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Abstract

Background: Understanding the dynamic mechanism behind the transcriptional organization of genes in response to
varying environmental conditions requires time-dependent data. The dynamic transcriptional response obtained by real-
time RT-qPCR experiments could only be correctly interpreted if suitable reference genes are used in the analysis. The lack
of available studies on the identification of candidate reference genes in dynamic gene expression studies necessitates the
identification and the verification of a suitable gene set for the analysis of transient gene expression response.

Principal Findings: In this study, a candidate reference gene set for RT-qPCR analysis of dynamic transcriptional changes in
Saccharomyces cerevisiae was determined using 31 different publicly available time series transcriptome datasets. Ten of the
twelve candidates (TPI1, FBA1, CCW12, CDC19, ADH1, PGK1, GCN4, PDC1, RPS26A and ARF1) we identified were not previously
reported as potential reference genes. Our method also identified the commonly used reference genes ACT1 and TDH3. The
most stable reference genes from this pool were determined as TPI1, FBA1, CDC19 and ACT1 in response to a perturbation in
the amount of available glucose and as FBA1, TDH3, CCW12 and ACT1 in response to a perturbation in the amount of
available ammonium. The use of these newly proposed gene sets outperformed the use of common reference genes in the
determination of dynamic transcriptional response of the target genes, HAP4 and MEP2, in response to relaxation from
glucose and ammonium limitations, respectively.

Conclusions: A candidate reference gene set to be used in dynamic real-time RT-qPCR expression profiling in yeast was
proposed for the first time in the present study. Suitable pools of stable reference genes to be used under different
experimental conditions could be selected from this candidate set in order to successfully determine the expression profiles
for the genes of interest.

Citation: Cankorur-Cetinkaya A, Dereli E, Eraslan S, Karabekmez E, Dikicioglu D, et al. (2012) A Novel Strategy for Selection and Validation of Reference Genes in
Dynamic Multidimensional Experimental Design in Yeast. PLoS ONE 7(6): e38351. doi:10.1371/journal.pone.0038351
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Introduction

Single time point experiments provide a static measurement of

gene expression although transcription is a temporal process. Time

series gene expression experiments are useful in elucidating the

dynamic mechanism behind a biological process. The high-

throughput data obtained from microarray technology enables the

identification of differentially expressed genes. Real-time RT-

qPCR is the favoured method for conducting a detailed study on a

gene set of interest, which is determined from high-throughput

studies. It is a widely preferred method for quantitative gene

expression analysis due to its high sensitivity, specificity and wider

dynamic range. However, data normalization for the elimination

of sample-to sample differences is the main obstacle of this method

even in non-transient studies [1,2,3,4]. The multidimensional and

temporal nature of time series data renders its analysis more

complicated thus drawing attention to the importance of

normalization.

Normalization with internal control genes, generally referred to

as the housekeeping or reference genes, is a commonly used

method among various normalization techniques for the determi-

nation of gene expression using real-time RT-qPCR. A suitable

reference gene should be constitutively expressed in the tissues or

cells under investigation regardless of the experimental perturba-

tion. A single reference gene was frequently used in many studies

in order to normalize mRNA fraction without any validation of

stability. However growing evidence indicates the absence of a

single universal reference gene, which may be independent of all

kind of experimental conditions. Since the normalization of real-

time RT-qPCR data using a non-validated single reference gene

may engender misleading conclusions, in recent years, the

calculation of a normalization factor based on the geometric

average of validated multiple reference genes was suggested to

discard possible outliers and differences in the abundance of

different genes [5].
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The general approach in normalization using multiple genes is

the selection of reference genes among candidate genes, which

have been commonly used for normalization. However a group of

genes selected among the commonly used reference genes may not

be a suitable reference gene set for each experimental condition.

ACT1, which is a commonly used reference gene for Saccharomyces

cerevisiae, was validated to be a suitable reference gene to normalize

the expression of genes involved in central carbon metabolism in

response to a short-term glucose pulse [6]. On the other hand, the

use of ACT1 and other commonly used reference genes (PDA1,

TDH3, RDN18) was invalidated as internal control for quantitative

analysis of gene expression in the yeast S. cerevisiae during long-

term growth on glucose [4]. This fact clearly indicates the necessity

of the validation of the suitability of reference genes under specific

experimental conditions and steers us towards the determination

of a candidate reference gene set among novel genes instead of

commonly used ones, which is suitable for use under the

conditions of interest.

A reasonably successful approach in the compilation of a

candidate reference gene set is to select genes from a genome-wide

background and to use a large number of microarray datasets for a

specific condition and for specific tissues/organisms [1,2,7]. Since

the determination of a suitable candidate gene set creates a big

concern in dynamic expression profiling studies due to the

multidimensional and dynamic nature of the experiments,

microarray datasets could be used to identify the transcripts,

which display stable expression with respect to time as well as to

different genetic and environmental conditions. However, a

vigilant human-mediated research is required for the selection of

the microarray datasets, which will be used for the identification of

the candidate reference gene set.

Following the compilation of the candidate reference gene set,

the second key point is the determination of the most stable genes

among the candidates under selected conditions. Several software

tools were developed for the verification of the suitability of the

candidate reference genes such as geNorm [5], NormFinder [8]

and Bestkeeper [9]. As designated by the geNorm algorithm, the

expression ratio of two suitable reference genes should be constant

across all samples. Therefore the inclusion of two correlated genes

in the list of candidates may lead to false positive results due to the

similarity in their expression profiles. On the other hand, the

NormFinder algorithm depends on statistical linear mixed-effects

modelling, which accounts for the overall variation in the

expression of the candidate reference genes and also for the

variation between the sample groups. NormFinder was found to

be less sensitive in the case of correlated gene sets. Although the

definition of ‘‘stability’’ differs somehow among these algorithms,

there are many studies reporting similar results in terms of stability

when either one of these software were used [3,10,11].

The aim of the present study was to determine a set of candidate

reference genes to analyze the dynamic transcriptional response of

selected genes to changing environmental conditions by real-time

RT-qPCR in S. cerevisiae. For this purpose, a set of candidate

reference genes, which can be used for the dynamic expression

profiling studies in S. cerevisiae, was determined for the first time

using 31 publicly available and independently generated time-

dependent transcriptome data.

This candidate reference gene set was then verified using two

separate datasets to identify the most stable reference genes under

these two selected environmental conditions and the stability of the

reference sets were confirmed by expression analysis of the specific

perturbation responsive genes. The stable reference gene sets

comprised of both previously reported reference genes and genes

that were identified as reference for the first time in this study.

Moreover these newly identified genes were determined to be

more stable than the common reference candidates, used either

individually or as a multiple gene set, presenting an improvement

in the determination of gene expression profiles.

This study revealed that the selection of reference genes among

the candidate reference gene set, which was identified in this

present study, outperformed the use of reference genes that were

frequently reported in the literature. This novel approach allows

the reduction of multiple parameters that would be frequently

encountered in dynamic gene expression studies down to only one

parameter, time, for the determination of a suitable set of

reference genes. The high flexibility of this method enables the

use of this candidate reference gene set in the determination of

reference genes under any experimental condition as long as the

supplemented data is of dynamic nature.

Results

Identification of a candidate reference gene set
31 different time series datasets from experiments conducted

using S. cerevisiae strains were collected from the publicly available

database of functional genomics experiments; ArrayExpress [12]

(Table S1). The coefficient of variation (CV), which is the ratio of

standard deviation to mean, was used to compare the extent of

variation among the expression levels of genes and therefore to

determine the transcripts, which displayed a stable expression

profile throughout different time points. The ranking of the CV

values was defined as the stability profile in this study. Two

different approaches were used to determine the candidate

reference gene set based on stability profiles.

In the first approach, each of the 31 datasets was analyzed

separately in order to obtain the individual stability profiles. The

top 100 stable genes were identified for each dataset. 4156

transcripts did never rank within the top 100 genes in any of these

datasets and interestingly there was no common unique transcript,

which appeared among the top 100 stable genes in all cases. TPI1

and ACT1 were among the 100 most stable transcripts in 81% of

the cases (Figure S1). The 10 transcripts, TPI1, ACT1, TDH3,

FBA1, CCW12, CDC19, ADH1, PGK1, GCN4 and PDC1, which

ranked within the top 100 in more than 55% of the datasets, were

selected as candidate reference genes. Among these genes ACT1,

which encodes the single essential gene for actin, and TDH3,

which encodes glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), were reported to be commonly used reference genes

in yeast [13]. CCW12, the cell wall mannoprotein with a role in the

maintenance of newly synthesized areas of cell wall; GCN4, the

transcriptional activator of amino acid biosynthetic genes in

response to amino acid starvation, and other genes functioning in

the super pathway of glucose fermentation were identified in this

candidate reference gene set [14].

As a second approach, the stability profiles of the genes were

investigated by combining different datasets in order to identify the

genes, which display less fluctuating expression profiles across

different time points and under different experimental conditions.

The expression values of the genes that are common in all datasets

were used to construct the combined dataset. At this point a

question of whether there were a prerequisite number of

experiments to be included into this analysis arose. In order to

observe the effect of the number of datasets on stability profiles of

the genes, resampling from the data was carried out via

bootstrapping. Random combinations of 31 datasets were

generated. The stability profiles for each of these combinations

were calculated and the similarities between these stability profiles

and the overall stability profile, which was obtained by combining
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all 31 datasets, were assessed using the Pearson correlation

coefficient (PCC). Average of the PCC values were calculated for

the combinations having the same number of datasets. The

average and the minimum of the PCC values of the combinations

that have the same number of datasets were examined as a

function of the number of datasets (Figure S2). The analysis of

these combinations showed that both the average and the

minimum PCC increased with the inclusion of increasing numbers

of datasets. This observation indicated that, each dataset included

in the analysis has a contribution to the stability profile. Therefore

the combination of all available data sets was used in the second

approach.

The stability profile of this combined dataset, which consists of

the expression values of 5423 transcripts across 888 different time

points, revealed the genes displaying fewer fluctuations in their

expression profiles across all these time points. The top 100 genes

displaying the lowest CV value were investigated for the

identification of candidate reference genes. The CV values of

these genes varied between 0.05 and 0.11. A binned frequency

histogram of the available data indicated that a gene pool of 6

genes with the lowest CV values (corresponding to 1% of the total

population) would be a suitable choice of candidate pool (Figure

S3). Bringing the CV threshold above 0.07 resulted in an

observable number of additional genes thus populating the

candidate pool with genes having less stable expression profiles,

which are likely to be discarded in a stability analysis and

rendering the experiments costly. These genes were TDH3,

RPS26A, TPI1, CDC19, ARF1 and ENO1. Due to the high

homology between ENO1 and ENO2 (blastn e-value = 4.7 e-264),

concerns regarding a possible unspecificity in the PCR product led

to the elimination of this gene from the candidate set. Therefore

the top five genes, TDH3, RPS26A, TPI1, CDC19 and ARF1 with

the smallest coefficient of variation values were selected as the

candidate reference genes. Among these genes, TDH3, CDC19 and

TPI1 were also identified as candidate genes using the first

approach. RPS26A encoding a protein component of the small

ribosomal subunit (40S) has similarity to rat S26 ribosomal

protein, which is commonly used as a reference gene in rat tissues

[15]. The wheat ortholog of ARF1, which encodes an ADP-

ribosylation factor, was shown to be one of the most stable

reference genes in that particular plant [3].

The candidate reference genes, which were selected using two

different approaches, were combined and a total of 12 transcripts

were determined as the candidate reference gene set for

normalization of dynamic real-time RT-qPCR data.

Identification and verification of exclusive reference gene
subsets under specific experimental conditions

In order to test the applicability of this candidate reference gene

set on different experimental conditions, this pool of genes were

used to identify the most stable condition specific reference genes.

For this purpose, perturbations involving nutrient availability in

yeast were investigated. Yeast cells grown in glucose-limited (Case

study I) or ammonium-limited (Case study II) continuous cultures

at steady state were supplemented with the respective limiting

nutrient in an impulse-like manner. Dynamic gene expression

profiles of the candidate reference genes were investigated in

response to recovery from limiting conditions. The expression

levels of HAP4 in Case study I and MEP2 in Case study II were

investigated using a reference gene set, which was determined

from the available candidate genes. HAP4 and MEP2 were

selected such that their expression profiles were responsive to

variations in the amount of available glucose and ammonium,

respectively. Primers of 12 candidates were designed and their

amplification efficiencies were determined. All candidates except

for PGK1, whose amplification efficiency could not be improved to

be higher than 85%, were procured for further analysis (Table S2).

Regions from the 11 candidate reference genes as well as the query

genes were PCR amplified and the raw Cq values were

transformed into relative quantities using the delta-Ct method

[3]. All analyses in these case studies were conducted in

compliance with MIQE guidelines for qPCR (Table S3) [16].

The expression stability of these candidates throughout these time

series experiments was tested using two different statistical software

programs; geNorm and NormFinder.

Case Study I: Selection and validation of the most stable
reference genes during glucose perturbation

The presence of any correlated gene pairs among the candidates

was previously reported to engender misleading predictions

regarding the stability order of the candidate reference genes

[5]. In order to identify correlated gene pairs from the candidate

list, Pearson correlation coefficients between expression values of

each pair of the candidates were calculated (Table S4). The

threshold for the correlation among gene pairs was decided as

60.85. A total of three correlated gene pairs were identified. ARF1

was correlated with two other genes; TPI1 and CDC19. The third

correlated gene pair was FBA1 and CCW12. Five different pools of

candidate genes were created in order to investigate the effect of

the inclusion of correlated gene pairs in the reference gene set. P-0

was the pool including all candidate genes. P-1 and P-3 were

created by excluding ARF1 from the candidate list together with

either CCW12 or FBA1, respectively. As an alternative, ARF1 was

kept in the pool and the other two transcripts (TPI1 and CDC19),

which showed high correlation with ARF1, were excluded from the

candidate list in addition to either CCW12 or FBA1 (P-2 and P-4).

One other alternative pool was constructed by excluding all of

these correlated genes from the candidate list (P-5).

In order to identify a suitable set of reference genes, two

algorithms; NormFinder and geNorm were used. Both algorithms

were used to rank the eleven candidates based on the stability of

their expression profiles. Additionally, geNorm algorithm was also

used to determine the stability ranking of genes in the pools, in

which only the genes with a correlation of ,D0:85D among their

expression profiles were left (P1–P5). The genes were scored using

the average value of the stability rankings obtained by NormFin-

der and geNorm for each pool separately. The total score for each

candidate gene was calculated by summing up its individual scores

for each case; P-0 to P-5. The genes were then ranked based on

their total scores from the minimum score to the maximum score

indicating an order from the most stable to the least stable gene.

The minimum number of reference genes to be used was selected

as 4 in order to make sure that at least one stable gene could be

selected even after the removal of correlated gene pairs in P-4 and

P-5 (Figure S4). This ranking indicated that the lowest total scores

were obtained for TPI1, FBA1, CDC19 and ACT1.

The scores for P-1 and P-2 were the lowest for these four

reference genes indicating that these pools provided the optimal

configuration. Since two of the most stable genes; TPI1 and

CDC19, were removed in P-2 in order to discard the correlations

among gene pairs, the scoring for these genes was based solely on

the stability ranking obtained from NormFinder. The reference

gene selection was carried out based on the stability scoring that

was provided for P-1 since both geNorm and NormFinder stability

rankings were available for all of these four genes. (Figure 1, Figure

S4, Figure S5). TPI1, FBA1, CDC19 and ACT1 were also

determined as the four most stable genes among all candidates
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when the NormFinder algorithm was used to perform the stability

analysis.

Exclusion of the correlated gene pairs resulted in differences in

the stability orders of the candidate genes when geNorm was used.

The comparison of the stability rankings of P-0 and P-1 by

geNorm with the rankings obtained by NormFinder indicated that

elimination of correlations by the removal of ARF1 and CCW12

resulted in obtaining similar results using both algorithms. TPI1

and ACT1 could not be identified as stable unless correlations that

were present among the expression profiles of the genes in the pool

were removed. These results indicated that, correlated gene pairs

should be excluded from the candidate list when using geNorm in

order to avoid misleading results during the determination of the

stable reference genes. Exclusion of the correlated gene pairs

facilitates the attainment of comparable results by both algorithms.

These two algorithms thus could be used to cross-check conjoint

results while selecting the most suitable reference genes.

geNorm suggested using a varying number of reference genes

between 3 and 6 for different pools (with a pairwise variation

threshold of 0.15 as suggested by the software developers) for

determining the expression profile of HAP4 (Figure S6). A set of at

most six reference genes; TPI1, FBA1, CDC19, ACT1, ARF1 and

GCN4 were determined to constitute a suitable pool for the analysis

of gene expression in response to an impulse-like glucose

perturbation. The change in the expression level of HAP4 with a

known transcriptional response to the amount of glucose in the

medium was investigated in order to test the performance of this

reference gene pool. HAP4, whose gene product is a transcrip-

tional activator and global regulator of respiratory gene expres-

sion, was known to be repressed by glucose in order to prevent the

activation of respiration [17]. Therefore it could be expected that

HAP4 would show a decreasing expression profile in response to a

sudden increase in the amount of available glucose in the medium.

In order to evaluate the importance of determining a suitable

reference gene set, which would be used in the normalization of

the expression profile of the gene of interest, three different sets of

reference genes were used to calculate the relative expression

profile of HAP4. Initially TDH3; one of the commonly used

reference genes was used as the sole gene for normalization. Then,

the geometric average of the Ct values for ARF1-CDC19; the gene

pair, which wasidentified as the most stable pair in the analysis

conducted by geNorm using P-0 was used as the reference gene set

for the normalization of HAP4 expression. In the third case, TPI1,

FBA1, CDC19 and ACT1; the reference genes identified as the

most stable genes both by NormFinder and by geNorm using P-1

were employed in the analysis. Similarly the geometric average of

the Ct values of these four genes was used for determining the

expression profile of HAP4. HAP4 displayed a fluctuating

expression profile in response to glucose perturbation when the

data was normalized using TDH3; a commonly used reference

gene. Although normalization using ARF1 and CDC19 captured

the general trend for HAP4 expression, the sudden increase within

the first minute upon addition of glucose was an unacceptable

outcome of this selection of reference genes. In contrast, the

relative expression of HAP4 decreased immediately after the

impulse and remained repressed during the time course of the

experiment as expected when the four most stable reference genes

(TPI1, FBA1, CDC19and ACT1) were used for normalization

(Figure 2-a). These results clearly demonstrated that using a

commonly preferred reference gene without verification would

yield to misleading expression profiles. Moreover the selection of a

correlated gene pair would not improve the outcome even though

they were identified to be stable by commonly used reference

selection software.

The TPI1-FBA1-CDC19-ACT1 reference gene set was further

analyzed in order to investigate the effect of having additional

genes in the set or the effect of excluding one or more of the

members of the set. Since the pairwise variations among the

candidate reference genes that were obtained from the geNorm

algorithm indicated that a set of six reference genes would be

suitable, the contribution of the next fifth and the sixth most stable

reference genes in determining the expression profile of HAP4

were investigated. The results indicated that the inclusion of ARF1

or ARF1 and GCN4 in the reference gene set did not yield any

improvements in the determination of the expression profile of

HAP4. Moreover, the expression trend of HAP4 was observed to

change slightly unfavourably upon addition of ARF1 in the

reference gene set. Further inclusion of GCN4 in the reference set

yielded a similar undesirable outcome (Figure 2-b). Therefore a

Figure 1. Scoring of the candidate genes in Case Study I. The cells representing the scores of the genes in different pools were colour coded.
A coding scale from red to green indicated decreasing stability. The score of the genes in each pool was indicated by the number assigned to that cell
in a quantitative manner; the smallest score indicating the most stable gene and the largest score indicating the least stable one. The stability of the
gene associated with that score was also indicated by the colour assigned to that cell in a qualitative manner. The scoring of the six different pools of
candidate genes was determined as the average ranking for each gene as indicated by the NormFinder and the geNorm analyses and the results
were provided in the first six columns. The analysis was carried out using all genes (P-0), and using the 5 pools, each excluding a different set of
correlated genes (P-1 to P-5). The total score for each gene was provided in the last column by summing up all of its scores through P-0 to P-5.
doi:10.1371/journal.pone.0038351.g001
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pool consisting of at most four reference genes was determined to

be sufficient.

The change in the gene expression profile within the first

minute upon inclusion of ARF1 in the reference gene set was

similar to the response that was observed when the ARF1-CDC19

gene pair was used as reference. The common denominator in the

ARF1-CDC19 reference gene set and the TPI1-FBA1-CDC19-ACT1

reference gene set was CDC19, which might indicate that the

general trend in HAP4 expression profile was observed owing to

the presence of this gene. The unexpected increase in the gene

expression at the 20th second post impulse was observed due to the

inclusion of ARF1 in the reference gene set (Figure 2-a, 2-b).

The observation that the inclusion of the more genes in the

reference set did not provide any improvement led to the thinking

that the reference gene set would be further reduced in size. For

this purpose, the number of reference genes included in the set was

reduced by one each time starting from the least stable gene in the

set. The exclusion of ACT1 from the reference gene set resulted in

an unexpected increase at the 20th second post impulse. A further

exclusion of CDC19 from the set caused an even steeper increase in

HAP4 expression at the 20th second post impulse in addition to

Figure 2. Expression profile of HAP4 in response to the relaxation from glucose limitation. This figure represents the expression profile for
HAP4 using different combinations of reference genes, which were selected from the candidate pool. The expression profiles were calculated using
TDH3; a commonly selected reference gene, using ARF1 and CDC19; the two most stable genes identified from P-0 by geNorm, and using TPI1, FBA1,
CDC19 and ACT1; the final set of most stable genes (A). The contribution of increasing the number of genes in the final reference set to the expression
profile of HAP4 was investigated by adding ARF1 and GCN4 to the reference gene set in the given order (B). The effect of reducing number of genes in
the final reference gene set on the expression profile of HAP4 was investigated. The number of reference genes included in the set was reduced by
one each time starting from the least stable gene in the set (C). For each individual profile, the reference genes, which were used in the determination
of HAP4 expression, were indicated by different colours in the legend.
doi:10.1371/journal.pone.0038351.g002
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unexpected increases in gene expression in the 60th second and

another slight increase at the 24th minute. Utilization of TPI1 as

the sole reference gene for the normalization of HAP4 expression

yielded a similar expression profile for this gene to that of using the

geometric average of the Ct values for TPI1, FBA1 and CDC19

(Figure 2-c). The increase in the expression of HAP4 at the 20th

second could only be prevented via the inclusion of ACT1 in the

reference gene set raised a question of whether this gene could be

used as a single reference gene in determining the expression

profiles under the stated conditions. Moreover, ACT1 was

frequently reported as a reference gene in yeast gene expression

studies via real-time RT-qPCR [6]. However, the use of ACT1 as

the sole reference gene did not yield a decreasing expression

profile for HAP4. The similarity between the expression profiles

when TPI1 was used alone or in conjunction with FBA1 and

CDC19 aroused curiosity regarding whether using the geometric

average of the Ct values for FBA1 and CDC19 alone would result

in an adequate expression profile for HAP4. However this

reference gene pair caused a steep increase in HAP4 expression

at the 20th second post impulse (Figure S7). These results indicated

that the reference gene set comprised of TPI1, FBA1, CDC19,

ACT1 was suitable for determining gene expression in response to

an impulse-like perturbation in glucose levels.

Case Study II: Selection and validation of the most stable
reference genes during ammonium perturbation

In order to identify correlated gene pairs from the candidate list,

Pearson correlation coefficients between expression values of each

pair of the candidates were calculated. Analysis of the PCCs

between the gene pairs among the candidate gene set revealed the

presence of one gene pair with a PCC greater than 0.85 in

response to relaxation of ammonium limitation (Table S5). TDH3

was correlated with PDC1. Three different pools of candidate

genes were formed in order to investigate the effect of the inclusion

of correlated gene pairs in the reference gene set. P-0 was the pool

including all candidate genes. P-1 and P-2 were created by

excluding TDH3 and PDC1 from the candidate list, respectively.

One other alternative pool was constructed by excluding both of

these correlated genes from the candidate list (P-3).

The eleven candidates were ranked based on the stability of

their expression profiles using NormFinder and geNorm as it was

the case for the glucose perturbation. Additionally, geNorm

algorithm was also used to determine the stability ranking of genes

in the pools, in which only the genes with a correlation of ,D0:85D
among their expression profiles, were left (P-1 to P-3). The genes

were scored such that the average stability rankings were obtained

using NormFinder and geNorm for each pool separately. The total

score for each candidate gene was calculated by summing up its

individual scores for each case; P-0 to P-3. The genes were then

ranked based on their total scores from the minimum score to the

maximum score indicating an order from the most stable to the

least stable gene. Although the minimum number of reference

genes to be used could be selected as 3 in order to make sure that

at least one stable gene remained even after the removal of the

correlated gene pair in P-3, the number of reference genes was

selected as 4 for the sake of consistency with Case Study I (Figure

S8). Indeed the analysis conducted by geNorm also demonstrated

that 4 genes should be used as reference under the stated

conditions (Figure S9). This ranking indicated that the lowest total

scores were obtained for FBA1, TDH3, ACT1 and CCW12.

In this case, geNorm did not capture the gene pair with the

highest correlation as the most stable pair. However, although the

most stable gene was identified as FBA1 and the 4 least stable

genes were identified as GCN4, ARF1, PDC1 and RPS26A by both

geNorm and NormFinder, the stability orders for the remaining of

the set were considerably different by either one of the algorithms.

Removal of the correlation among the candidate genes did not

change the stability rankings determined by geNorm such that

both algorithms would yield similar stability profiles. If the three

candidate pools (P-1 to P-3) were analyzed, FBA1 and ACT1 would

fall into the stable gene set as it was the case that was determined

by NormFinder (Figure 3, Figure S8, Figure S10). FBA1, TDH3,

CCW12 and ACT1 were determined as the four most stable genes

among all candidates as indicated by their scores (Figure 3).

A set of four reference genes; FBA1, TDH3, CCW12 and ACT1

were determined to constitute a suitable pool for the analysis of

gene expression in response to an impulse-like ammonium

perturbation. The change in the expression level of MEP2, an

ammonium transporter, was investigated in order to test the

performance of this reference gene pool. MEP2, whose mRNA

accumulation was more abundant in cells grown in limiting

concentrations of ammonia than in high concentrations [18] was

monitored in response to an impulse-like addition of ammonium

into its limited culture. Therefore it could be expected that MEP2

would display a decreasing expression profile in response to a

sudden increase in the amount of available ammonium in the

medium.

In order to evaluate the importance of determining a suitable

reference gene set, which would be used in the normalization of

the expression profile of the gene of interest, three different sets of

reference genes were used to calculate the relative expression

profile of MEP2. Initially ACT1; one of the commonly used

reference genes was used as the sole gene for normalization. Then,

the geometric average of the Ct values for FBA1-ACT1; the gene

pair, which were identified as the most stable pair in the analysis

conducted by geNorm using P-0 was used as the reference gene set

for the normalization of MEP2 expression. In the third case, the

geometric average of the Ct values of FBA1, TDH3, CCW12 and

Figure 3. Scoring of the candidate genes in Case Study II. The
cells representing the scores of the genes in different pools were colour
coded. A coding scale from red to green indicated decreasing stability.
The score of the genes in each pool was indicated by the number
assigned to that cell in a quantitative manner; the smallest score
indicating the most stable gene and the largest score indicating the
least stable one. The stability of the gene associated with that score was
also indicated by the colour assigned to that cell in a qualitative
manner. The scoring of the four different pools of candidate genes was
determined as the average ranking for each gene as indicated by the
NormFinder and the geNorm analyses and the results were provided in
the first six columns. The analysis was carried out using all genes (P-0),
and using the 3 pools, each excluding a different set of correlated genes
(P-1 to P-3). The total score for each gene was provided in the last
column by summing up all of its scores through P-0 to P-3.
doi:10.1371/journal.pone.0038351.g003
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ACT1; the reference genes identified as the most stable genes based

on the scores, which were calculated using both NormFinder and

geNorm results, was used for determining the expression profile of

MEP2. MEP2 displayed a fluctuating expression profile in

response to ammonium perturbation when the data was normal-

ized using ACT1; a commonly used reference gene or using the

most stable gene FBA1 along with ACT1. In contrast, the relative

expression of MEP2 decreased gradually following the impulse and

remained repressed during the time course of the experiment as

expected when the four most stable reference genes (FBA1, TDH3,

CCW12 and ACT1) were used for normalization (Figure 4-a).

These results clearly demonstrated that using a commonly

preferred reference gene without verification would yield to

misleading expression profiles.

The FBA1-TDH3-CCW12-ACT1 reference gene set was further

analyzed in order to investigate the effect of having additional

genes in the set or the effect of excluding one or more of the

members of the set. The contribution of the fifth most stable

reference genes in determining the expression profile of MEP2 was

investigated. The results indicated that the inclusion of CDC19 in

the reference gene set did not yield any improvements in the

determination of the expression profile of MEP2 displaying an

unexpected increase in gene expression at the 8th minute (Figure 4-

b). Therefore a pool consisting of at most four reference genes, as

also suggested by geNorm, was determined to be sufficient.

The observation that the inclusion of the more genes in the

reference set did not provide any improvement led to the thinking

that the reference gene set would be further reduced in size as it

was in Case Study I. For this purpose, the number of reference

genes included in the set was reduced by one each time starting

from the least stable gene in the set. The exclusion of CCW12 or

CCW12 and ACT1 from the reference gene set resulted in an

unexpected increase in gene expression during a period from

approximately the 32nd minute until the 2nd hour post impulse. A

further exclusion of TDH3 from the set, utilizing FBA1 as the sole

reference gene, caused a fluctuating expression profile for MEP2

(Figure 4-c). Two of the most commonly used housekeeping genes

ACT1 and TDH3 were included in the reference gene set. A

further analysis was conducted to investigate whether using the

geometric average of the Ct values for these two genes would yield

a non-fluctuating and decreasing expression profile for MEP2.

However, it was observed that an increase in MEP2 expression

during a period from approximately the 32nd minute until the 2nd

hour post impulse was present indicating that FBA1 and CCW12

were both essential in acquiring a smooth expression profile

(Figure S11).

Determination of the optimum number of reference
genes for normalization

The geNorm algorithm provides the contribution of each

additional stable gene into the reference gene set in terms of the

pairwise variation between the two sequential normalization

factors [5]. The developers suggest using a threshold of 0.15 in

the determination of the optimal number of reference genes

required for normalization. geNorm suggested using a different

number of reference genes varying between 3 and 6 for each pool

in the case of glucose perturbation (Table S6 and Figure S6). This

result necessitated a human-mediated evaluation of the expression

profiles of the gene of interest obtained by different sets of

reference genes. The results presented in this study indicated that

the utilization of a set comprised of four reference genes with

stable and uncorrelated expression profiles would be sufficient for

this case. On the other hand, in the case of ammonium

perturbation, the analysis using geNorm revealed that the optimal

number of reference genes was 4 for each pool (Table S6 and

Figure S9). Further analysis also demonstrated that neither

increasing nor decreasing the number of reference genes improved

the expression profile obtained for MEP2.

Therefore, the number of reference genes suitable for real-time

RT-qPCR data normalization would also vary on a case specific

manner and a human-mediated evaluation of the obtained results

to design real-time RT-qPCR experiments may provide reduc-

tions in the number of experiments, thus reducing the unnecessary

costs.

Stability of the expression profile of the reference gene
sets along a dynamic experimental condition

In order to demonstrate the stability of the reference genes that

were identified in each case study, an external control gene would

be required in the analysis such that the expression of these

reference genes were shown to be constant along a dynamic

experimental condition. 18S rRNA was believed to be a suitable

choice of selection as reference. 18S rRNA was frequently

reported among the candidate reference genes that were used in

real-time RT-qPCR analysis [10,11,19,20,21,22,23,24]. With its

low turnover rate and large abundance, 18S rRNA was reported

as an attractive choice as a reference gene [19].

However, the results of real-time RT-qPCR analysis indicated

that 18S rRNA was the least stable candidate based on the

rankings identified by both NormFinder and geNorm for both

cases investigated in the present study (Figure S12). This outcome

led to the investigation of the raw Ct values as a measure of

stability as reported previously [25]. The Ct values were analysed

for 18S rRNA along with the Ct values for two stable genes; TPI1

and CDC19 for Case Study I and FBA1 and TDH3 for Case Study

II, the least stable gene for each case; ADH1 for Case Study I and

RPS26A for Case Study II, as well as the geometric average of the

Ct values for the reference gene set that was determined to be

suitable for each case that was presented above. The results

indicated that the response by 18S rRNA fluctuated the most

together with the genes identified as the least stable (Figure S13).

Indeed other studies also reported that 18S rRNA was not a

preferable choice as a reference gene due to several factors

including its high abundance introducing human errors during

dilution [19] and its regulation by RNA polymerase I rather than

RNA polymerase II, which regulated the expression of mRNA in

the cell [26]. Because of these concerns the use of 18S rRNA as

reference was not preferred in several studies [20,22,27,28,29]. In

fact this issue of the evaluation of the expression stability of a

candidate was addressed as a circular problem in several studies

[8,30].

In order to overcome this problem the data was normalized

across average of the Ct values of all genes at each time point.

Although this might introduce a bias as a result of the overall trend

captured in the data, it should be noted that at times when the

commonly used reference genes fail to display a stable expression

under various experimental conditions, this strategy would be

undertaken for data specific validation of reference genes [31,32].

The variation in the expression profile of the reference gene sets

was the lowest in each case study in comparison to the variations

in the expression profiles of the genes whose Ct value profiles were

investigated in Figure S13. The expression profile of the gene set

was more stable across time than the expression profiles of its

individual members and the least stable profiles were observed for

the gene that was identified as the least stable in each case as well

as for 18S rRNA [Figure S14].
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Discussion

Understanding the dynamic mechanism behind a biological

process and the identification of the statistically meaningful

changes in the expression levels of selected genes involved in the

various processes require quantification and comparison of

dynamic data. Real-time RT-qPCR is widely used to investigate

the relative expression levels of target genes in detail. However, the

selection of suitable reference genes imposes problems in the

analysis of both transient and non-transient expression profiling

studies. The quantification of the dynamic response by real-time

RT-qPCR requires the identification of the reference genes, which

display constant expression across all time points regardless of the

different genetic or environmental perturbations. Although the

commonly used reference genes previously reported in literature

[4,5,6] constitute a suitable pool for the analysis of non-transient

data, these genes were observed to fall short in fulfilling their roles

as reference genes in the analysis of dynamic gene expression (data

not shown). Therefore, a pool of candidate reference genes needs

to be identified for dynamic studies. The most suitable set of

reference genes would then be determined among the proposed

candidates under the studied experimental conditions.

In this study, high-throughput transient gene expression data

were used to identify a set of candidate reference genes for real-

Figure 4. Expression profile of MEP2 as a response to the relaxation from ammonium limitation. This figure represents the expression
profile for MEP2 using different combinations of reference genes, which were selected from the candidate pool. The expression profiles were
calculated using ACT1; a commonly selected reference gene, using FBA1 and ACT1; the two most stable genes identified from P-0 by geNorm, and
using FBA1, TDH3, ACT1 and CCW12; the final set of most stable genes (A). The contribution of increasing the number of genes in the final reference
set to the expression profile of MEP2 was investigated by adding CDC19 to the reference gene set (B). The effect of reducing number of genes in the
final reference gene set on the expression profile of MEP2 was investigated. The number of reference genes included in the set was reduced by one
each time starting from the least stable gene in the set (C). For each individual profile, the reference genes, which were used in the determination of
MEP2 expression, were indicated by different colours in the legend.
doi:10.1371/journal.pone.0038351.g004
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time RT-qPCR studies. The reference genes were selected from a

large pool of dynamic microarray data sets such that they

displayed stable expression profiles across time regardless of the

type of experimental condition.

The initial stage of this study required the collection of publicly

available time series microarray datasets. It was observed that the

use of key words such as, ‘‘times series’’ or ‘‘time course’’ was

insufficient to extract all the necessary information from the

database. This fact signified the importance of human intervention

in acquiring information from electronic sources. The content of

the datasets needed to be carefully investigated by the researcher

to evaluate whether the set was coherent with the context of the

study or not. Only then a comprehensive set could be attained.

Two different approaches were used in the identification of a set

of candidate reference genes. One approach utilized individual

experimental data sets for the determination of stability rankings

for each set. The frequency of occurrence of each gene among the

most stable 100 genes was determined as a measure of selection

criterion. The most frequently encountered genes across all

experiments were identified as candidates. In the other approach,

however, all available data were merged into a single complete

dataset and the overall stability profile based on CV values was

used as the second selection criterion. Three genes were identified

by both approaches; TDH3, TPI1 and CDC19. All three genes

were determined as reference in at least either one of the two case

studies.

The advantage of this present strategy for the identification of a

pool of candidate reference gene sets is the flexibility of the

method. It enables the implementation of other approaches in a

modular manner. By this means, the candidate gene pool may be

extended to meet other specific needs that might be required.

The approach, in which a combination of datasets were used to

identify reference gene candidates through the calculation of CV

values, showed that the number of the datasets used for the

identification of stable genes affected the stability order of the

genes. This result indicated the necessity to include as many

datasets as possible in the analysis to obtain more reliable results.

Thus as many time course experiments conducted using S. cerevisiae

as possible were tried to be included in the present study. The

strategy is not limited to the currently available datasets but allows

the inclusion of additional data sets and this is advantageous in

terms of improving the results obtained from this approach.

The stability analysis of the collected time series datasets

revealed that the transcripts that take place in the super pathway

of glucose fermentation (FBA1, TPI1, PGK1, CDC19 and PDC1)

tended to display stable expression profiles in time course studies.

Furthermore, these transcripts were verified to display stable

expression profiles experimentally thus presenting a good alterna-

tive as reference genes in the normalization of real-time RT-qPCR

data. The dominance of fermentation–related genes as stable

reference candidates in time course studies appears to be an

interesting result, which requires further investigation.

In this study, geNorm and NormFinder algorithms were used

for the identification of the most stable genes among the candidate

list. For this purpose the results obtained from these two software

programs were compared and the transcripts, which displayed the

most stable expression profiles in both applications, were

identified. The stability of the genes was evaluated based on a

scoring system that allowed to display their average stability

rankings. However, obtaining similar results using both software

programs highly depended on the gene set to be analyzed since

geNorm algorithm might be very sensitive to the existence of any

correlated gene pairs. The results clearly showed that the exclusion

of one of the correlated genes altered the stability order and the

stability scores of the transcripts would be low only if the correlated

genes were excluded from the candidate list. Our approach

(Figure 5) is based on the elimination of the correlated gene pairs

according to the results of the real-time RT-qPCR experiments

under the selected conditions rather than the a priori elimination of

genes that were reported to be correlated in the literature. This

approach enabled the observation of any possible correlations

among genes investigated in the samples of the current case studies

and avoided the unnecessary exclusion of the candidates, which

could possibly be among the most stable genes.

This study provided additional evidence that, there are no

universal reference genes, which could suitably be used under

different experimental conditions. Here we propose a candidate

gene set, which can be used for the normalization of dynamic

expression profiles of the target genes in S. cerevisiae. In order to

confirm the suitability of this candidate gene set, we investigated

the transcriptional profiles of HAP4 and MEP2 genes under two

different experimental conditions using both the newly identified

reference genes and the commonly used ones. These analyses

clearly demonstrated that the newly identified reference genes

outperformed the conventional candidates in dynamic expression

profiling analysis.

The responses of HAP4 and MEP2 to an impulse-like addition

of glucose and ammonium, respectively, were reported in several

studies in the literature [17,18]. Investigation of the expression

profiles of genes with well-documented responses in an experi-

mental condition was shown to aid the evaluation of the optimum

number of reference genes selected from the candidate reference

gene set. Therefore it would be suggested to conduct evaluations

regarding the candidate reference gene set using such control

genes with known expression profiles prior to conducting the

analyses on the genes of interest.

The reference gene sets were shown to display stable expression

profiles across time in both of the cases that were studied.

Moreover these gene sets outperformed their individual members

in terms of stability in time. The genes that were identified as the

least stable both by NormFinder and geNorm were also

experimentally shown to display variations in the expression

profiles as well as 18S rRNA, which was also determined to be

unsuitable as a reference gene under the stated conditions.

It should be noted that for each specific experimental condition

that would be investigated, a different set of reference genes would

selected from the candidate gene pool. The nature of the

perturbation or the experimental setup would result in the

identification of different reference genes for each specific

experimental condition throughout the dynamic range of the

experiment. In fact in Case Study I, in which the amount of

glucose used as the sole carbon source was varied, ACT1 was

identified among the most stable reference genes although it alone

was not sufficient for normalization. On the other hand, ACT1

expression was shown to be unstable in another experimental

setup for investigating diauxic shift, in which the cells starving for

glucose switched to utilizing other carbon sources such as ethanol

[4]. Yet another study utilized ACT1 as reference for monitoring

the expression levels of glycolytic genes in response to a switch

from growing on ethanol to growing on glucose [6].

Several methodologies were used previously in the selection of

RT-qPCR reference genes. One of the most commonly utilized

strategies is the selection of one or more of the reference genes that

are frequently cited in the literature [3,5,10,20,21,33,34,35]. In

rare instances, several different approaches were also utilized. In a

study for validating reference genes for quantitative expression

analysis by real-time RT-qPCR in S. cerevisiae, Teste et al. selected

suitable microarray datasets, in which the culture conditions
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reported for these datasets were closest to their experimental setup.

The potential reference genes were selected among the transcripts

displaying stable expression profiles in these microarray datasets.

Additionally traditionally used reference genes were also included

in the study [4]. Another study focused on systematically collecting

microarray data for selecting reference genes under a specific set of

conditions [1]. In yet another study, the candidate reference genes

were determined via stability of their expression levels across

different tissues using their EST profiles [3]. Existence of a pool of

commonly used reference genes has proven very useful in time

invariant RT-qPCR analysis. However, these reference genes were

often found to display far from stable expression profiles in

dynamic studies mandating researchers to seek alternative ways to

identify novel reference gene candidates [4]. Unfortunately

currently utilized approaches usually fail in the identification of

a universal set of candidate reference genes to be used in dynamic

studies regardless of experimental conditions. Our approach may

help serve this purpose by gathering dynamic microarray datasets

having as diverse experimental conditions as possible for the

identification of a universal pool of candidate reference genes,

from which users may select subsets that would be suitable for their

particular needs.

The present approach allows its users a vast space to manoeuvre

using the proposed candidate reference genes. Although the

specific cases presented in this study focused on transient changes

in the amount of available glucose or ammonium in the

fermentation medium in yeast, suitable reference genes would be

selected among the candidate pool for completely different

experimental conditions regardless of whether such an experi-

mental setup was previously analyzed or not. The candidate pool

itself was created from a collection of dynamic datasets with a

diverse set of experimental conditions. Among these, environmen-

tal variations including osmotic stress, heat shock, cell cycle, DNA

damage, nutrient availability, chemical treatments, desiccation

stress, nitrosative stress and genetic mutations including deletion

and overexpression of genes were included (Table S1). The genes

in the candidate pool were identified such that regardless of the

diversity of the experimental conditions under which the

microarray data were generated, the expression profile of each

candidate was stable. This strength of the method of selection

increases the possibility of identifying reference gene among the

pool of candidates, which would have stable expression profiles

across time in a specific experimental condition that was not

previously analyzed.

It can be concluded that the pool of candidate reference genes

determined in this study; TPI1, ACT1, TDH3, FBA1, CCW12,

CDC19, ADH1, PGK1, GCN4, PDC1, RPS26A and ARF1, may be

used to identify the set of suitable reference genes in the analysis of

dynamic transcriptional data by real-time RT-qPCR in S. cerevisiae

under different experimental conditions. However, it is also

undeniable that, as the number of the publicly available time

course microarray datasets increases, this candidate gene set may

be improved. The flexibility of the methods used in this approach

enable the inclusion of additional datasets thus constant update of

the candidate pool. Additional methods could also be implement-

ed in a modular manner to enhance the results obtained from this

study. This study showed the significance of researchers’

intervention at various stages of reference gene selection both

Figure 5. Flowchart representing the approach. This figure
represents the general strategy followed for the identification of a pool
of reference gene candidates and the determination of a reference
gene set to be used for a specific condition in real-time RT-qPCR
experiments.
doi:10.1371/journal.pone.0038351.g005
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during the inclusion of new dynamic datasets to be used for the

determination of the candidate set and during the exclusion of the

correlated gene pairs from the candidate pool while identifying the

most stable genes.

Materials and Methods

Determination of the reference gene candidates
In order to determine the reference candidates displaying stable

expression throughout time course experiments, transcriptome

data sets were used. Publicly available time series microarray data

sets were downloaded from the Array Express database [12]. 31

different time-dependent experiments conducted with S. cerevisiae

using Affymetrix Yeast Genome S98 and Yeast2 arrays (14 and 17

experiments, respectively) (Table S1) were first pre-processed with

RMAExpress software applying quantile normalization [36]. For

the multiple probe sets targeting the same gene, the average

expression value would be used if there were no significant

difference between the expression levels of the multiple probes and

the larger value would be selected if there were a significant

difference. The expression levels of the genes that were detected in

both platforms were combined and a matrix of dimensions

54246888 was obtained for the 5424 identified transcripts

measured at 888 time points in 31 different experiments.

Assessment of expression stability by coefficient of
variation approach

The candidate reference genes with stable gene expression

across time were determined by the coefficient of variation

approach [2]. For each gene, the coefficient of variation (CV) of

the expression value, which is defined as the ratio of the standard

deviation to the mean was calculated and the CV values of the

genes were then ranked.

CV~
s

DmD

CV values were determined for the combined data set of 31

different experiments and also individually for each experiment.

The CV values were used in the assessment of stable expression

profiles and the candidate gene list was determined.

Composition of the combined datasets
In order to determine the effect of inclusion of an additional

dataset in the final cluster of experiments on the stability profile of

the genes, combinations of 31 datasets were created. There were

465 possible combinations that contain 2 or 29 datasets and 31

possible combinations that contain 30 datasets. Stability profiles

for each of these 496 combinations were identified. However, due

to the excessive number of the possible combinations for the

subsets containing 3 to 28 datasets, 1000 random combinations

were generated for those subsets and the stability analysis was

conducted for those random combinations.

ni~
ci

1000

�
if civ1000

if ciw1000

ni: number of generated subsets containing i datasets

ci: number of all possible subsets containing i datasets

where 1,i,31

Confirmation of the stability of reference genes and their
validation

Strain and media. Homozygous hoD/hoD strain of S. cerevisiae

from a genetic background of BY4743 (MATa/MATD his3D1/

his3D1 leu2D0/leu2D0 lys2D0/+ met15D0/+ ura3D0/ura3D0), pur-

chased from the European Saccharomyces cerevisiae Archive for

Functional Analysis [37], was kindly provided by Prof. Stephen G.

Oliver. The absence of the deleted gene was verified using PCR-

based methods [14].

The preculture was incubated in YPD medium (2% [wt/vol] D-

glucose, 2% [wt/vol] peptone, 1% [wt/vol] yeast extract) at 30uC
and 180 rpm in an orbital shaker. Synthetic defined medium was

used in the fermentations [38].

Chemostat culture, experimental design and sample

description. Cells were cultivated in B-Braun Biostat B plus

fermenters with 1.5 L working volume of ammonium or glucose-

limited synthetic defined medium. Ammonium or glucose was

injected in an impulse-like manner into their respective limited

cultures at steady state. The temperature was controlled at 30uC
and the agitation was set to 800 rpm. The pH was controlled at

5.5 with 1 M NaOH and HCl. The dilution rate was set to

0.1 hr21. The air flow into the fermenters was adjusted at 1.5 L/

min to keep dissolve oxygen saturation above 80% throughout the

experiment. A total of 14 time-dependent RNA samples were

collected at steady state, in the first minute with 20 second

intervals, with 8 minute intervals for 32 minutes and then hourly

for 5 hours following the impulse. The sample volume was 5 ml of

culture at an OD range of 1.2–1.4. The samples were immediately

frozen in liquid nitrogen and stored at 280uC until further

processing.

Nucleic acid extraction. RNA was isolated from samples

with the Qiagen RNeasy mini kit (Cat no: 74106) using the

‘‘RNeasy protocol for extracting yeast via enzymatic lysis’’ using

robotic workstation, QIAcube (Qiagen, USA), modified by the

manufacturer for yeast applications. b-mercaptoethanol (Cat no:

444203) was purchased from Merck. The nucleic acid concentra-

tions were determined and the purity of the RNA (A260/A280) was

confirmed using NanoDrop (ND-1000, Thermo Scientific) (Table

S7). The observed yield was ensured to be at least 90% of the

expected yield. RNA integrity was determined using Bioanalyzer

2100 (Agilent Technologies, USA) using RNA6000 Nanokit

(Agilent Technologies, USA). RIN numbers and the electropho-

resis traces were provided in Text S1. The absence of any DNA

contamination was confirmed using RNase treated samples as

negative control.

Reverse transcription. In order to unify the initial concen-

tration of RNA in the analyses, all samples were diluted to the

same concentration prior to the real-time RT-qPCR application.

Reverse transcription was carried out at 50uC for 30 minutes. The

reaction was allowed to proceed with 80 ng/ml in a reaction

volume of 12.5 ml. QuantiTect RT mix (Qiagen, USA, Cat no:

204245) was used at a ratio of 0.01 total reaction volume. Assays

were conducted in triplicates. The synthesized cDNA template was

immediately allowed to proceed with the polymerase chain

reaction.

qPCR target information. The PCR product (amplicon)

was determined to be either 100–150 base pairs long or 200–250

base pairs long. The gene symbols, sequence accession numbers,

location of the amplicon, amplicon lengths, in silico PCR results for

specificity is provided in Text S2.

qPCR oligonucleotides. The primer length was selected to

be in the range of 18–24 nucleotides. The GC content of the

primers ranged between 50 to 60 per cent. The melting

temperatures of the primers were in the range of 55–58uC.
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Primer3 software was used in the design of the primers except for

that for 18S rRNA, which was designed in this study [39]. The

complete set of primer pair sequences and RTPrimerDB

identification numbers are listed in Table S2. The designed

primers were manufactured by Alpha DNA (Montreal, Quebec)

and desalted. The performance of all primers was experimentally

confirmed by conventional PCR to ensure the amplification of a

single region with the correct amplicon length.

qPCR protocol and qPCR validation. Qiagen Quanti-

TectH SYBRH Green one step RT-PCR kit was used for real-time

RT-qPCR applications as described by the manufacturer (Qiagen,

USA, Cat no: 204245). All kit contents are optimized and

validated by the manufacturer. The PCR reactions were

performed in a final reaction volume of 12.5 ml containing the

final concentration of 2.5 mM of MgCl2 and 0.5 mM of forward

and reverse primers. Plates and film sealers were manufactured

from Bio-Rad Laboratories (Cat no: MSB1001, MLP9601). The

reaction mixtures were prepared manually and the reactions were

allowed to proceed in iCycler 5 instrument (Bio-Rad Laborato-

ries). Assays were conducted in triplicates. The annealing

temperature optimization and thermocycling parameters are

provided in Table S8. RT-PCR sensitivity and reproducibility

assays were conducted as described by the manufacturer (Qiagen,

USA, Cat no: 204245). The melt curves indicating the specificity

of the reaction were provided in Text S3. The range of the Cq

values was determined as 10.9–31.70 for case study I and as

12.00–28.30 for case study II. The presence of no-template control

wells were ensured in all reaction plates. Serial dilutions of RNA

(5-point 4-fold dilution series, starting with 100 ng/reaction) were

used for the measurement of the overall assay efficiency for one

step RT-PCR. The log template amount was plotted against the

corresponding Cq value and the slope (S) was determined. The

efficiency (E) was calculated according to the following formula:

E~10({1=S){1

The efficiency values, standard curves and R2 of standard curves

for each of the candidate reference genes and the target genes were

provided in Table S2. The linear dynamic range of the Cq values

was between 14.7 and 35.7. The 95% confidence interval at the

lowest limit was determined to be less than 1 for the Cq values that

were determined using either forward/reverse primer pair except

for ACT1 and PDC1 (1.5 and 1.8, respectively). The average of the

95% confidence intervals of the Cq values throughout the range

was 0.6.

Data analysis. iCyclerTM iQ Optical System Software

version 3.0a (Bio-Rad Laboratories) was used with PCR base line

subtracted curve fit method for the measurement of quantification

cycle (Cq). The geometric average of the Cq values with a

standard deviation of less than 0.5 cycles was used in further

calculations. Raw Cq values were used to determine the relative

gene expression values (Q) using delta-Ct method [40]. Cq values

for no-template control wells were excluded from further analysis

since the values were greater than 35 or not detected. The raw Cq

values and intra assay variations are provided as Table S9. The

data analysis was carried out using Microsoft Office 2007 Excel

implemented with the statistical analysis tool.

Assessment of expression stability by geNorm and

NormFinder. The expression stability of candidate reference

genes was evaluated using geNorm [5] and NormFinder [7]

software programs. The expression values were provided as input

for both algorithms. Delta-Ct method was used for the calculation

of expression values with the gene having the lowest Cq value

being used as the reference gene [5].

Supporting Information

Figure S1 Frequency distribution of transcripts in
terms of their occurrence among top 100 most stable
genes. The stability ranking of all transcripts was determined in

terms of CV values for each independent set of experiments. For

every transcript, the number of datasets, in which that transcript

occurred among the top 100 most stable genes, was determined.

These numbers were then represented as a percentage of the total

number of independent data sets. The percentage of data sets, in

which a number of transcripts were represented, was plotted

against that number of transcripts as a frequency distribution.

(TIF)

Figure S2 Minimum and average PCC values as a
function of the number of experiments. PCC values were

calculated in order to determine the correlation between the

overall stability profile for 31 datasets and each stability profile,

which was calculated from the combination of the changing

number of datasets ranging between 1 and 30. For the case, in

which a specific number of datasets were used, both the average

PCC of the available dataset combinations and the minimum PCC

were determined. The figure represents the variation in the

average and the minimum PCC values as a function the number of

the experiments, which were used in the calculation of the

individual stability profiles that would be compared with the

overall stability profile.

(TIF)

Figure S3 A non-cumulative histogram plot of the
number of genes assigned to a specific CV value. The

CV value of each transcript, which was calculated from the

combination of all datasets, was used to obtain the overall stability

profile. The CV values of the most stable 100 genes, which were

determined based on this stability profile, were binned in a range

such that the maximal and the minimal CV values were included.

A non-cumulative histogram plot of this frequency distribution was

presented in the figure.

(TIF)

Figure S4 Stability analysis of the candidate genes in
Case Study I. The cells representing the stability ranking of the

genes in different pools were indicated in the corresponding areas

in a quantitative manner; 1 indicating the most stable gene and 11

indicating the least stable one. A dash was used to indicate the

genes that were omitted from analysis due to having a correlated

expression profile with another gene in the candidate set. geNorm

was used for the stability analysis of the six different pools of

candidate genes and the results were provided in the last six

columns. The analysis was carried out using all genes (P-0), and

using the 5 pools, each excluding a different set of correlated genes

(P-1 to P-5). The stability analysis conducted using NormFinder

with all candidate genes was provided in the first column.

(TIF)

Figure S5 geNorm stability output charts for Case
Study I. The stability analysis based on the expression levels of

the candidate genes obtained in Case Study I was conducted for

each pool; P0 to P5 using geNorm software. The M values

indicating the average expression stability for the candidate genes

were provided in the output format that the software provided.

The plots for P0 to P5 were represented in the figure as designated

by the letters A to F, respectively.

(TIF)
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Figure S6 geNorm pairwise variation output charts for
Case Study I. The stability analysis based on the expression levels

of the candidate genes obtained in Case Study I was conducted for

each pool; P0 to P5 using geNorm software. The V values indicating

the pairwise variation among consecutive candidate gene pairs were

provided in the output format that the software provided. A cut-off

threshold of 0.15 was used to determine the number of reference

genes that was considered to be suitable by the geNorm algorithm.

The plots for P0 to P5 were represented in the figure as designated

by the letters A to F, respectively.

(TIF)

Figure S7 Expression profile of HAP4 using ACT1 or
FBA1-CDC19 in response to the glucose impulse. This

figure represents the expression profile for HAP4 using ACT1 alone

or FBA1- CDC19 pair. The relative expression of HAP4 was

plotted against the time from the perturbation of the amount of

glucose available in the medium. The relative expression of HAP4

was determined using ACT1 as the sole reference gene or the

geometric average of the Ct values for FBA1 and CDC19.

(TIF)

Figure S8 Stability analysis of the candidate genes in
Case Study II. The cells representing the stability ranking of the

genes in different pools were indicated in the corresponding areas

in a quantitative manner; 1 indicating the most stable gene and 11

indicating the least stable one. A dash was used to indicate the

genes that were omitted from analysis due to having a correlated

expression profile with another gene in the candidate set. geNorm

was used for the stability analysis of the four different pools of

candidate genes and the results were provided in the last four

columns. The analysis was carried out using all genes (P-0), and

using the 3 pools, each excluding a different set of correlated genes

(P-1 to P-3). The stability analysis conducted using NormFinder

with all candidate genes was provided in the first column.

(TIF)

Figure S9 geNorm pairwise variation output charts for
Case Study II. The stability analysis based on the expression

levels of the candidate genes obtained in Case Study II was

conducted for each pool; P0 to P5 using geNorm software. The V

values indicating the pairwise variation among consecutive

candidate gene pairs were provided in the output format that the

software provided. A cut-off threshold of 0.15 was used to determine

the number of reference genes that was considered to be suitable by

the geNorm algorithm. The plots for P0 to P5 were represented in

the figure as designated by the letters A to F, respectively.

(TIF)

Figure S10 geNorm stability output charts for Case
Study II. The stability analysis based on the expression levels of

the candidate genes obtained in Case Study II was conducted for

each pool; P0 to P5 using geNorm software. The M values

indicating the average expression stability for the candidate genes

were provided in the output format that the software provided.

The plots for P0 to P5 were represented in the figure as designated

by the letters A to F, respectively.

(TIF)

Figure S11 Expression profile of MEP2 using ACT1-
TDH3 in response to the ammonium impulse. This figure

represents the expression profile for MEP2 using ACT1-TDH3

pair. The relative expression of MEP2 was plotted against the time

from the perturbation of the amount of ammonium available in

the medium. The relative expression of MEP2 was determined

using the geometric average of the Ct values for ACT1 and TDH3.

(TIF)

Figure S12 Stability analysis by geNorm and NormFin-
der including 18S rRNA. This figure represents the stability

order of the candidate reference genes together with 18S rRNA

using geNorm and NormFinder for Case Study I (A) and for Case

Study II (B). For the geNorm analysis the M values indicating the

average expression stability for the candidate genes were provided

in the output format that the software provided. For the

NormFinder analysis the stability values were provided in the

tables listed from the most stable gene to the least stable gene.

(TIF)

Figure S13 Raw Ct value profiles for the candidate
reference genes. This figure represents the raw Ct value profiles

for the most and the least stable genes, for the reference gene set and

for 18S rRNA for Case Study I (A) and for Case Study II (B). The Ct

values were plotted against the sample numbers representing the

sampling times (A). The most stable genes in Case Study I were

TPI1 and CDC19 and the least stable gene was ADH1. The

reference gene set was comprised of TPI1, FBA1, CDC19 and ACT1

(B). The most stable genes in Case Study II were FBA1 and TDH3

and the least stable gene was RPS26A. The reference gene set was

comprised of FBA1, TDH3, ACT1 and CCW12.

(TIF)

Figure S14 Log. expression profiles for the candidate
reference genes. This figure represents the expression profiles,

in which the expression values were converted into logarithmic

scale for the ease of visualization, for the most and the least stable

genes, for the reference gene set and for 18S rRNA for Case Study

I (A) and for Case Study II (B). The log. converted expression

profiles were plotted against the sample numbers representing the

sampling times (A). The most stable genes in Case Study I were

TPI1 and CDC19 and the least stable gene was ADH1. The

reference gene set was comprised of TPI1, FBA1, CDC19 and

ACT1 (B). The most stable genes in Case Study II were FBA1 and

TDH3 and the least stable gene was RPS26A. The reference gene

set was comprised of FBA1, TDH3, ACT1 and CCW12.

(TIF)

Table S1 Dynamic microarray datasets used in this study.

(XLS)

Table S2 Gene primer sequences and efficiencies used in this

study.

(XLS)

Table S3 MIQE checklist.

(XLS)

Table S4 PCCs between the expressions of candidate genes

pairs in response to glucose pulse.

(XLS)

Table S5 PCCs between the expressions of candidate gene pairs

in response to ammonium pulse.

(XLS)

Table S6 Pairwise variations between the (n+1)th and the nth

genes for different pools of candidate sets.

(XLS)

Table S7 Nucleic acid quantification of the samples.

(XLS)

Table S8 Complete thermocycling and annealing temperature

optimization parameters.

(XLS)

Table S9 Raw Cq values and intra-assay variations.

(XLS)

Yeast Reference Genes in Dynamic RT-qPCR Analysis

PLoS ONE | www.plosone.org 13 June 2012 | Volume 7 | Issue 6 | e38351



Text S1 Bioanalyzer reports of samples used in this study.

(DOC)

Text S2 Gene symbols, sequence accession numbers, amplicon

location and lengths, in silico PCR results.

(DOC)

Text S3 Results of the melt curve analysis.

(DOC)
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