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Abstract

Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a
filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the
phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenkörper behavior and
endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was
absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether
comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology,
uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and
increased branching. The Spitzenkörper of Dcrn-1 mutant was unstable; it appeared and disappeared intermittently giving
rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Dcrn-1 mutant indicated a partial
disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N.
crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin
cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth
and morphogenesis.
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Introduction

Over the last four decades, an extensive literature has

accumulated implicating the cytoskeleton in the polarized growth

of fungal hyphae but the exact role of the actin and microtubular

cytoskeletons in organizing the exocytic apparatus that constructs

the hyphal cell wall has yet to be elucidated. The actin

cytoskeleton has been considered to be the driving force for short

distance delivery of exocytic vesicles to the plasma membrane [1–

2]. According to predictions derived from mathematical modeling

and computer simulation [3], the Spitzenkörper (Spk) functions as

a vesicle supply center (VSC) coordinating vesicle delivery to the

plasma membrane [1,4].

There is considerable evidence implicating both the actin and

microtubular cytoskeletons in the structure and/or operation of

the Spk. Evidence arises from multiple experiments including

inhibitor studies e.g., [5–6], electron microscopy e.g., [7–8]; and

molecular tagging with fluorescent proteins e.g., [9–11].

The use of filamentous actin (F-actin) disrupting chemicals (e.g.,

cytochalasin, latrunculin) demonstrated that actin is required for

normal apical growth, maintenance of the hyphal tip shape, and

polarized enzyme secretion in different filamentous fungal

organisms [6,10–12]. F-actin is found throughout the hyphal

cytoplasm in the form of cortical actin cables lining the hyphal

tube, in the core of the Spk, and in cortical patches (e.g., those

forming a subapical endocytic collar behind the hyphal tips of

Aspergillus nidulans [10,13–14], N. crassa [11], and Athelia (Sclerotium)

rolfsii [15].

Hyphal growth involves continuous addition of new plasma

membrane, proteins, and cell wall material at the apex in a

gradient fashion [1]. Theoretical calculations on the balance

between membrane conveyed by the exocytoic vesicles and the

new plasma membrane generated indicates the likelihood that an

excess of membrane would be produced [16] (Bartnicki-Garcia,

unpublished). Therefore it seems reasonable to assume that an

endocytic mechanism exists that ensures that excess membrane

material is efficiently reutilized, and also trans-membrane proteins

recycled [16–21]. The spatial proximity of the exocytosis (apex)

and endocytosis (subapex) sites poses the intriguing possibility that

both processes may operate in tandem as part of the polarized

machinery responsible for apical growth [13–14].

Coronin is a protein that binds to the sides of actin filaments

where Arp2/3 complex activity mediates further F-actin polymer-

ization, and thus predominantly localizes in sites of active actin

remodeling [22–26]. Members of the coronin family contain a
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phosphorylation site within the N-terminal domain that regulates

the interaction of coronin with other proteins, such as the Arp2/3

complex [27–28]; an additional characteristic is the WD40 repeat,

which is known to form a b-propeller structure mediating protein-

protein interactions [26,29–30].

By protein sequence comparison (pBLAST), we identified the

homologue of the coronin gene in the N. crassa genome (locus #
NCU00202), and tagged it with either green fluorescent protein

(GFP) or monomeric cherry fluorescent protein (mChFP). By

confocal microscopy, we determined its localization and dynamics.

We also examined the crn-1 gene deletion mutant of N. crassa to

assess phenotypic changes in polarized growth, hyphal morphol-

ogy and Spk appearance and behavior.

Coronin has been found in a variety of eukaryotic organisms

[31]. Ours is the first report on the localization and dynamics of

coronin in a filamentous fungus. This study showed coronin

located in a subapical collar of actin patches. The properties of a

coronin null mutant gave us valuable insight into the role of

coronin in endocytosis, hyphal growth and morphogenesis.

Results

CRN-1-GFP localization and colocalization with other
actin binding proteins (ABPs)

CRN-1-GFP was present as small mobile cortical patches

throughout the hypha, but concentrated near the hyphal apex

forming a wide subapical collar (8–9 mm in width) leaving a patch-

free zone of ,4 mm in the apical region (Fig. 1A–1C). In distal

parts of the hyphae, there were scattered CRN-1-GFP patches but

in much lower density compared to the subapex. As the hypha

elongated, the subapical collar of coronin maintained a constant

distance from the hyphal tip (Supplementary Movie S1), except

during occasional periods of Spk disappearance when the patches

moved towards the apex (Supplementary Movie S2).

CRN-1-GFP patches appeared to localize immediately under

the FM4-64-stained plasma membrane (Fig. 1C, 1E). To better

visualize the architecture of the CRN-1-GFP collar, we made a 3D

reconstruction of confocal z-stacks. As shown in Fig. 1D, the

patches formed a nearly complete cortical ring in the hyphal

subapex (Fig. 1D, 1E).

To examine the relationship of coronin with actin and with

other ABPs during apical growth, the N. crassa strain expressing

CRN-1-mChFP was fused vegetatively with strains expressing

FIM-GFP, ARP-2-GFP or Lifeact-GFP. CRN-1-mChFP patches

colocalized with fimbrin (FIM-GFP) (Fig. 2A–2C) and the Arp2/3-

complex (ARP-2-GFP) (Fig. 2D–2F). Visualized with Lifeact-GFP,

actin was present along the entire hyphal length examined. Some

of the actin patches colocalized with the CRN-1-mChFP patches

of the subapical collar (Fig. 2G–2I). A significant finding was the

absence of coronin in the Spk or is immediate vicinity, as shown

above, despite a strong signal for actin in the core of the Spk

(Fig. 2G–2I). We did not observe coronin organized in filament

arrays, which would suggest a lack of association with actin cables

(Fig. 2J–2K). Instead, our data indicate that coronin associates

exclusively to F-actin patches.

To investigate the functional relationship between CRN-1-GFP

and the main structural polymers of the cytoskeleton, we tested the

effect of actin and microtubule inhibitors on CRN-1 dynamics. At

a low concentration (0.5 mg ml21 cytochalasin A), the collar of

CRN-1-GFP patches became disorganized and the patches

displaced to the apical dome (Fig. 3A). At higher concentration

(5.0 mg ml21), patches disappeared almost completely (Fig. 3B).

On the other hand, coronin patch integrity was not affected by

benomyl treatment, but the patch distribution was disrupted with

the patches located in the apical dome (Fig. 3C).

Coronin disruption phenotypes
By PCR, we corroborated the absence of crn-1 gene in a Dcrn-1

mat a deletion mutant provided by the Fungal Genetics Stock

Center. Macroscopic and microscopic characterization of the

Dcrn-1 strain, revealed a compact slow growing, crenulated colony

that conidiated poorly (Fig. 4A, 4B, Table 1). The lateral

branching frequency of leading hyphae at the colony periphery

was increased five-fold in the Dcrn-1 mutant (Fig. 4E, 4F, Table 1).

Hyphae of the coronin null mutant grew mostly in a meandering

fashion rather than following the usual straight trajectory (Fig. 4I,

4J). The contour of the Dcrn-1 mutant (Fig. 4G) hyphae was often

irregular contrasting with the smooth outline of a WT hyphae

(Fig. 4H). A telling difference was discovered by TEM showing the

Dcrn-1 mutant had an irregular hyphal cell wall of uneven

thickness bordered by an undulated plasma membrane (Fig. 4K)

whereas the cell wall of the WT showed the expected uniform wall

thickness (Fig. 4L).

Changes in actin cytoskeleton in Dcrn-1 mutant
The location of fluorescently labeled actin and fimbrin was

examined in the Dcrn-1 mutant strain (Fig. 5). Fimbrin localized to

patches along the hyphal cortex, with a conspicuous accumulation

in a subapical collar, immediately subtending the area occupied by

the Spk (Fig. 5A, 5B, 5D). Notably, when tip polarity was

transiently lost and primarily isotropic expansion occurred, the

subapical collar of fimbrin patches relocated into the apical dome

(Fig. 5C). Coincidentally, the Spk retracted into the subapical

region and disappeared (Supplementary Movie S3).

As Delgado-Alvarez et al. [11] previously reported for the WT

strain of N. crassa, we also detected a strong signal for F-actin in the

Spk core, and in the patches of the subapical endocytic collar of

the Dcrn-1 mutant expressing Lifeact-GFP. However, the distri-

bution and dynamics of actin in the Dcrn-1 mutant changed

continuously during the observed growth periods. These changes

correlated with changes in the Spk and in the morphology of the

growing tip. Periodically, the strong Lifeact signal of F-actin in the

apex disappeared and simultaneously the FM4-64 stained Spk

dispersed (Fig. 5N and Fig. S1). As long as a Spk and its actin core

were present, constant growth ensued and the morphology of the

growing tip became decidedly hyphoid (Fig. 5P). When the Spk

disintegrated, growth seemed to slow down and the tip became

hemispherical (Fig. 5M–P). Another visible change accompanying

the disappearance of the Spk was the relocation of F-actin patches

from the subapical collar towards the tip, invading the area

previously occupied by the Spk (Fig. 5N–5O; Supplementary

Movie S4).

Dcrn-1 mutant and endocytosis
The rate of internalization of the endocytic marker FM4-64 was

markedly reduced in the Dcrn-1 mutant (Fig. 6). Upon addition of

the dye, the plasma membrane of the WT and mutant became

labeled immediately (Fig. 6A, 6E). After three minutes, however,

the fluorescence intensity in the cytoplasm of the WT strain was 3-

times higher than in Dcrn-1 mutant. The difference in cytoplasmic

fluorescence intensity between WT and mutant persisted during

the observation period (Fig. 6I). The average time for full staining

of the Spk with FM4-64 was ,7 min in Dcrn-1 mutant but only

,2 min in WT (n = 30). A fluorescence profile along the hyphal

Coronin in N. crassa
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tube showed maximum intensity coinciding with the position of

the subapical endocytic collar (Fig. 6J, 6K).

Spk behavior in Dcrn-1 mutant
FM4-64 staining showed a smaller Spk in coronin deficient

hyphae (4.660.4 mm2; n = 30) and with ovoid shape rather than

the larger spherical body of WT (8.960.6 mm2; n = 30) (Fig. 7).

The Spk of Dcrn-1 mutant was unstable, i.e. its integrity and

presence at the apex was only sustained for short periods (Fig. 7).

Spk disassembly and reassembly led to frequent changes in shape

and growth directionality. When the Spk became disrupted, the

hyphal tip tended to grow in an isotropic fashion and lost

directionality (Fig. 7A–7E). Notably, in the absence of coronin,

time lapse sequences (Supplementary Movies S5 and S6) showed

alternating periods of polarized and non-polarized growth

producing small and large shape changes of the hyphae that were

often accompanied by a loss in growth directionality. Sometimes,

the FM4-64 stained Spk appeared to split into two smaller Spks

each giving rise to an apical branch with a well-defined Spk

(Fig. 7C–E; supplementary Movie S5). Often, incipient branches

formed but aborted coinciding with the disassembly of the Spk. In

addition to intermittent appearance and disappearance, the Spk of

the mutant showed a much more erratic trajectory than the WT

Spk (Fig. 7U–7V).

The hyphal elongation rate of the Dcrn-1 mutant was only 23%

of that of the WT strain (p,0.05), however, the wider diameter

and meandering morphology of the mutant hyphae makes this

comparison misleading (Table 1). Biomass production was a more

reliable parameter to compare growth. Accordingly, the Dcrn-1

mutant retained 64% (p,0.05) of the growth capacity of the WT

strain.

Conidiogenesis and conidium germination in the Dcrn-1
mutant

Conidium size and shape were markedly affected by the loss of

coronin. More than 60% of mutant conidia had non-spherical

shapes (Fig. 8E), contrary to the WT that had spherical or near-

spherical conidia in the same proportion as non-spherical conidia

in the mutant (Fig. 8D, 8E). On average, conidia of the Dcrn-1

mutant were twice as big as WT conidia, independent of their

shape (Fig. 8F). A 2-day colony of Dcrn-1 mutant produced less

than the half of the conidia (0.66105 conidia ml21) formed by the

WT strain in the same period (1.56105 conidia ml21).

Conidial germination was significantly different in the Dcrn-1

mutant (Fig. 9). The rate was much slower, the emerging germ

tube wider and was more prone to meandering than that in the

WT. Often, the elongation of the germ tube was interrupted by

budding-like processes that yielded one or more buds in linear

succession until a tube developed. The final appearance was that

of a septated germ tube (Fig. 9E).

The irregular staining pattern of the cell walls of conidia and

their germ tubes with calcofluor white indicated that misdirected

synthesis and/or excessive deposition of cell wall material

accompanied the aberrant morphology of the coronin null mutant

conidia and germlings (Fig. 10).

Discussion

Coronin an ABP component of the subapical endocytic
collar

The existence of a specialized region of the actin cytoskeleton in

the subapex of fungal hyphae was first discovered in Aspergillus

nidulans and characterized by the presence of patches of certain

Figure 1. Subapical localization of coronin. (A) CRN-1-GFP forms a subapical collar along the inner perimeter of the hypha (arrows), (B) FM4-64
staining reveals the position of the Spk (arrowheads), (C) merge of CRN-1-GFP and FM4-64 staining shows the absence of CRN-1-GFP in the Spk,
single confocal plane images. (D) 3D reconstruction of merged confocal z-stacks showing CRN-1-GFP and FM4-64 localization, (E) orthogonal view of
the 3D reconstruction shown in (D), the yellow line indicates the position within the tip where the cross-section was taken. Scale bars = 5 mm.
doi:10.1371/journal.pone.0038237.g001

Coronin in N. crassa
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actin-binding proteins (ABPs) namely AbpA, AmpA, SlaB [14]

and fimbrin [13] forming an annular arrangement or ‘‘collar’’ at a

short distance from the hyphal tip. Indirect evidence was

presented correlating this collar with the major site of endocytosis

in growing hyphae. In hyphae of N. crassa, Delgado-Alvarez et al.

[11] detected a similar subapical collar of fimbrin and also found

that another ABP, Arp2/3 complex, was part of this subapical

collar. By using Lifeact to visualize actin, the relationship between

the collar of ABP patches and the entire actin cytoskeleton of a

hypha of N. crassa became clear [11,32]. Coronin can now be

include as another component of the subapical collar in N. crassa

and hence another likely gear in the endocytosis machinery of this

fungus. The colocalization of coronin with other ABPs in the same

patches supports the notion of an integrated function of all these

ABPs in endocytosis [29–31,33].

The disruption of actin cables, when hyphae were treated with

anti-actin polymerization reagents, caused the disassembly of the

Spk with its associated actin skeleton, and the subsequent

migration of the collar cortical patches into the cell apex. The

greater resistance of actin patches to depolymerization, compared

to filamentous actin, can be attributed to the stabilizing presence

of different types of ABPs in the patch [11,25].

Morphogenetic consequences of coronin deletion
The morphology and behavior of the Dcrn-1 mutant gave us

useful insight into the role of the cytoskeleton in polarized growth,

i.e. hyphal morphogenesis. Remarkably, despite the absence of

coronin, the fungus remained functional both in being capable of

growing and undergoing hyphal morphogenesis and conidiogen-

esis although both functions were visibly impaired. Overall growth

was reduced by 36%; hyphal morphology and directionality were

deeply affected as polarized growth was turned on and off

intermittently. The hyphal profiles were unevenly undulated or

crenulated and the cell wall showed a markedly irregular thickness.

Figure 2. Co-expression of coronin with fimbrin, Arp2 and actin. (A–C) Colocalization of Fimbrin (FIM-GFP) and CRN-1-mChFP. (D–F)
Colocalization of Arp2 (ARP-2-GFP) and CRN-1-mChFP. (G–I) Partial colocalization of the actin marker Lifeact-GFP and CRN-1-mChFP. (J–L) Co-
expression of CRN-1-mChFP and Lifeact-GFP showing the lack of colocalization between coronin patches and actin cables. are depicted by. (L) Merge,
not clear association of crn-1 patches is observed with actin filaments, arrowhead shows colocalization of actin patches with CRN-1-mChFP. The white
arrow points a region where there is only labeling with Lifeact-GFP and the blue arrow show the patches where CRN-1-mChFP and Lifeact-GFP
colocalized. Note the presence of actin in the Spk but not of patch related ABPs. The red arrows in (K) point the actin cables and the white arrowhead
show the colocalization of actin and coronin in the patches subapical collar. Scale bar = 5 mm.
doi:10.1371/journal.pone.0038237.g002

Coronin in N. crassa
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This host of alterations could be ascribed to intermittent

disturbances of the pattern of exocytic vesicle migration that has

been predicted generate a normal hypha with a regular hyphoid

shape [1,3]. Seemingly, in the absence of coronin, the actin

cytoskeleton becomes somewhat unstable impacting intermittently

the assembly of the Spk and thus the orderly process of cell wall

construction. Presumably, the actin-rich core of the Spk is the focal

target of the cytoskeletal disturbance. In the absence of a Spk

polarized exocytosis becomes disorganized producing erratic

delivery of cell wall building components and thus irregular wall

thickness and altered hyphal morphology. Although, the lack of

coronin strongly affects the cell, it is not an essential factor for

hyphal growth, as other components of the endocytic machinery

i.e. Sla B, that has shown as essential in A. nidulans [34].

The finding that CRN-1-GFP was absent in the apex of the WT

strain seems surprising since deletion of crn-1 caused adverse effects

on apical activities (Spk and exocytosis). Therefore the distur-

bances in Spk behavior and apical morphogenesis observed in the

Dcrn-1 mutant must be indirect effects and thus evidence that

coronin impacts the function of the actin cytoskeleton, i.e., the

subapical and apical actin cytoskeletons are functionally interre-

lated, It remains to be determined to what extent any reduction in

endocytosis may have also affected Spk behavior. Altogether our

findings indicate that a defective actin cytoskeleton can support

polarized hyphal growth albeit with sometime serious distortions;

evidently, normal or optimum hyphal morphogenesis requires an

intact actin cytoskeleton.

Coronin is required for Spk stability and dominance
The Spk is believed to function as a supply center of secretory

vesicles needed for polarized expansion of the cell wall and plasma

membrane at the hyphal tip. The advancing Spk generates an

orderly gradient of cell wall construction responsible for the

Figure 3. Effect of cytoskeleton depolymerization drugs on the
localization and integrity of coronin patches. Hyphae exposed to:
(A) the anti-actin drug, 1.0 mg ml21 cytochalasin A, (B) 5.0 mg ml21

cytochalasin A, and (C) the anti-tubulin drug 2.5 mg ml21 benomyl.
Scale bar = 5 mm.
doi:10.1371/journal.pone.0038237.g003

Figure 4. Phenotype of Dcrn-1 mutant. Colony morphology of (A–B) Dcrn-1 mutant and (C–D) WT strain after 24 and 48 h of
incubation on VMM at 286C. Low magnification images of the colony edge of (E) Dcrn-1 mutant and (F) WT strain. Phase contrast images of hypha
of (G) Dcrn-1 mutant and (H) WT strain. SEM images of (I) the meandering phenotype of Dcrn-1 mutant hyphae and (J) the straight WT hyphae. TEM
images of the subapical region of 6 h-old germlings of (K) Dcrn-1 mutant and (l) WT strain. A comparison of the uneven thickness of the cell wall and
the ruffled plasma membrane of the mutant (arrow) with the uniform envelope of the WT (arrowhead). Scale bars = (A–D) 2.5 cm, (E–F) 100 mm, (G–J)
10 mm, (K–L) 1.0 mm.
doi:10.1371/journal.pone.0038237.g004

Coronin in N. crassa
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characteristic (hyphoid) shape of hyphae and the directionality of

their growth [35–37]. As shown recently, the Spk of N. crassa

harbors in a stratified manner the microvesicles responsible for

chitin synthesis (chitosomes) and the macrovesicles involved in ß-

1,3-glucan synthesis [38]. First Girbardt [39] and later Bartnicki-

Garcı́a et al. [36], Riquelme et al [37] and most convincingly

Bracker et al. [40] correlated the position and trajectory of the Spk

with growth directionality.

The variable and somewhat erratic morphology of the coronin

null mutant allowed for the observation of the relationship

between actin and Spk assembly in dynamic detail, and to assess

its morphogenetic consequences. When a well-defined Spk was

present, there was a strong actin signal in the Spk core. The

hyphae grew rapidly and generated tubes with distinct hyphoid

shapes. When the Spk was absent, the actin core dispersed,

polarity was diminished or lost and cell expansion became

isotropic and the tips adopted a hemispheroid shape. Most of

the morphological changes observed may be correlated with

repeated failure to maintain a fully functional Spk core. This

alternation in Spk integrity produces the convoluted/crenulated

Table 1. Growth kinetics, conidiation rate and branching.

Strain Elongation rate Biomass production Conidiation rate Branching rate

mm min21 mg d21 105 conidia ml21 Branches 100 mm21

Dcrn-1 3.160.2 28.064 0.6 1.560.1

WT 13.560.6 43.565 1.5 0.360.03

(mean 6 standard error).
doi:10.1371/journal.pone.0038237.t001

Figure 5. Dynamics of the subapical endocytic collar and Spk behavior in the Dcrn-1 mutant. (A–L) Subapical endocytic collar of fimbrin,
(A–D) Fimbrin-GFP, (E–H) FM4-64 staining and (I–L) merge of Fimbrin-GFP and FM4-64. (M–Y) actin distribution shown with (M–P) Lifeact-GFP, (R–T)
staining with FM4-64 and (V–Y) merge of Lifeact-GFP and FM4-64. White arrows point to the presence of the Spk. Time in min:sec. Scale bar = 10 mm.
Note. The hypha Q–T was exposed to FM4-64 for a longer time prior to the start of the sequence, hence the stronger red signal.
doi:10.1371/journal.pone.0038237.g005

Coronin in N. crassa
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morphology of the hyphae in the Dcrn-1 mutant. As shown vividly

in Supplemental Movie S3, the recurrent losses of Spk integrity

coincided with the dispersal of the fimbrin-labeled collar patches

from their subapical location thus suggesting that both distur-

bances were caused by a generalized failure of the coronin-

deprived actin cytoskeleton (Fig. 11).

The undulated profile of the Dcrn-1 mutant hyphae plus the

irregular thickness of the cell wall are strong indicators that the

orderly migration of wall-building vesicles was altered intermit-

tently by the absence of the stabilizing effect of coronin. The

bumps in the crenulated hyphal profile may result from 1) an

irregularity of the integration and disintegration of the Spk thus

creating alternating periods of hyphoid and isotropic growth,

respectively; 2) formation of spurious secondary growth centers in

the proximal subapex, some of which appear to be abortive

branching attempts that were unable to maintain polarized

growth. Clearly, in the absence of coronin the Spk has difficulty

maintaining its integrity and forward movement, losing intermit-

tently its ability to coordinate the flow of exocytic vesicles. As a

result, growth turns isotropic and also secondary ephemeral

growth centers may appear in the immediate subapical region.

Coronin seems to have important stabilizing function maintaining

the organization of the entire apical growth apparatus and the

subapical endocytic collar.

Are endocytosis and exocytosis linked?
The spatial proximity and functional complementarity between

delivery of secretory vesicles in the apical dome and recovery of

plasma membrane and protein in the sub-apical collar poses

intriguing questions of possible cross regulation between the two

processes in fungal hyphae [41–42]. The role of exocytosis on

endocytosis appears straightforward, with endocytosis being the

consequence of excess accumulation of plasma membrane

discharged by exocytosis. However, the reverse is less clear but

is being actively explored [41–42].

Calculations of membrane deposited by apical exocytosis and

the amount needed to extend the plasma membrane indicate that

an excess of membrane is usually produced during hyphal

elongation (Bartnicki-Garcia unpublished). According to this

assumption, a primary role for endocytosis would be to maintain

a correct membrane balance in the growing hyphae. Together

with membrane recycling, endocytosis may also serve to recover

proteins integrated into the membrane thus creating a tandem

relationship between exocytosis and endocytosis. Our observations

Figure 6. Comparative rates of internalization of the endocytic marker FM4-64. (A–D) Dcrn-1 mutant and (E–H) WT (I) Graph of
fluorescence intensity in a subapical cytoplasmic region (10 mm from the tip; the area measured averaged 50 pixels) in the Dcrn-1 mutant (n = 30) and
the WT (n = 30). (K) Graph of fluorescence intensity along the first ,70 mm (yellow line) from the apex of the WT hypha shown in J (n = 10). Arrow
points to the endocytosis region. Time in min:sec. Scale bar = 10 mm.
doi:10.1371/journal.pone.0038237.g006

Coronin in N. crassa
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on the incorporation of FM4-64 indicate that the absence of

coronin reduced but did not eliminate endocytosis. Therefore, as

argued above, it would seem that coronin while not essential for

the operation of the subapical (endocytic) actin-collar, it does

assure an optimum rate of endocytosis.

Two functionally different actin cytoskeletons in hyphal
growth

Our finding that coronin plus fimbrin and Arp2/3 are present

in a subapical collar, but not in the apical dome region of hyphae

of N. crassa supports the notion that two functionally different

actin-cytoskeletons are involved in the polarized growth of a

hypha, a subapical collar made actin and ABPs patches and actin

cables. While the actin cytoskeleton in the hyphal apex drives

exocytosis, the one in the subapex would be involved in driving

endocytosis. Presumably, one reason for the involvement of several

ABPs in the subapex but not in the apex of a hypha is the distinct

requirements to perform intrusion vs. extrusion of vesicles in and

out of the cytoplasm, respectively. These two processes face totally

different obstacles; foremost, endocytosis must overcome the

enormous turgor of the hyphal cytoplasm, whereas the final step

of exocytosis would be greatly facilitated by cytoplasmic turgor.

Since we have confirmed that coronin was indeed deleted from

the Dcrn-1 mutant; coronin, while not essential, does play an

important role keeping the actin cytoskeleton and perhaps the

entire cytoskeleton operating normally. The latter conclusion

would be in concordance with the long known fact that coronin

has a role linking microtubules to F-actin [43–44]. The incomplete

but remarkable resilience of the Dcrn-1 mutant is probably due to

functional compensation conferred by other elements of the

cytoskeleton. Apparently, the degree of redundancy varies in other

organisms as evident by the fact that coronin deletion in yeast

causes no obvious changes in the phenotype and hence seems fully

compensated [43].

The exact mode of operation of coronin is not yet known.

Findings on other organisms suggest that coronin operates in

conjunction with other ABPs, notably cofilin and Arp2/3, to

promote both actin assembly and disassembly [45]. Coronin is the

switch between activating and inhibiting the Arp2/3 complex,

controlling the its recruitment to filaments or blocking binding

sites for the complex, to finally affects the actin turnover in patches

[46]. Altogether our findings indicate that a defective actin

cytoskeleton can support polarized hyphal growth albeit with

sometime serious distortions; evidently, normal or optimum

hyphal morphogenesis requires an intact actin cytoskeleton.

Figure 7. Comparative morphogenesis and Spk behavior revealed by staining hyphae with FM4-64. (A–E) Dcrn-1 mutant and (F–J) WT
strain. Arrows show the Spk. Details of Spk dynamics in (K–O) Dcrn-1 mutant and (P–S) WT strain. Spk trajectories plotted relative to the growth axis
(abscissa). Time in min:sec. Scale bar = 10 mm.
doi:10.1371/journal.pone.0038237.g007
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Materials and Methods

Strains and culture conditions
Strains used in this study are listed in Table 2. Strains were

maintained on Vogel’s minimal medium (VMM) supplemented

with 2% sucrose. Cultivation procedures were according to

standard techniques [47].

Construction of coronin-fluorescent proteins-containing
plasmids

Standard PCR and cloning procedures [48] were used to fuse

the sgfp gene to the carboxyl terminus of crn-1. The crn-1 gene was

amplified by PCR from N. crassa (FGSC 2489) genomic DNA.

Primers used are also listed in Table 2. PCR was performed in an

Apollo Thermal Cycler with Platinum Hi-Fi Taq polymerase

(Invitrogen, Carlsbald, CA) according to the manufacturer’s

instructions. The amplified and gel-purified PCR product were

digested with XbaI and PacI and ligated into XbaI- and PacI-

digested plasmid pMF272 (GenBank accession no. AY598428) for

GFP tagging and pJV15-2 for mChFP [38]. The resulting

expression plasmids pRM24-OC17 and PRM25-OC18, respec-

tively, were verified by sequencing at Eton Biosciences (San Diego,

CA). The expression in both vectors is under control of the ccg-1

promoter [49–50]

Transformation protocols, transformant selection and
crosses

Electroporation was used to transform conidia of N. crassa Dmus-

51::his-3 strain (FGSC9717) with non-linearized plasmids (Table 2)

using a Bio-Rad Gene Pulser and standard settings (capacitance,

25 mF; 1.5 kV; resistance, 600 V) as previously described [51].

Prototrophic his+ transformants were screened for the expression

of GFP or mChFP by epifluorescence microscopy as described

before [52]. Selected heterokaryotic transformants were back-

crossed to a WT mat a strain (FGSC2489), using synthetic crossing

medium (SCM) supplemented with 1% sucrose and 2% agar [47],

and fluorescent progeny from isolated ascospores were stored for

further studies.

In order to target expression vectors to the his-3 locus in a Dcrn-1

mutant background we produced a Dcrn-1/his-32 double mutant

by crossing with Dmus-51::his-32 strain (FGSC9717). Progeny

colonies that grew on 0.3 mg ml21 hygromicyn selection media

but not on in medium without histidine were selected. The double

mutant Dcrn-1/his-32 was transformed following the procedure

described above, in order to express fimbrin-GFP and Lifeact-

GFP.

This double mutant Dcrn-1/his-321 was also used to test the

complementation of the deletion mutant, together with the

functionality of the Crn-1-GFP fusion. We transformed the double

mutant with plasmid pRM24-OC17, and the WT phenotype and

growth rate were recovered as well as the distribution of

fluorescence.

Double labeling: coronin-mChFP plus other ABPs-GFP
To observe the relationship between coronin, actin and other

ABPs regulators of F-actin, namely the Arp2/3 complex and

fimbrin and actin, we generated heterokaryons through vegetative

fusion of strains, expressing CRN-1-mChFP and fimbrin-GFP,

ARP-2-GFP and Lifeact-GFP. For this, a VMM plate was

inoculated with spores of both strains, and incubated for 10 h at

28uC. Subsequently, colonies were screened for hyphae expressing

both fluorescent makers using laser scanning confocal microscopy.

Growth kinetics, branching and conidiation rates
To phenotypically characterize the Dcrn-1 mutant, we measured

its colony extension rate, hyphal elongation rate, biomass

production, lateral branching frequency and conidiation rates,

and characterized the colonial and hyphal morphology during

growth and germination as described below. All experiments were

performed as triplicates and in comparison to a wild type control.

Growth rate and biomass production. Ten ml of conidial

suspension (1.56105 spores ml21) were inoculated on the edge of

15 cm diameter VMM plates and incubated at 28uC for 48 h. The

mean colony extension rate (cm d21) was calculated after

measuring the mycelium diameter every 6 h until the plates were

filled. The hyphal elongation rate was measured in time-lapse

movies recorded by phase contrast with an inverted Axiovert 200

microscope (Carl Zeiss, Gottingen, Germany) using a 1006
(PH3)/1.3 N.A. oil immersion objective. Images were captured at

4 s intervals for 5 min, and analyzed with the Axiovision Rel. 4.6.3

software. The mean elongation rate was calculated from the

frame-to-frame differences, and data was stored and processed in

ExcelH (Microsoft, Redmond, WA).

Figure 8. Comparison of conidial morphology and size.
Conidiophores of (A) Dcrn-1 mutant and (B) WT strain. Composite
image of conidia representing the most common shapes in (C) Dcrn-1
mutant and (D) WT strain. (E) Relative abundance of spherical and non-
spherical conidia in the Dcrn-1 mutant and WT strain. (F) Average size of
conidia in the Dcrn-1 mutant and WT strain. The error bars represent the
95% confidence interval. Scale bar = 5 mm.
doi:10.1371/journal.pone.0038237.g008
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For biomass production measurements, 10 ml of conidial

suspensions (1.56105 spores ml21) were inoculated onto VMM

plates overlaid with previously dehydrated and weighed dialysis

membrane and subsequently incubated at 28uC for 24 h. The

developed mycelium was lifted off the agar with the membrane,

dried and weighed with an analytical balance (Sartorius, Bradford,

MA). Biomass was calculated as the weight difference between the

dialysis membranes before and after incubation, and expressed in

mg d21.

Branching frequency. Strains were inoculated on VMM

plates and incubated at 28uC for 24 h, then observed on an

Olympus SZXILLB2-100 (Olympus, Tokio, Japan) stereomicro-

scope at a magnification of 4006. Images were captured with an

Olympus DP70 CCD camera and analyzed with the accompany-

ing software. The number of lateral branches of 30 leading hyphae

was counted in the first 100 mm from the tip (branches/100 mm).

Conidiation rate. To measure conidia production, VMM

plates were inoculated with the WT and Dcrn-1 mutant strains and

incubated at 28uC for several days, i.e. until sufficient conidio-

phores were developed. Five ml of 1 M sorbitol were used to rinse

off the conidia from the culture and collected. Spore concentration

in the suspension was determined using a Neubauer cell counting

chamber (American Optical, Buffalo, NY).

Membrane and cell wall fluorescent staining
Using the ‘‘inverted agar block method’’ [53], GFP-expressing

strains were incubated with 5 mM FM4-64 (Molecular Probes,

Eugene, OR) to stain the plasma membrane and organelle

membranes [16]. The cell wall was stained with 0.01% calcofluor

white (American Cyamamid Co. Brook, NJ).

Laser scanning confocal microscopy
Fluorescence and phase contrast microscopy of the coronin null

mutant and WT strains was performed on an inverted laser

scanning microscope (LSM-510 Meta, Carl Zeiss, Göttingen,

Germany) equipped with an argon ion laser for excitation at

488 nm for GFP and a He-Ne laser for excitation at 543 nm for

mChFP and with filters to capture the emission signal between

515–530 nm for GFP and 590–700 for mChFP. A 1006 (PH3)/

1.3 N.A. oil immersion objective was used, and laser intensity was

kept to a minimum to reduce photobleaching and phototoxic

effects. Time-lapse imaging was performed at scan intervals of 0.5

to 4.5 s for periods up to 40 min. Images were recorded with

5126512 pixels and 300 dpi resolution using the implemented

LSM-510 software (version 3.2; Carl Zeiss), and evaluated and

converted into. AVI movie files with the associated LSM 510

Image Examiner program. Fluorescence images were simulta-

neously captured with phase contrast images using one photo-

multiplier tube to detect the transmitted light from the laser

illumination [9]. Image processing for the preparation of figures

was performed with Adobe Photoshop CS3 Extended (Adobe

Systems Inc, San Jose, CA).

Figure 9. Conidial germination. (A–E) Time series of the Dcrn-1 mutant by bright field microscopy and (F–J) WT strain by phase contrast
microcopy. Reconstruction of the morphological differences during conidial germination of above sequences over longer time periods (K) Dcrn-1
mutant and (L) WT. Time in h:min. Scale bar = 5 mm.
doi:10.1371/journal.pone.0038237.g009
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Electron microscopy
For transmission electron microscopy germlings were grown on a

thin, sterile, deionized dialysis membrane overlying VMM at 23uC.

The cells were cryofixed by plunging them rapidly into liquid

propane cooled to 2186uC with liquid nitrogen. Cryofixed cells were

freeze substituted in acetone containing 2% osmium tetroxide and

0.05% uranyl acetate at 285uC for 48 hrs. After the completion of

freeze substitution, cells were slowly warmed to room temperature by

first transferring them to 220uC for 2 h, then to 4uC for 2 h and

finally to room temperature for 1 h. After being rinsed in 100%

acetone, the cells were infiltrated with epoxy resin, flat-embedded

between a Teflon-coated glass slide and Aclar film, and polymerized

at 60uC for 24 h. After resin polymerization, cells were thin-sectioned

on a Leica ultramicrotome (Leica Microsystems Inc., Bannockburn,

IL) and post stained for 10 min in 2% uranyl acetate in 50% ethanol

and for 5 min in lead citrate. Sections were examined using on an

FEI CM12S TEM (FEI Electronics Instruments, Co., Mahwah, NJ)

at 100 kV coupled to a Gatan 689 CCD digital camera (102461024

pixel area; Gatan Inc., Pleasanton, CA). For all imaging methods,

final figures were constructed using Adobe Photoshop 7.0 (Adobe

Systems Inc, San Jose, CA).

Supporting Information

Figure S1 Spk and actin behavior in the Dcrn-1. (A–E) Actin

labeled by Life-act-GFP marker present in the core of the Spk and

Figure 10. Cell wall differences revealed by calcofluor white.
Composite image of cells stained with calcofluor white (0.01%) and
arranged to show different developmental stages in (A) the Dcrn-1
mutant and (B) the WT strain. Arrows point to some of the uneven
distribution of cell wall accumulation. Scale bar = 5 mm.
doi:10.1371/journal.pone.0038237.g010

Figure 11. Reconstructions of morphogenetic sequences from
time lapse movies of the Dcrn-1 mutant and the WT strain; the
mutant shows a lack of directionality and temporal loss of
polarized growth, the green dots show the places of endocytic
patches and how they are misplaced in the mutant when the
Spk is not present, the small arrows show the shifts between
polarized growth and isotropic growth.
doi:10.1371/journal.pone.0038237.g011

Table 2. Materials used. N. crassa strains, plasmids and
oligonucleotides.

Name Genotype, description, or sequence Reference

Strains

FGSC2225 mat A Wildtype FGSC

FGSC9717 mat A-Dmus251-his-32 FGSC

FGSC0202.4 mat a Dcrn-1 FGSC

TRM100-RE01 mat A Dcrn-1; his-32 This study

TRM101-RE02 mat A Dcrn-1; his-3+::Pccg-1-Lifeact-egfp+ This study

TRM102-RE03 mat A Dcrn-1; his-3+::Pccg-1-fim-1-sgfp+ This study

TRM103-RE04 mat A Dcrn-1 his-3+::Pccg-1-bml-1-sgfp+ This study

TRM24-OC17 mat A crn-1-sgfp- his-3+ This study

TRM25-OC18 mat A crn-1-mCherry+ This study

TRM104-RE05 mat A crn-1-mCherry+; his-3+::Pccg-1-Lifeact-egfp+ This study

TRM105-RE06 mat A crn-1-mCherry+; his-3+::Pccg-1-Lifeact-egfp+ This study

TRM106-RE07 mat A crn-1-mCherry+;
mat A his-3+::Pccg-1-fim-1-sgfp+

This study

Plasmids

pMF272 Pccg-1-sgfp+ [52]

pRM-24-OC17 Pccg-1-crn-1-sgfp+ This study

pRM-25-OC18 Pccg-1-crn-1-mCherry+ This study

pRM-49-OC30 Pccg-1-lifeact-egfp+ [11]

pRM-08-D02 Pccg-1-fim-sgfp+ [11]

pLS-NG01 Parp2-arp-2-sgfp+ [11]

pMF309 Pccg-1-bml-1-sgfp+ [52]

Oligonucleotides

COR-XBAI F 59 GCTCTAGAATGCGCCGAAGCCAAGCC 39

COR-PACI R 59 CCTTAATTAACGACCTAGCAGCCTCGAGC 39

Restriction enzymes sequence in bold.
doi:10.1371/journal.pone.0038237.t002
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the sub apical collar. (F–J) Spk stained with FM4-64. The Spk and

its actin skeleton are assembled and disassembled at the same time.

When both are not present, the actin patches from the subapical

collar migrate to the apical dome. The white arrows show the

presence of the Spk and its actin skeleton. Time in min:sec.

(TIF)

Movie S1 Movie shows growth of normal hyphae stained with

FM4-64 and the protein Coronin labeled with sGFP.

(AVI)

Movie S2 Movie shows growth of normal hyphae stained with

FM4-64 and the protein Coronin labeled with sGFP during an

event when the Spk disassemble and the coronin patches move

towards the tip.

(AVI)

Movie S3 Movie shows labeling of fimbrin::sGFP in a Dcrn-1

background. Fimbrin patches relocate into the apical dome and

the Spk fells back into the subapical region and dissolves.

(AVI)

Movie S4 Movie shows labeling of actin with life-act and FM4-

64 in a Dcrn-1 background. Actin is present at the Spk and in the

subapical collar. During disappearance of the Spk stained with

FM4-64, the Lifeact-stained F-actin core of the Spk also entirely

disassembles, and cortical F-actin patches relocates from the

subapical collar towards the tip, invading the area previously

occupied by the Spk.

(AVI)

Movie S5 Movie shows Spk behavior in a Dcrn-1 backgorund

stained with FM4-64. The Spk disassembles and reassembles

leading to frequent changes in shape and growth directions. An

event of apical branching is also observed.

(AVI)

Movie S6 Movie shows Spk behavior in a WT strain stained

with FM4-64.

(AVI)
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