
Interpretation and Visualization of Non-Linear Data
Fusion in Kernel Space: Study on Metabolomic
Characterization of Progression of Multiple Sclerosis
Agnieszka Smolinska1*, Lionel Blanchet1, Leon Coulier2, Kirsten A. M. Ampt1, Theo Luider3,

Rogier Q. Hintzen3, Sybren S. Wijmenga1, Lutgarde M. C. Buydens1

1 Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands, 2 TNO Quality of Life, Zeist, The Netherlands, 3 Department of

Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands

Abstract

Background: In the last decade data fusion has become widespread in the field of metabolomics. Linear data fusion is
performed most commonly. However, many data display non-linear parameter dependences. The linear methods are bound
to fail in such situations. We used proton Nuclear Magnetic Resonance and Gas Chromatography-Mass Spectrometry, two
well established techniques, to generate metabolic profiles of Cerebrospinal fluid of Multiple Sclerosis (MScl) individuals.
These datasets represent non-linearly separable groups. Thus, to extract relevant information and to combine them a
special framework for data fusion is required.

Methodology: The main aim is to demonstrate a novel approach for data fusion for classification; the approach is applied to
metabolomics datasets coming from patients suffering from MScl at a different stage of the disease. The approach involves
data fusion in kernel space and consists of four main steps. The first one is to extract the significant information per data
source using Support Vector Machine Recursive Feature Elimination. This method allows one to select a set of relevant
variables. In the next step the optimized kernel matrices are merged by linear combination. In step 3 the merged datasets
are analyzed with a classification technique, namely Kernel Partial Least Square Discriminant Analysis. In the final step, the
variables in kernel space are visualized and their significance established.

Conclusions: We find that fusion in kernel space allows for efficient and reliable discrimination of classes (MScl and early
stage). This data fusion approach achieves better class prediction accuracy than analysis of individual datasets and the
commonly used mid-level fusion. The prediction accuracy on an independent test set (8 samples) reaches 100%.
Additionally, the classification model obtained on fused kernels is simpler in terms of complexity, i.e. just one latent variable
was sufficient. Finally, visualization of variables importance in kernel space was achieved.
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Introduction

Currently, due to the increasing amount of data generated from

different analytical platforms for a single studied system, for

instance in fingerprinting a disease in the metabolomics and

proteomics fields, optimal data concatenation, or data fusion, has

become an issue that needs to be addressed. Each analytical

technology demonstrates different strengths and limitations

regarding its capability to distinguish between different biological

conditions, depending upon factors such as sensitivity, sample

preparation, analytical stability, and analytical reproducibility.

The jointed use of two or more analytical technologies gives then a

more robust strategy for data analysis than the use of a single

platform [1].

Data fusion is widely applied in the pattern recognition field [2].

For example, in chemistry, biology, medicine and many others

fields linear techniques are used to construct a mathematical

model that relates spectral responses from different techniques to

analyte concentrations [3,4,5,6]. In the omics related fields, data

fusion is performed in different ways and on different data levels

[7]. To date, data fusion methods are organized in three levels:

low-level, mid-level and high-level fusion [8,9]. In low-level fusion,

different data sources are concatenated at the data level. In the

mid-level fusion, data from different sources are combined at the

data level by selection of variables or at the latent variables level.

In high-level data fusion, different model responses (for instance

prediction for each available data set) are joined to produce a final

response. Currently, several linear techniques, such as Principal

Component Analysis (PCA) or Partial Least Squares Discriminant

Analysis (PLS-DA), are used for the above mentioned types of data

fusion. These different linear data fusion approaches have been
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applied with good success in recent times in the different omics

fields, including metabolomics [8,10,11,12]. To our knowledge

non-linear methods have not been applied to data fusion in for

instance metabolomics. However, some chemical systems and

problems are inevitably non-linear and reveal characteristics in a

non-linear fashion. The assumption of a linear response is then

incorrect and non-linear description is appropriate [13]. Of

course, to follow Occam’s razor principle, it is common practice to

first apply linear methods and only if they fail to move to non-

linear techniques like kernel-based methods. Kernel-based meth-

ods transform the data to a high dimensional feature space by

means of a kernel function. This generates a new data matrix,

which can be viewed as a similarity matrix. The kernel function

takes relationships that are implicit in the data and makes them

explicit, so that patterns are easier to detect. Moreover, they have

been designed to deal with datasets where many variables are

present. Kernel-based methods have already been demonstrated

to form powerful tools and therefore are widely applied to various

statistical problems due to their flexibility and good performance

[14,15]. A major disadvantage of these Kernel-based methods has

been that information on the importance of variables is lost.

However, recently an approach has been proposed for represent-

ing the importance of variables in kernel space, a method based on

the principles of so-called pseudo samples [16,17].

Nowadays, proton Nuclear Magnetic Resonance (1H-NMR)

and Gas Chromatography-Mass Spectrometry (GC-MS) are well-

established powerful analytical methods for generating metabo-

lomics profiles. For analysis of complex, biological samples like

those from Cerebrospinal fluid (CSF) both techniques have their

advantages and disadvantages. For instance, 1H-NMR requires

limited sample preparation, is quantitative, non-destructive and

unbiased. 1H-NMR may detect compounds that are too volatile

for GC, while metabolites without proton (phosphoric acid) are

not detected by 1H-NMR. GC-MS requires derivatization and

thus more time consuming sample preparation. On the other

hand, GC-MS yields a higher sensitivity than NMR and therefore

may detect metabolites that are present in a concentration below

the detection limit of 1H-NMR. Therefore, these analytical

platforms give wide and complementary views of the studied

system. To obtain the maximum/optimal amount of relevant

information about the complex biological system, the data from

these powerful analytical techniques need to be combined and

analyzed with advanced multivariate statistical tools.

This paper presents a novel framework for integrating data from

different analytical sources by applying non-linear kernel-based

statistical learning methods. We demonstrate this non-linear kernel

fusion approach on 1H-NMR and GC-MS metabolomics datasets

obtained from CSF of patients with Multiple Sclerosis (MScl) [18].

These data display non-linear response characteristics. The

proposed approach for non-linear Kernel-based data fusion

consists of four steps. The first step aims to extract relevant

variables from both datasets separately. Variable selection is

performed by means of Support Vector Machine Recursive

Feature Elimination (SVM-RFE) for non-linear kernels [19]. The

second step is designed to fuse the relevant information of both

datasets by using linear combinations of kernel matrices [20]. This

kernel fusion falls outside the range of the classical low-, mid- and

high-level fusion. The next step (step 3) consists of applying PLS-

DA on the fused kernels as classification method. In step 4, the

visualization of the relative contribution of each variable to K-

PLS-DA model (variable importance) was achieved by applying

and extending the recently developed pseudo samples principle

[16,17]. Consequently, in our approach the importance of

variables is visualized. The variables can then be interpreted in

terms of the underlying biology of system. Application of our non-

linear Kernel-based data-fusion methodology to the 1H-NMR and

GC-MS metabolomic datasets from samples of CSF of MScl

individuals and individuals in the early stage of the disease enabled

better classification than using the data from the two sources

separately. More importantly, the biological interpretation can

now be done based on the joined data from the two platforms. The

approach proposed here can be extended to other types of datasets

such as to MS or NMR data from proteomics or data from

microarrays and Liquid Chromatography. The number of samples

used to study the progression of MScl is relatively small.

Therefore, some limitations with respect to biological interpreta-

tion as well as prediction of future samples may exist, e.g. due to

biological variation. In order to use the findings in the clinic they

should be validated in a new cohort with a larger number of

samples. This issue will be further addressed in the discussion

section.

Materials and Methods

CSF Sampling and Patients
The CSF patients involved in this study were all followed by the

Rotterdam Multiple Sclerosis Center and the department of

Neurology at Erasmus University Medical Center (Rotterdam,

The Netherlands). The Medical Ethical Committee of Erasmus

University Medical Centre in Rotterdam, The Netherlands,

approved the study protocol and all study patients gave written

consent. All CSF samples were specifically collected from patients

that were not under any drug treatment.

All CSF samples were taken from patients via lumbar puncture.

Immediately after sampling, the CSF samples were centrifuged to

remove cells and cellular elements (10 minutes at 3000 rpm).

Subsequently, a fraction of the CSF samples were used for

diagnosis purpose and the remaining amounts were aliquoted and

stored at 280uC.

The CSF samples were classified into two groups. The first

group consisted of CSF samples collected from patients diagnosed

with MScl. The second group of CSF samples was taken from

patients who were diagnosed with clinically isolated syndrome of

demyelination (CIS), which represents an early stage of MScl. It is

worthwhile to mention that all patients diagnosed with CIS have

later developed MScl. The overview of the available CSF samples

for NMR and GC-MS is presented in Table 1, while clinical

information is described in File S1. It is important to mention that

the set of samples analysed by NMR and GC-MS only partly

overlap (Table 1).

NMR Samples Preparation and Data Acquisition
The CSF samples of the CIS and MScl classes were prepared as

follows. An aliquot of 20 mL of the stored frozen human CSF

sample (280uC) was thawed at room temperature. Subsequently,

200 mL D2O was added to biofluid in order to obtain sufficient

sample volume for NMR measurements. We used 3-(Trimethylsi-

lyl)propionic-2,2,3,3-d4 acid sodium salt (TSP-d4 99 at.%D) as

internal standard for chemical shift reference (d 0.00 ppm) and

metabolite quantification. For this and buffering, 70 mL of buffer

solution was added to the 220 mL of human CSF sample. The

buffer solution solvated in a mixture of water and D2O consists of

2,85 mM TSP, 6.92 mM sodium azide (NaN3) and 42.08 mM

sodium phosphate dibasic dehydrate (Na2HPO4N2H2O). The

addition of mixture solution to 220 mL of CSF sample leads to a

final concentration of 0.66 mM TSP-d4 and corresponding

concentrations of buffer solution components. The pH of the

CSF NMR sample was adjusted to around 7 (7.0–7.1) by the
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buffering capacity of the phosphate in the buffer solution. The

final CSF NMR sample (290 mL) was transferred to a SHIGEMI

microcell tube for NMR measurements.

All spectra were recorded by using a standard pulse sequence

(1D-NOESY; recycle delay-90u-t1-90u-tm-90u) at a temperature of

25uC. The water suppression was achieved by presaturation

during the relaxation delay (8 s) and mixing time (100 ms). All 1H

NMR spectra were acquired at 600 MHz Bruker NMR

Spectrometer equipped with cryo-cooled probe. For each 1D 1H

NMR spectrum 256 scans were accumulated with a spectral width

of 7200 Hz resulting in a total of 16K data points. The acquisition

time for each scan was 2.2s. Prior to spectral analysis, all Free

Induction Decays (FIDs) were multiplied with a 0.3 Hz line

broadening function, Fourier transformed and manually phased.

In addition, the TSP internal reference peak was set to 0 ppm.

This initial processing was done using ACD/SpecManager

software version 12.02 [21].

All 46 human CSF spectra were acquired and pre-treated as

described above and subsequently, transferred to Matlab, version

7.6 (R2008b) (Mathworks, Natick, MA) for further analysis.

Preprocessing of NMR Spectra
The NMR spectral data of human CSF was pre-processed,

which typically involves baseline correction, alignment, binning,

normalization and scaling. Asymmetric Least Square method was

used for baseline correction of NMR spectra [22]. Next, in order

to remove variations in peak position, NMR spectra were aligned

by using correlation optimized warping [23]. A further problem is

the high dimensionality of the data (circa 15000 variables). To

reduce the number of variables associated with the NMR spectra,

we performed binning via adaptive intelligent binning [24]. Before

binning data were normalized to total area. The chemical shift

ranges of d 0.75–4.15 and d 8.65–8.85 were used for the binning

procedure. The binning procedure led to 233 bins in total. In the

final step of preprocessing data were scaled to unit variance.

GC-MS Samples Preparation and Data Acquisition
The GC-MS method applied here is a non-targeted GC-MS

method which uses a derivatization step that has frequently been

applied for metabolomics studies [25]. With this method it is

possible to analyse simultaneously various classes of (polar)

metabolites, e.g. amino acids, organic acids, fatty acids, sugars.

Human CSF samples (100 mL) were deproteinized by adding

400 mL methanol and subsequently centrifuged for 10 min at

10000 rpm. The supernatant was dried under N2 followed by

derivatization with methyl-N-(trimethylsilyl)-trifluoroacetamide

(MSTFA) in pyridine similar to Koek et al. [25]. During the

different steps in the sample work-up, i.e. prior to deproteinization,

derivatization and injection, different (deuterated) internal stan-

dards were added at a level of circa 20 ng/mL. The end volume

was 135 ml and 1 ml aliquots of the derivatized samples were

injected in splitless mode on a HP5-MS

30 m60.25 mm60.25 mm capillary column (Agilent Technolo-

gies, Palo Alto, CA) using a temperature gradient from 70uC to

320uC at a rate of 5uC/min. GC-MS analysis was performed using

an Agilent 6890 gas chromatograph coupled to an Agilent 5973

quadrupole mass spectrometer. Detection was carried out using

MS detection in electron impact mode and full scan monitoring

mode (m/z 152800). The electron impact for the generation of

ions was 70 eV.

A total of 38 human CSF samples were analysed by GC-MS.

The samples were randomly distributed over batches and each

sample was injected once. A pooled CSF sample was prepared

from the study samples for quality control (QC). Aliquots of this

QC sample were analysed in sextuplicate in each batch according

to the procedure described by van der Greef et al. [26].

Data preprocessing was performed by composing target lists of

peaks detected in the samples based on retention time and mass

spectra. Peaks were characterized by retention time and m/z ratio

and identified by comparison with a spectral database. These

peaks were integrated for all samples. The peak areas were

subsequently normalized using internal standards and corrected

for intra- and inter-batch effects using the QC samples according

to the procedure described by Verheij et al. [27]. The final step of

preprocessing was unit variance scaling.

Explorative Analysis
The first step of our data analysis strategy consists of a data

exploration by means of Robust – Principal Component Analysis

(R-PCA) [28] and PCA. R-PCA was employed on the autoscaled

data to detect the outliers in both datasets. To extract and display

the systematic variation in the two datasets PCA was also carried

out on the autoscaled data.

Selection of Training Set and Independent Test Set
In order to validate the performance of the classifier an

independent test set was used. Dividing the data into training and

test sets is a widely accepted approach for this purpose [29,30].

The commonly used leave-one-out cross-validation (LOOCV) is

biased to assess the predictive ability of the classification model.

External validation using test sets provides a means to establish a

more reliable predictive performance of the classification model

[31,32,33].

The training set and an independent test set were selected

separately for NMR and GC-MS datasets using the Kennard-and-

Stone algorithm [34] in such a way that the number of samples in

the test set in every group (i.e. MScl or CIS, see Table 1) was equal

to 25% of the total number of samples in a group). The training

sets were used for all optimization steps and for developing a

classifier, while the independent test was utilized to assess the

predictive ability of the classification model. The Kennard-and-

Stone algorithm is one of many possible approaches for data

division [32,35,36]. The use of Kennard-and-Stone algorithm for

data division is justified by the advantage of obtaining represen-

tative training set and the reproducibility of the selection.

Nevertheless, since it is Euclidean based algorithm it might be

Table 1. The number of samples included in a training and independent test set.

Group No. samples NMR No. samples GC-MS Overlap NMR and GC-MS

Training Test Total Training Test Total Training Test Total

MScl 19 7 26 18 6 24 7 5 12

CIS 15 5 20 10 4 14 7 3 10

doi:10.1371/journal.pone.0038163.t001
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influenced by noisy variables. Therefore, in addition the training

and independent test sets were selected randomly. The results of

presented fusion approach for random division is shown in Figure

S3 and File S1.

The number of samples included in the training set and

independent test set is shown in Table 1. Since the number of

overlapping samples between NMR and GC-MS is relatively low

(22) this puts limitations on the accuracy of the predictions when

using a relatively small independent test. Therefore, as an

additional check of the meaningfulness of the classification model,

a permutation test with 10000 permutations was performed. Using

a permutation test, we checked if the assessment of the

classification of objects into the original classes is significantly

better than any random classification in two arbitrary classes.

Supervised Analysis: Linear and Non-linear Approaches
The supervised analysis is carried out in order to extract class

related information. Below, we briefly describe the overall strategy.

First, the supervised data analysis involving linear methods is

described followed by the proposed kernel based non-linear

methods. In the next sections detailed information on specific

technical aspects of the supervised data analysis strategy is

provided.

The most straightforward approach in data analysis is to first

use a linear method. Therefore, the linear method by means of the

cross model validation (CMV) PLS-DA is applied [37]. In this

technique, two cross validation procedures are included in the

variable selection procedure based on jack-knifing. This approach

enables removal of irrelevant variables and optimizes the model

for accurate prediction of group memberships. This technique was

first applied to individual datasets and then the selected variables

were fused and analysed by the linear classifier.

Next, if the considered classification problem is suspected to be

non-linear (e.g. when prediction accuracy of linear model is low),

more sophisticated algorithms can be applied. Here, a non-linear

technique based on kernel methods was utilised. The strategy is

shown in Figure 1. The steps 1 and 2 were carried out on the

training set. The first step consists of a variable selection method,

which aims to obtain meaningful information from each individual

data set. We used SVM-RFE for the non-linear kernel as variable

selection method [19]. For both datasets the radial basis function

(rbf), i.e. a Gaussian function, is used to map the original input

data into a feature space [38] (see also File S1 Kernel

transformations part). The choice of kernel function is performed

both by means of visual inspection of PCA score plot and using the

root mean square error of cross validation (RMSECV).

RMSECV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 Yi{ Yi

^
� �2

n

vuuut
Here, Y is a real class label,

while Y
^

is the predicted class label; n indicates the number of

observations.

The kernel parameter sigma (s) is optimized by LOOCV. More

specifically, in each iteration, one object from the training set is

removed and a model is constructed on the remaining objects for

different values of s. This is repeated until each object has been

removed once. The RMSECV is calculated for each iteration. The

optimal s value is selected based on the first minimum in the

RMSECV. SVM-RFE is performed for both datasets separately.

Only the selected variables are then used in the subsequent steps. In

the final part of step 1 (see Figure 1), the data with only significant

variables are analysed by K-PLS-DA, which is an alternative to the

SVM technique. This part is employed to tune the kernel parameters

and to estimate the classification accuracy of the separate datasets.

The optimal model complexity (i.e. number of latent variables

(LV’s)) was selected based on RMSECV. Note that the selected

variables per dataset can be concatenated in classical mid-level

fusion and analysed with K-PLS-DA. [8] In our procedure, SVM-

RFE was selected as variable selection and K-PLS-DA as

classification method. The use of SVM-RFE it justified by the fact

that it is a well-established method, able to find significant variables

in non-linear space. The binary classifier (PLS-DA) is a popular

alternative to SVM. Our choice was guided by the fact that SVM

offers sparse solutions based on a limited number of observations, i.e.

the support vectors. Since the obtained hyperplane can be based on

outlying objects, this brings a question about the robustness of SVM

[38]. The main benefits of K-PLS-DA are its efficiency and

simplicity. In addition, it has convenient visualisation options in the

latent variable space. Nevertheless, as it will be shown latter, in terms

of prediction K-PLS-DA and SVM perform similarly (see Data

fusion by MKL).In the second step (see Figure 1), the kernels of the

individual datasets are concatenated by linear combination of their

kernel matrixes. In step 3 the combined kernels are analyzed with K-

PLS-DA. The accuracy of the K-PLS-DA model is validated by the

independent test set and by the permutation test. In order to obtain

more robust classification model in the final step (number 4) the K-

PLS-DA model is reconstructed using all available samples (i.e. both

training and test sets) and all previously optimized parameters,

namely number of variables, sigma for rbf kernel, coefficients m and

nr. of LV’s (see later). Moreover in this step variable importance in

kernel space is evaluated and visualized.

Variable Selection by SVM- RFE
The first step of our approach (Figure 1) consists of extracting

the most relevant information from the datasets by using SVM-

RFE variable selection. SVM is a powerful, supervised method

and since this technique is extensively discussed in the literature we

do not focus on its description [39]. SVM- RFE is an application

of RFE in the SVM algorithm and was introduced by Guyon [19].

RFE is a backward elimination algorithm that ranks variables on

the basis of the smallest change in a cost function minimized in the

SVM algorithm. In the specific case of a non-linear kernel, used in

this manuscript, the cost function to be minimized takes the form:

J~(1=2)aT Ha{aT 1 ð1Þ

Here, H is a matrix with elements yiyjK(xi,xj), K is a kernel

function, yj and yj denotes the class labels, a’s are the Lagrangian

multipliers and 1 is a vector of ones. The algorithm begins by using

all training data to train SVM. The matrix H is than recomputed

for every variable being removed, while the a’s values remain

unchanged. The elimination of the input variable ‘‘i’’ causes the

change in cost function, J. The change in the cost function is

calculated according to equation 2:

DJ(i)~(1=2)aT Ha{(1=2)aT H(i)a ð2Þ

Here, H(-i) indicates the matrix H calculated when the input

component ‘‘i’’ is removed. All the DJ(i) is calculated and the values

are sorted accordingly. A subset of variables corresponding to the end

of the sorted list of DJ (i.e. those with small DJ) is then removed. In our

case, the subset is formed by only one variable in each iteration.

In order to select an optimal set of variables LOOCV approach

is used. We used RFE with cross-validation since it increases the

likelihood that relevant variables are selected. Averaging over

cross-validation iterations ensures that the variables that were

significant in each run are selected. This gives a better estimation

Interpretation of Data Fusion in Kernel Space

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38163



of the important variables than performing variable selection only

once using all training samples. Moreover, using a variable

selection procedure with cross-validation, overly optimistic results

(solely valid for the training models) can be avoided. In LOOCV

in each iteration, one object of the training set is left out and a

ranking is obtained. Next, the total ranking is obtained by sorting

the variables based on the amount of times it is selected in the

LOOCV. All variables that appear twice or more in the ‘‘top ten’’

of the rankings are selected. Although the number ten is somewhat

arbitrary, exploration of other options (e.g. ‘‘top fifteen’’ or median

Figure 1. Conceptual flowchart of kernel-based data fusion. X1 and X2 are two blocks of data. *Note that all optimized parameters, i.e.
number of variables, sigma for the rbf kernel, coefficients m and nr. of LV’s are kept during the model reconstruction using all available samples. The
particular steps are described in sections data analysis.
doi:10.1371/journal.pone.0038163.g001
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+1 of the amount it is selected in the LOOCV) did not affect the

outcome.

Data Fusion by Multiple Kernel Learning
The second step of our approach (step 2, Figure 1) aims to

combine the kernels. This is done by means of Multiple Kernel

Learning (MKL), which was pioneered by Lanckriet et al. [40]and

Bach et al. [41] as extension of single kernel to integrate multiple

kernels in SVM. They integrated multiple kernels in classification

problems. The essence of MKL is to combine kernel matrices into

a single kernel using basic algebraic operations such as addition or

multiplication. For example, given two (positive semi-definitive)

kernels K1 and K2 it is possible to define the new kernel K, which

is a parameterized linear combination of K1 and K2. In particular,

given a set of kernels K it is possible to combine them by linear

combination according to equation 3:

K~
Xm

i~1

mi Ki ð3Þ

Here m is a number of kernels and coefficients m are non-negative

to assure positive semi-definiteness of K: mi $0. Note that the

dimensions of the kernels have to be equal (i.e. the number of

samples in the datasets has to match). The coefficients mi in

equation 3 can be tuned to weight the importance of the different

kernels. The weights can be obtained in multiple ways, i.e. by

applying different regularization method such as the L1 or L2-

norm. L1 regularization on the kernel coefficients corresponds to

the requirement that the sum of mi equals one (||mi||1 = 1). L1

regularization can lead to sparse optimal solution and diminishing

one of the platforms. In the current problem of deriving metabolite

profiles from NMR and GC-MS datasets both datasets are

relevant and complementary (the sets of measured metabolites are

partially different). In order to avoid the possibility of shrinking the

importance of any platform the L2-norm was used as regulariza-

tion parameter. In the L2-norm approach, different constraint on

the coefficients are used, i.e. the sum of squares of mi equals one

(||mi||2 = 1). The L2-norm yields a non-sparse solution and it

distributes the coefficients over multiple kernels [20]. Using the L2-

norm MKL we try to find the best separation between classes by

solving the objective as follows:

min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y{ Y )

^� �2
s

Y
^

~XB; X~
Xm

i~1

mi Ki

mi §0,i~1,:::,m

DD mi DD~1

ð4Þ

The weights mi were optimized by LOOCV performed on the

training set. The optimal weights were selected based on the

minimal error of the root mean square error of cross-validation

(RMSECV).

K-PLS-DA and Variables Visualisation
In the non-linear architecture presented in Figure 1, the fused

kernels are analyzed with a classification method, K-PLS-DA

(step 3). This means that PLS-DA is applied on to the combined

kernel matrix.

The classification model is statistically validated, i.e. it is based

on the prediction accuracy of the K-PLS-DA model, on the

independent test and on the permutation test. Therefore, in the

final fourth step of the approach shown in Figure 1 K-PLS-DA is

first reconstructed using all available samples and next variables

importance is established.

To represent the importance of the original variables, the

pseudo samples principle, recently proposed by Krooshof et al.

[16] and based on the non-linear plot principle described by

Gower [42], was applied (step 4; Figure 1). As shown in

Figure 2a, the matrix X (with n number of objects and p number

of variables) is mapped by the kernel function K(xi,xj) (where xi

and xj are samples from matrix X). The obtained kernel matrix

K is a square matrix of size ‘‘n x n’’ (where n is a number of

samples). The application of PLS-DA on the kernel matrix leads

to a linear model, i.e. y = Kb+r, where y a vector of group

memberships, b regression coefficients and r a model residual. It

is possible to obtain predicted ŷ-values for all training samples of

matrix X, but the information about the variables (i.e.

metabolites) involved in the discrimination is lost. In our

approach every original variable is represented as a set of

pseudo samples. The pseudo samples are artificial samples

constructed as follows: every pseudo sample contains a certain

value (e.g. 1) for only one variable and zeros for all the others. It

is possible to check the influence of these pseudo samples in a K-

PLS-DA model by predicting their corresponding ŷ-values or

projecting them into latent variable space.

The graphical representation of the pseudo samples principle is

shown in Figure 2b. It is possible to construct for each original

variable a series of pseudo samples containing different values.

These different values permit to describe a complete trajectory for

each variable. In that way, for every variable a matrix of size

‘‘k6p’’ (where k is the number of pseudo samples used to span the

complete range of the original variable and p the number of

original variables) is created. From now on, we call this set of

pseudo samples describing a single original variable a pseudo

samples matrix. For data matrix X (shown in Figure 2a) ‘‘p’’

pseudo samples matrices are created, each of size ‘‘k6p’’. Once all

pseudo samples matrices are constructed, one can apply the K-

PLS-DA model to estimate the influence of the original variables.

The pseudo samples are first mapped into the kernel space in

relation to the original data matrix X using the same kernel

function as derived for data matrix X (Figure 2a), i.e. K(xi,psj)

where xi is an object of matrix X and psj is one pseudo sample.

This leads to ‘‘p’’ kernel pseudo samples matrices (Figure 2b). Next

the ŷ-values of pseudo samples can be estimated using regression

vector ‘‘b’’ of K-PLS-DA model or they can be projected into LV

space using loading vector of K-PLS-DA model. It has been shown

that for linear kernel predicted ŷ-values of pseudo samples can be

directly related to the regression coefficient of the original variables

[17]. The projections of pseudo samples into the regression vector

‘‘b’’ of K-PLS-DA model from now on will be called ‘‘regression

coefficient’’; while the projection of the pseudo samples in the LV

space will be referred to as a loading plot.

The first graphical representation (Figure 3a) permits one to

investigate how the original variables evolve as a function of the

studied response as well as their global and local importance in the

model. As described above, the kernels pseudo samples (see

Figure 2b) are projected into the K-PLS-DA model to visualize the

importance and behaviour of the original variables. A schematic

example is provided in Figure 3a. The ‘‘regression coefficients’’ of

four variables trajectories are displayed, each one illustrating a

different case. If the influence of a given variable to the model is

linear the corresponding pseudo samples trajectory should form a
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straight line, as variable 1 in Figure 3a. Variable 2 behaves linearly

in the low variable range but becomes non-linear in the high range

as can be observed from the corresponding curvature. Variable 3

represents a more complex sigmoid shape. This variable has big

importance in the model in the low range and in high range but

less in intermediate range. Note that in the high range variable 3

shows a plateau, which indicates that after passing a certain

concentration value its importance stays constant. Finally, the last

variable shown in Figure 3a, variable 4, has very little influence on

the model. Note that, if the optimal K-PLS-DA model complexity

is one LV, information contained in the regression coefficient and

the loading vector (obtained from K-PLS-DA model) is equivalent.

Therefore it is possible to use the loading vector instead of the

regression vector ‘‘b’’ for obtaining the predicted ŷ-values of

pseudo samples (the y-axis of Figure 3a represent 1LV). This kind

of plot in linear PLS-DA is called loading plot. Therefore, in the

rest of paper it will also be called loading plot.

Another piece of information delivered from Figure 3a, is the

change of variable value between studied groups. Positive

predicted ŷ-values of pseudo samples indicates group A and a

negative indicates group B. For instance the value of variable 1

increases from group A to group B, while the value of variable 2

decreases from group A to group B.

Figure 3b is an enhanced version of the figure presented in

reference [17]. It allows direct visualisation of the importance of

each variable on the K-PLS-DA model. Figure 3b is constructed as

follows: the absolute value of the maximal ‘‘regression coefficients’’

(i.e. predicted values of pseudo samples) is used as the relative

importance of each variable. Note that this approach can be used

when the original variables are scaled to unit variance. Note

further, an alternative to estimate/visualize the relative impor-

tance would be by taking the absolute value of the difference

between maximum value and minimum value. The result can be

graphically represented using the traditional regression plot

obtained in any regression method [8]. Note that the importance

of the variables can be also directly read off from Figure 3a, i.e.

from the absolute max values along the horizontal axis. The

4 variables in Figure 3b correspond thus to the ones shown in

Figure 3a.

Data
Every NMR spectrum of CIS and MScl groups was divided into

233 bins, corresponding to relative metabolites concentrations.

These bins are equivalent to approximately 50 identified

metabolites and some unidentified resonances. The GC-MS data

consists of 66 metabolites and their corresponding relative

concentrations. It is important to mention that 20 metabolites

were measured by both NMR and GC-MS. Some metabolites are

identified only by NMR (e.g. methanol) or only by GC-MS (e.g.

urea) [43].

These two datasets are used as case study to represent the

proposed architecture for non-linear data analysis and fusion.

After variables selection by SVM-RFE the NMR data and GC-

MS data are reduced to 47 bins and 29 metabolites, respectively.

In case of NMR these 47 informative bins correspond to 20

identified metabolites and some unidentified resonances.

Figure 2. Representations of the a) kernel mapping of data matrix X into kernel space; b) pseudo samples principle in K-PLS-DA. k
indicates the range of pseudo sample values (uniformly distributed); *Note that there are ‘‘p’’ pseudo sample matrixes and ‘‘p’’ kernel pseudo samples
matrixes. **The ŷ-values can be projected into latent variable space. #Note that for kernel pseudo samples the loading and b vector of K-PLS-DA
model are used. ***These ŷ-values can be represented as ‘‘regression coefficients’’ shown later in Figure 4 or loading plot shown in Figure 5.
doi:10.1371/journal.pone.0038163.g002
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It is important to keep in mind that s, i.e. the parameter

controlling the smoothness of the function, has to be tuned

correctly, since it impacts the model performance. The s
parameter used for rbf kernel function is optimized separately

for NMR dataset and GC-MS dataset and again before kernel

fusion. An overview of s parameters optimized in particular steps

in Figure 1 is summarized in Table 2.

Metabolites Identification
After selection and visualization of the most important variables,

the corresponding metabolites were identified (NMR). Metabolite

identification for NMR data was carried out by using the

600 MHz library of metabolite NMR spectra from the Chenomx

NMR Suite 7. The library of metabolite spectra is obtained based

on a database of pure compound spectra acquired using particular

pulse sequence and acquisition parameters, the tn-noesy-presatu-

ration pulse sequence with 4s acquisition time and 1s of recycle

delay [44].

Results

Linear Methods
The analysis of the data can be first performed per analytical

method. This is particularly significant not only during exploratory

phase but also during supervised analysis, where relevance of

individual sets is investigated. Both datasets were first analyzed

with R-PCA and PCA for presence of outliers and to detect

potential trends. In total 4 NMR spectra and 3 GC-MS samples

were detected as outliers and removed from further analysis. Since

PCA score plots did not reflect any groupings and the variations

did not separate according to groups CIS and MScl, the results of

this analysis are not shown. Next, the linear method, CMV-PLS-

DA, was employed on separate platforms and on fused datasets in

mid-level fashion. In our case, the application of linear methods

provided disappointing results for the separate datasets as well as

for the datasets fused in the mid-level fashion. The degree of

correct classification for a validation set obtained for the individual

data-set analysis and for the concatenated sets can be seen in

Table 3 and the corresponding figures are shown in Figure

S2a2S2c.

Non-linear Analysis
Since linear methods did not lead to satisfactory results (see

Table 3), we used more sophisticated methods (i.e. non-linear) to

find differences in metabolic profiles of CSF of CIS and MScl

groups. As pointed out previously (see Materials and Methods),

our approach is based on four steps. The first one consists of a

variable selection performed on each dataset. We used SVM-RFE

in order to get good predictive group membership ability and a

meaningful interpretation of the model. After the first step, we

analysed the separate datasets by K-PLS-DA. After variable

selection every dataset can be assessed in terms of complexity and

Figure 3. Schematic example of: (a) ‘‘regression coefficients’’ of original variables trajectories plotted versus their range; (b) the
maximum absolute value of ‘‘regression coefficients’’ of original variables trajectories shown in a.
doi:10.1371/journal.pone.0038163.g003

Table 2. Summary of s parameter for rbf kernel function.

s parameter at: NMR GC-MS

Step 1 (variable selection) 0.5 0.55

Step 3 (kernel fusion) 0.3 0.3

doi:10.1371/journal.pone.0038163.t002

Table 3. An overview of prediction accuracy for the
validation set using linear methods, non-linear methods and
MKL.

Correct classification rate

NMR GC-MS
Fusion
(NMR +GC-MS)

Linear method 61% 63% 65%

Non-linear method 93% 85% 89%

MKL 100%

doi:10.1371/journal.pone.0038163.t003
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prediction accuracy. The overall correct classification for inde-

pendent test sets, left out during model optimization and

construction, is 93% for NMR data and 85% for GC-MS data,

respectively (Table 3). Both K-PLS-DA models were constructed

for 2 latent variables (LV’s). These results suggest that both data

sources hold relevant information concerning discriminating CIS

and MScl groups. The overview of the prediction of each K-PLS-

DA model is presented in Table 3.

The most straightforward approach fordata fusion is to analyse the

two datasets together by simply concatenating the selected variables

from two data sources together (mid-level fusion). It is expected that

the two types of information from the NMR and GC-MS datasets

should complement each other and improve the class separation.

However, thismid-level fusionprovidesverysimilar results in termsof

complexity of the K-PLS-DA model and correct classification (i.e.

2LV’s and 89% correct classification, see Table 3).

Data Fusion by Multiple Kernel Learning
Since the analysis of both sets as unique matrices does not

provide a better separation of the groups, we decided to apply

kernel-based fusion by MKL (Materials and Methods). Note that

this kernel fusion architecture, as applied by us here, falls outside

the range of the classical low-, mid-, or high-level fusion. It uses the

specific property of the kernel matrix in the data fusion, i.e. its

dimensions and its nature comparable to a similarity matrix.

The MKL approach used here is composed of optimizing

weights for each kernel matrix. The optimized weights were equal

0.75 for NMR and 0.661 for GC-MS. This indicates that both

datasets are almost equally important. After weighted kernel-based

fusion, the newly formed kernel matrix can by analysed by PLS-

DA. The kernel fusion leads to correct prediction of 100% on the

independent test set (versus 89% for mid-level fusion, see Table 3).

The K-PLS-DA model was constructed by using 1 LV. As an

additional check, we performed a permutation test. The p-value

for 10000 permutations was equal to 0.0013. The accuracy of K-

PLS-DA was further compared to SVM. The correct prediction

was as well 100% on the independent test set.

Since the model shows good predictive ability on the independent

test set,weconsider itas statisticallyvalidatedandasshowninFigure1

(step 4) the K-PLS-DA model is then reconstructed using all available

samples.Theresultingmodelcanbegraphicallyassessedusingascore

plot (here not shown). Obviously, this kind of plot is the normal visual

representation of kernel method.

Variables Importance Visualization
As shown in Materials and Methods, it is possible to visualize the

original variables in discriminating the groups. For that purpose the

maximum absolute value of the predicted values of pseudo samples

wascalculated.TheobtainedvaluesareshowninFigure4.This figure

demonstrates that there are several variables having very high

importance. For instance, variables number 67 (sucrose), 76 (urea)

and 50 (3-methyl-2-hydroxybutanoic acid) have the highest values of

the predicted values of pseudo samples, demonstrating the relevance

of these variables. There are just few variables seen as less significant,

for example variable 57 (glycerol) or 63 (phenylalanine). The

complete list of names of metabolites corresponding to variable

number is given in Table S1.

As was explained in Materials and Methods, to investigate the

relation between individual variables and changes of metabolite

concentration (i.e. elevation or reduction) the trajectory of

predicted values of pseudo samples (representing individual

variables) can be studied. Since the optimal model complexity is

1LV we used loading vector delivered from K-PLS-DA model to

project the pseudo samples into LV1. The obtained trajectories are

shown in Figure 5. Because presenting trajectories for all variables

makes the plot unreadable, in Figure 5, only a few of them are

given. Trajectories for all variables are given in Figure S1.

Besides showing the importance of variables in discriminating,

Figure 5 also reveals the linear or non-linear trend and/or

monotonicity of the variables in certain concentration ranges. A

variable which shows a non-linear trend is glutamine and is derived

from NMR. Valine is characterized by linearity and monotonicity in

its low range, and non-linearity in its high range. Urea and sucrose

demonstrate linearity over the whole concentration range.

As mentioned before the change in metabolite concentrations

across groups can be assessed. The horizontal axis in the Figure 5

represents therangeofeveryoriginalvariable (scaled to itsmin tomax

value). The levels of lactate and of valine both increase, while the

concentration of glutamine and citrate is reduced with disease

progression. To make the change of metabolite concentrations more

evident we included the direction of groups along vertical y-axis.

More specifically, the negative values of the predicted values of

pseudo samples correspond to CIS and the positive values to MScl.

At this point one should remember that some metabolites were

measured both by NMR and GC-MS. It is therefore interesting to

check how the corresponding variables compare with each other.

For instance, pseudo sample trajectories for glutamine derived

from NMR and GC-MS reveal very similar evolution upon disease

progression. Correspondingly, pseudo sample for lactate, glucose

and citrate measured by NMR and GC-MS display comparable

trajectories along concentration range. This suggests that even

after non-linear transformation the same variables measured by

two different analytical methods are correlated and demonstrate

their akin behaviour.

Discussion

In this paper we have described a procedure for kernel-based

data fusion. We have demonstrated an application of the proposed

procedure to the classification problem of metabolomics datasets

of CIS and MScl individuals. We have proposed a framework

based on four steps, where the first one is focused on optimization

of individual datasets. This is relevant, since we want to make sure

Figure 4. The maximum absolute value of ‘‘regression
coefficients’’ of original variables.
doi:10.1371/journal.pone.0038163.g004
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that accurate information extracted from both data sources is

included in fusion. We applied the L2 MKL framework,

demonstrated by Yu et al. for SVM, to K-PLS-DA, since it is

characterized by the non-sparse integration of multiple kernels.

Indeed, the optimization of the L2 norm showed that both

datasets, i.e. NMR and GC-MS, are valuable for discriminating

CIS and MScl individuals.

The application of SVM-RFE allowed one to reduce both

datasets significantly and select a set of informative variables. The

classification performance of K-PLS-DA performed on fused

kernels was better than single analysis and common mid-level

fusion. Additionally, the K-PLS-DA model was simpler in terms of

complexity, i.e. just one LV was sufficient to obtain optimal

classification model.

The visualization of the variables relative contribution to K-

PLS-DA model was achieved by applying and extending the

pseudo samples approach demonstrated by [16,17]. This allowed

us to show that even after non-linear kernel transformation two

different analytical methods are consistent with the results. The

pseudo samples trajectories of the same variable measured by

NMR or GC-MS demonstrate very similar trends.

Several potential challenges remain in the proposed framework.

One possibility is to apply it to larger datasets with more different

sources, for instance lipids and metabolites.

Since the number of available samples was limited, the potential

impact of over-fitting of statistical model must be considered. We

used here an independent test set and permutation test, which

yielded results that clearly show that over-fitting, is highly unlikely.

Note that in individual analysis the total number of samples was

larger than in the fused set.

Classification with different types of non-linear functions in the

original space can be achieved using diverse types of kernels. Of

course, the choice of kernel function has to be done beforehand. A

correct selection of kernel function has a significant influence on

classification accuracy. However, no rules can be defined. In our

experiment different kernel functions were tried. The Gaussian

kernel was chosen as the one to fit the data properly. If the sigma

value is too small over-fitting can easily occur. It has also influence

on pseudo samples trajectories. Small sigma value (e.g. 0.1) might

lead to very non-linear and hardly interpretable trajectories.

The case study described here represents indeed a non-linearly

separable problem. As was shown, linear methods gave poor

classification performance. The class separation was possible after

application of a non-linear kernel function and PLS-DA. Non-

linearity is also visible in the pseudo samples trajectories. There are

several variables that are characterized by curved trajectories. The

curvatures of the trajectories illustrate the effect of the original

data. Importantly, even if these trajectories are non-linear, they

are still simple enough to be interpretable.

The example given on the metabolites analysis of CSF gave very

interesting results. However the number of used samples was

relatively low. It should then be pointed out that due to this small

number of samples, this study may have several limitations.

Obviously, the size of the training and testing sets has an influence

on the accuracy assessment of the classification method. Small

sample size may result in detecting only the largest differences.

Indeed the data size and classification rate are correlated.

The bigger the groups size the more representative and robust

the results become. It has been shown [45] that as the sample size

is increased prediction accuracy overcomes local minima and next

stabilizes and therefore become more reliable and accurate.

Obviously classification performance of a classifier is influenced by

the natural difficulty of the studied problem, however there are

possibilities where the performance of a classifier is degraded

because of small training cases. Therefore one should be aware

that results (with 100% correct prediction on test set) shown here

Figure 5. Loading plot of pseudo samples trajectories for selected variables. Numbers in the brackets correspond to variable numbers in
Figure 4.
doi:10.1371/journal.pone.0038163.g005
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do not imply that all new samples will be always correctly classified

(due to e.g. biological variance). Hence, more studies involving a

larger cohort will be necessary to fully establish and assess the

findings. However, despite the drawbacks of the study, it seems

that validation with the independent test set and the permutation

test set attest that the results are meaningful. In general the

accuracy of the classification of objects into the original classes is

significantly better assessed than any random classification in two

arbitrary classes (p-value of 0.0013). Additionally the random

division of data to training and test set was performed, showing

that the average correct prediction over 10000 different runs

supports our results.

From a biological point of view the metabolites having a

relatively high contribution in the K-PLS-DA model, e.g. urea,

glutamine, lactate, citrate, valine, are consistent with biological

knowledge. These metabolites, described in this study, were

previously found in relationship to the MScl [6]. They, therefore,

provide a biological validation for the fusion of data. However, the

full interpretation of the presented models in terms of biology still

remains to be made. Therefore, future work will focus on the

interpretation of newly detected metabolites and on highlighting

pathways involved in the MScl disease process. The pattern

defined by these variables must also be studied by itself and put

into context in a system biology approach.

The kernel fusion approach presented in this paper assumes the

dimensionalities of the kernels to be equal, i.e. the samples present

in each dataset have to come from the same subjects at the same

time points. Although, extending our method for missing values

appears valuable and would be an interesting subject for further

research.

Supporting Information

Figure S1 Loading plot of pseudo samples trajectories
for: (a) variables 1 till 19; (b) variables 20 till 36; (c)
variables 37 till 57 and (d) variables 58 till 76. Numbers

correspond to variable numbers in Table 1a.

(TIF)

Figure S2 The PLS-DA score plot of: (a) NMR data; (b) GC-
MS data; (c) fused NMR and GC-MS in mid-level fashion.
(TIF)

Figure S3 Average Receiver Operating Characteristics
derived from K-PLS-DA for random division of data.
(TIF)

File S1 Clinical information, kernel transformations
and the results of shown fusion approach for random
division of data.
(DOC)

Table S1 Metabolites.
(DOC)
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