F, that injections of inhibitory substances can paradoxically

trigger bursts.

2 Comparing the Mean Field Model with the SNN
Based on the bifurcation analysis, we return to the network

bursting dynamics and compare the SNN and the mean field

model (Fig. 6B). In the SNN, a burst is recorded if the firing rate

exceeds 30 Hz. For a network of 48 neurons and 12 dendrites,

bursting emerges when the excitatory input frequency is between

15 Hz and 70 Hz. In the mean field model, we can replicate the

network bursting dynamics from the traces of voltage and store

level. For a givenn and lE , we say that there is network bursting if

a stable limit cycle exists in the reduced system, and the inter-burst

interval is the period of the limit cycle. Therefore, the burst

frequency in the mean field model (Fig. 7D) is the reciprocal of the

period of the limit cycle. For the SNN with 48 neurons and 12

dendrites, the value of n in the corresponding mean field model

should be n~4N=nb~16. To compare with the SNN, we pick

n~22 in the mean field model for reasons stated below. Fig. 7D

shows that the replicated ‘network’ possesses similar bursting

dynamics to the SNN.

Discussion

In the current paper, we present a general approach to tackle a

complex neuronal network dynamics which exhibits oscillations at

multiple time scales. Under the homogenous topological assump-

tion of the network, the neurons display spiking activities induced

by afferent inputs at the neuronal level, while the global network

demonstrates synchronous oscillation at the network level. The

ONN showed paradoxical network behaviors that the bursting

events occur continually when the excitatory input rate is in a

certain range, but disappear when the excitatory input rate is

sufficiently large.

We developed a simplified version (SNN) of this model which

preserves these basic behaviors. Then, we used the mean field

approach and reduced the SNN to a mean field model, in which

the bursting activity corresponds to a limit cycle. The critical step

is the firing rate map approximation. We obtained the map via

numerically simulating the leaky integrate-fire model with fixed

threshold in each trial. A sigmoid-like function is then constructed

to approximate the firing rate map.

1 Generality of the Approach
The main purpose of a mathematical model is to reveal the

mechanism of a complex biological system, while retaining its

main features. It is certainly unsatisfactory if we can only replace

one complex (biological) system with another equally complex

(mathematical) system. The ultimate aim of a mathematical model

is to capture the essence of the system so that we can understand,

interfere and control the system.

Our approach allows us to simplify a network model with a

single neuron of 10 variables to a simple two-dimensional model:

the mean field model. The generality of the approach is based on

the facts that: 1. The original network has a routine configuration

incorporating leaky integrate-and-fire model cells, spiking series

represented by random processes, and a topological structure

composed of coupled neural units, which is intensively used in

many other biological modeling. 2. Using the oxytocin network as

a vivid example, the framework of the procedure is common in the

sense that the techniques, such as cutting off minor variables,

approximating discrete spiking series, and employing bifurcation

theory, are ubiquitous and often inevitably used in other network

analyses. 3. It can be easily applied to other similar neuronal

networks. The oxytocin model has attracted considerable interest,

and other groups have tried to investigate it analytically as well

[26]. Their approach is interesting, but does not address the actual

mechanisms of the model. Another closely-related model is

presented in [38] and its dynamical behavior should be very

Figure 6. (A) Establishment of a coordinate system on the half line LlE
with the origin x0(lE). Here, x0(lE) is the equilibrium point and LlE

is
transversal to the vector field in the neighborhood of x0(lE). Note that both x0(lE) and LlE

depend continuously on lE ; (B) Curves of the Poincaré
map P. Each intersection between the curves and the black line P1(a)~a corresponds to a fixed point of P as well as to a limit cycle of the system (8).
For lE~59Hz, the curve has no intersection with the black line, so that there is no limit cycle. At higher values of lE , the curve moves upward; it first
intersects with the black line at lE~lc

E , where a single semi-stable limit cycle emerges. As lE increases to 61Hz, two bifurcated limit cycles appears.
Here, one cycle is stable characterized by the quantity 1{DP’(a)D~0:94w0 at one fixed point, and the other cycle is unstable with the quantity
{4:06v0 at the other fixed point.
doi:10.1371/journal.pone.0038402.g006
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similar to ours, as pointed out in our early paper [23], although we

have not seen published work on it [39].

2 Parameter Choices
The mean field model is a two-dimensional dynamical system

with two parameters, lE and n, where lE is the excitatory input

frequency and n denotes the connection strength. For a fixed

n§22, the dynamical system (8) displays two types of bifurcations

as lE varies: a saddle-node bifurcation of limit cycle and a

subcritical Hopf bifurcation. The former bifurcation accounts for

the generation and ending of the bursting events and the identical

inter-burst intervals, which is more significant in the network

behaviors.

In the preceding investigations, bifurcations are studied with n

fixed at 22. Actually, n is determined by the scale and the

connection of the network. Numerical investigations of the system

(8) show that, if n is small, there is no bifurcation for any possible

values of lE . Indeed, for n,no = 22, the system (8) has no limit

cycles, but a unique stable equilibrium, i.e. no bursting activity

appears in such a case. For a given n$n0 and with the variation of

lE , a pair of conjugate eigenvalues of the linearized system

transversally cross the imaginary axis twice, so that the limit cycle

generated by the Hopf bifurcation emerges. This makes it possible

to generate stable limit cycles coexistent with unstable limit cycles,

and explains why we picked n~22 for the mean field model in the

comparison with the SNN with n~16 (Fig. 7D).

The bifurcations with respect to the input rate and network size

can be summarized as the emergence of a codimension two

bifurcation, namely the Bautin bifurcation [40], by regarding the

mean field model as a member in the two-parameter family of

autonomous ordinary differential equations. This bifurcation is

beyond the scope of this paper.

We should point out that the phenomena based on the

bifurcations of network size described above for the mean field

model are not consistent with the ONN or SNN. As for the SNN

as well as the ONN, even with a small network population or weak

connection (i.e., each neuron is connected with few other neurons),

bursting events still exist. Actually the mean field model might be

more reasonable and closer to the underlying mechanisms of the

real neuronal system in the sense that bursts could hardly be

triggered for a single or few neurons. The discrepancy between the

mean field model and the ONN tells us the shortcomings of the

ONN model, despite successfully fitting of the model with

experimental data.

Figure 7. The bifurcation behaviors in the mean field model. (A) Bifurcation diagram with n~n0~22 and with the variation of lE . Here, the
asymptotical dynamics of the TOT -component are taken into account. The black line and the dash line represent the stable and the unstable fixed
points, respectively. For each lE , the blue and the red dots represent the eventually upper-and-lower boundaries of the stable and the unstable limit
cycles in the TOT -component. (B) The trajectories of the system (8) when l~90:9 Hz and n~n0 (see also the phase orbit in Fig. 5F). The sharp peaks
in the left plot and the sharp valleys in the right plot reflect the characteristics of the slow-fast dynamical system. (C) The bifurcation transition
regulated by the input rate lE with n~n0 . The inner plot indicates the dynamics of the input rate with respect to time. We set lE(t)~57Hz for
t[½0,500�(in seconds), lE(t)~62 Hz for t[½500,1100�, lE(t)~200 Hz for t[½1100,1600� and lE(t)~90 Hz for t[½1600,2100�. (D) Network bursting
dynamics in: (blue line) the SNN composed of 48 neurons and 12 dendrites. (red line) the ‘network’ replicated from the traces of voltage and store
level in the mean field model with n~22. Note that bursting events are recorded if the firing rate is .30 Hz in the SNN, while the burst frequency in
the mean field model is the reciprocal of the period of the stable limit cycle.
doi:10.1371/journal.pone.0038402.g007
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