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Abstract

Near-infrared spectroscopy (NIRS) has been recently investigated for use in noninvasive brain-computer interface (BCI)
technologies. Previous studies have demonstrated the ability to classify patterns of neural activation associated with
different mental tasks (e.g., mental arithmetic) using NIRS signals. Though these studies represent an important step
towards the realization of an NIRS-BCI, there is a paucity of literature regarding the consistency of these responses, and the
ability to classify them on a single-trial basis, over multiple sessions. This is important when moving out of an experimental
context toward a practical system, where performance must be maintained over longer periods. When considering response
consistency across sessions, two questions arise: 1) can the hemodynamic response to the activation task be distinguished
from a baseline (or other task) condition, consistently across sessions, and if so, 2) are the spatiotemporal characteristics of
the response which best distinguish it from the baseline (or other task) condition consistent across sessions. The answers
will have implications for the viability of an NIRS-BCI system, and the design strategies (especially in terms of classifier
training protocols) adopted. In this study, we investigated the consistency of classification of a mental arithmetic task and a
no-control condition over five experimental sessions. Mixed model linear regression on intrasession classification accuracies
indicate that the task and baseline states remain differentiable across multiple sessions, with no significant decrease in
accuracy (p = 0.67). Intersession analysis, however, revealed inconsistencies in spatiotemporal response characteristics.
Based on these results, we investigated several different practical classifier training protocols, including scenarios in which
the training and test data come from 1) different sessions, 2) the same session, and 3) a combination of both. Results
indicate that when selecting optimal classifier training protocols for NIRS-BCI, a compromise between accuracy and
convenience (e.g., in terms of duration/frequency of training data collection) must be considered.
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Introduction

Many individuals with severe and multiple motor disabilities

rely entirely on access devices (e.g., mechanical switches, eye-

trackers) for communication and environmental control. However,

for individuals who have retained no reliable, voluntary motor

control in any part of the body (e.g., as in total locked-in

syndrome), conventional access devices, which are primarily

movement-based, are ineffective. Brain-computer interface (BCI)

technologies are controlled via brain activity alone, and may

provide these individuals with an alternative, movement-free

means of access. Researchers have recently begun investigating the

potential of near infrared spectroscopy (NIRS), an optical imaging

technology that can be used to assess functional activity in the

cerebral cortex via measurement of the hemodynamic response

(see [1] for description of fundamental principles), for use in a safe,

noninvasive BCI system.

Generally, a user controls a BCI output by consciously eliciting

distinct, reproducible patterns of activation in a particular region

of the brain, which is usually achieved by performing different

mental tasks (e.g., motor imagery). The system then detects and

interprets these task-induced patterns of activation, and produces

the appropriate command signal to control a connected external

device (e.g., computer cursor) in the way the user intended. Each

distinct, intentionally-generated pattern the system is able to

recognize can represent a different user command (e.g., left-hand

motor imagery = ‘‘cursor left’’, right-hand motor imagery =

‘‘cursor right’’).

Thus, essential to NIRS-BCI development is the ability to

accurately detect and classify patterns of activation associated with

different mental tasks. The prefrontal cortex is an attractive

measurement region due to the absence of hair, which can

significantly degrade NIRS signals [2]. Previous studies have

demonstrated the ability to classify prefrontal cortical responses to

several different mental tasks (e.g., mental singing [3–5], affective

picture viewing [6], verbal tasks [7]), with the most prevalent, and

promising, being mental arithmetic (MA) [3–5,7–9]. However,

there is a paucity of literature regarding the consistency of these
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responses, and the ability to classify them on a single-trial basis,

over multiple sessions. This is important when moving out of an

experimental context and toward a practical system, where

performance will have to be maintained over long periods of

time. In all prefrontal NIRS-BCI studies to date, all data used for

single-trial classification have either been collected in a single

session [5,6,10] or have been collected over multiple sessions but

pooled into a single data set for analysis [3,4]. There have been no

multi-session results reported for mental arithmetic, or any other

prefrontal task.

When considering the consistency of responses across sessions,

there are two main questions of interest. The first is whether or not

the hemodynamic response to the activation task can be

distinguished from a ‘‘baseline’’ condition consistently across

sessions. Even though previous research has demonstrated that the

response to a particular task can be detected in a single session, it is

possible that participants could habituate to the task over time,

resulting in a degradation of classification accuracy and system

performance across many sessions. If this is the case, then such a

task would clearly be unsuitable for use in a practical BCI system.

If the response to the activation task does indeed occur consistently

over sessions, however, the second question of interest is whether

or not the measured response looks the same each time; i.e., are

the spatiotemporal characteristics of the response which best

distinguish it from the ‘‘baseline condition’’, consistent from

session to session. The consistency of the measured response may

be affected by intersession variability in user-related (e.g., task

strategy, fatigue, motivation, baseline characteristics), as well as

environmental (e.g., distractions) and instrumentation-related (e.g.,

sensor coupling), factors. Such variability in response character-

istics would have important implications for BCI system design,

particularly in the adopted classification strategies, and especially

in terms of classifier training protocols (e.g., will a classifier trained

using ‘‘old’’ data remain effective across sessions or does it need to

be re-trained before each use?).

In light of the above, we investigated the consistency with which

a mental arithmetic task could be differentiated from a ‘‘no-

control’’ baseline condition over five experimental sessions. The

term ‘‘no-control’’ refers to the natural state existing when the user

is not consciously modulating their brain activity for the purpose of

controlling the BCI output (e.g., during periods of thinking,

monitoring, composing or daydreaming) [11–13]. In particular we

address the following questions:

1. Does the ability to distinguish mental arithmetic and a ‘‘no-

control’’ baseline condition using signals acquired from the

prefrontal cortex via NIRS remain consistent across multiple

sessions?

2. If the answer to #1 above is affirmative, do the response

characteristics that allow best discrimination of the mental

arithmetic task from a ‘‘no-control’’ baseline condition remain

consistent across multiple sessions?

Furthermore, based on the answers to these questions we

investigated the effectiveness of a number of different classifier

training protocols which differed in terms of the training sets used.

Otherwise the classification procedure remained the same in terms

of feature selection and learning algorithm. The training variations

included scenarios in which 1) training and test data came from

different sessions, 2) training and test data came from the same

session, and 3) a combination of 1) and 2).

Materials and Methods

Ethics Statement
Approval for this study was obtained from the Research Ethics

Board of both Holland Bloorview Kids Rehabilitation Hospital

and the University of Toronto. Participation was voluntary and all

participants provided informed, written consent.

Participants
Ten able-bodied adults (mean age = 23.2+4.5 years; two male)

were recruited from the students and staff at Holland Bloorview

Kids Rehabilitation Hospital (Toronto, Canada). Individuals were

excluded from participation if they had any condition that could

adversely affect either the measurements or their ability to follow

the experimental protocol (specifically, any metabolic, cardiovas-

cular, respiratory, psychiatric, or drug- or alcohol-related condi-

tions). All participants had normal, or corrected-to-normal, vision.

Participants were asked to refrain from consuming caffeinated or

alcoholic beverages, or smoking cigarettes, for at least 3 hours

prior to the experimental sessions.

Instrumentation
Signals were acquired using a dual-wavelength multichannel

frequency-domain NIRS instrument (Imagent Functional Brain

Imaging System, ISS Inc., Champaign, IL). A specially made

flexible headband was used to secure ten NIR sources and three

photomultiplier tube detectors against the participant’s forehead,

as shown in Figure 1. So that each location could be probed by

both wavelengths simultaneously, the ten sources were grouped

into five pairs, each containing one 690 nm and one 830 nm

source. The headband was positioned on the participant’s

Figure 1. Source-detector configuration. The dark shaded circles represent photomultiplier tube detectors, while the light shaded circles
represent NIR source pairs (containing one 690 nm and one 830 nm source). X’s represent points of interrogation.
doi:10.1371/journal.pone.0037791.g001

Consistency of Mental Task Classification by NIRS

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e37791



forehead such that the centre row of optodes was in line with the

bridge of the participant’s nose, and the bottom row sat just above

the eyebrows. Nine distinct locations within a 27cm2 trapezoidal

area were probed, as shown in Figure 1. In terms of optode

placement, though there is currently no standardized placement

scheme for NIRS measurements [14], it is generally accepted that

3 cm is the ideal source-detector separation for measuring cortical

hemodynamics [15]. Therefore, in the given configuration we

considered only signals arising from source-detector pairs (hence-

forth referred to as ‘‘channels’’) with a separation of 3 cm, which

yielded a total of 18 channels (i.e., 3 detectors63 locations per

detector62 wavelengths per location). Each channel was sampled

at 31.25 Hz.

Mental Arithmetic Task
For the mental arithmetic task, participants performed a

sequence of simple mathematical calculations, which began with

the subtraction of a small number (between four and thirteen) from

Figure 2. Example trial cues and timing diagram. In this example, the user would perform mental arithmetic during intervals ii) and iv) to select
options A and B, and would remain in the ‘‘no-control’’ state during all other intervals. In viii), the participant would verify his/her response via the
controls shown.
doi:10.1371/journal.pone.0037791.g002
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a three digit number, and continued throughout the task interval

with successive subtractions of the small number from the result of

the previous subtraction; that is, the difference of one subtraction

became the minuend for the next, with the subtrahend remaining

the same (e.g., 753213 = 740, 740213 = 727, 727213 = 714,

etc.). The initial subtraction for a given response period was

displayed visually on the screen.

Experimental Protocol
Each participant completed five experimental sessions which

were conducted on different days over, at most, a month. During

each session, participants performed a total of 32 trials. In each

trial, participants sat in front of a computer and were visually and

aurally presented with a question and three possible responses.

After the question had been displayed on the screen for 8 seconds,

the three choices were highlighted in sequence for periods of 20

seconds each, separated by 12 second intervals in which none of

the three responses were highlighted (to allow prefrontal hemo-

dynamics to return to a baseline state). The timing of an example

trial is shown in Figure 2. A unique question was used for each of

the 32 trials of a single session, however the same 32 questions

were used in each of the five sessions. The periods in which one of

the three responses were highlighted represent the ‘‘system-

vigilant’’ periods in a BCI system [3].

Participants were instructed to answer the questions by

performing the MA task throughout the intervals in which their

desired responses were highlighted. There was not necessarily a

single correct answer for a given question; there could be one,

Figure 3. A single run of 6-fold intrasession cross-validation and intersession ‘‘pseudo-cross-validation’’. In this example, Session A is
the training session, and the remaining four sessions are for testing only. Training and test session data are all divided randomly into six sets. For each
of the six folds, a classifier is trained on five sets of the training session data (a different set is left out at each fold). For the intrasession cross-
validation, the resulting classifier is then tested on the remaining set from the training session; for the intersession ‘‘pseudo-cross-validation’’, the
classifier is tested on a single set from each of the four test sessions (a different set at each fold).
doi:10.1371/journal.pone.0037791.g003

Table 1. Classifier Training Conditions.

Condition Training Set Composition Size of training set (ntotal)

I All samples obtained from a single, dedicated training session, recorded on a different day than
the current test session

96

II The first ncurr samples from the current test session ncurr

III The first 96 2ncurr samples from a single, dedicated training session - recorded on a different day than
the current test session - combined with the first ncurr samples from the current test session

96

IV All samples obtained from the combination of two separate, dedicated training sessions,
recorded on different days (than both one another and the current test session)

2 6 96 = 192

ntotal denotes the overall size of the training set.
doi:10.1371/journal.pone.0037791.t001
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two, three or no correct answers. During the intervals in which

they did not wish to make a selection, participants were not

required to control their mental activity in any particular way,

but rather were told to allow natural thought patterns to occur

without restriction. This represented the natural baseline state

that we refer to as the ‘‘no-control (NC)’’ state. To ensure that

the data during the system-vigilant periods could be properly

labeled as MA or NC, we included only questions with obvious

answers (see example in Figure 2), and participants were asked

to explicitly verify their selection(s) at the end of each trial.

The 32 trials, each with three system-vigilant periods, yielded a

total of 96 20-second samples per session, which were divided

evenly between MA and NC. Thus, for each session, 48 samples

each of MA and NC were obtained. Each session was

approximately 1.5 hours in duration.

Table 2. Within- and Across-Session Classification Accuracies By Participant.

Classification Accuracy (%)

Participant Session 1 Session 2 Session 3 Session 4 Session 5 LS Mean (95% CI)

1 83.1 76.8 76.5 82.2 91.2 82.0 (77.2, 86.7)

2 77.4 79.2 68.8 73.1 67 73.1 (68.4, 77.8)

3 63.8 66.4 – 71 69.1 67.6 (62.3, 72.8)

4 65.3 64.0 65.7 64.0 52.9 62.4 (57.7, 67.1)

5 72.0 69.5 – 60.5 66.7 67.2 (61.9, 72.5)

6 77.1 79.4 71.5 79.2 80.3 77.5 (72.8, 82.2)

7 59.1 64.3 67.4 73.3 65.1 65.8 (61.1, 70.5)

8 73.9 74.8 75.0 80.8 81.8 77.2 (72.5, 81.9)

9 72.3 90.1 79.0 79.8 71.8 78.6 (73.9, 83.3)

LS Mean 71.6 73.8 70.6 73.7 71.8 72.6 (70.1, 75.1)

Individual session accuracies obtained by averaging over 25 runs of 6-fold cross-validation (training and test sets taken from the same session).
doi:10.1371/journal.pone.0037791.t002

Figure 4. Across-participant least squares mean classification accuracy for the intra- and intersession cross-validation procedures,
plotted against training sample size, n. Results shown are for the case of 6-fold cross validation, which corresponds to a training sample size of
80. Bars indicate 95% confidence intervals.
doi:10.1371/journal.pone.0037791.g004
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Note that a unique initial subtraction was displayed for each

response period of a given session (regardless of whether the

participant was ‘‘supposed’’ to select the response or not) for a total

of 96 unique initial subtractions per session. The same 96 initial

subtractions were used in each of the 5 sessions.

NIRS Data Pre-processing
For each 20-second sample of MA or NC arising from the

system-vigilant periods, each of the 18 signals (i.e., 2 wavelengths

at 9 interrogation locations) was first normalized by the mean and

standard deviation of the 90-second period preceding the end of

the interval. The samples were then linearly detrended over the

same 90-second period. These steps were taken in order to account

for any subtle inter-trial differences in sensor coupling or

placement, or instrumentation-related drift. The 20 second

response intervals were then extracted and given the appropriate

label of MA or NC in preparation for classification.

The raw normalised light intensity signals for each response

interval were low-pass filtered in order to mitigate physiological

noise due primarily to respiration (0.2–0.3 Hz) [16], cardiac

activity (0.8–1.2 Hz) and the Mayer wave (approximately 0.1 Hz)

[17]. A 3rd-order Chebyshev type II filter was designed with cut-

off frequency at 0.1 Hz, stop frequency at 0.5 Hz, pass-band loss

of no more than 6 dB, and at least 50 dB of attenuation in the

stop-band [3]. Relative changes in the concentrations of oxy- and

deoxy-hemoglobin (HbO2 and HHb, respectively) were then

calculated for each measurement location using the dual

wavelength light intensity signals and the modified Beer-Lambert

law [18], as shown in (1), (2) and (3):

D½HbO2�(t) ~
e690 nm

HHb
: DOD830 nm(t)

DPF830 nm

� �
{ e830 nm

HHb
: DOD690 nm(t)

DPF690 nm

� �

r : e690 nm
HHb

: e830 nm
HbO2

{ e830 nm
HHb

: e690 nm
HbO2

� � ,ð1Þ

Figure 5. Across-participant least squares mean classification accuracy for the four classifier training protocols under consideration
for different values of ncurr. All pairwise differences between conditions are statistically significant except those bars joined by dashed lines in the
bottom figure (5% significance level).
doi:10.1371/journal.pone.0037791.g005
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D½HHb�(t) ~
e830 nm

HbO2
: DOD690 nm(t)

DPF690 nm

� �
{ e690 nm

HbO2
: DOD830 nm(t)

DPF830 nm

� �

r : e690 nm
HHb

: e830 nm
HbO2

{ e830 nm
HHb

: e690 nm
HbO2

� � , ð2Þ

where

DODl(t) ~ log
Il

0

Il(t)
, ð3Þ

and

DODl(t) = change in optical density of light at wavelength l,

Il
0 = mean light intensity at wavelength l,

Il(t) = light intensity at wavelength l,

r = source-detector separation distance (3 cm in this case),

DPF l = differential pathlength factor in the human adult head

at wavelength l,

el
h = extinction coefficient of chromophore h (i.e., HbO2 or

HHb) at wavelength l.

Values for the extinction coefficients (e830 nm
HbO2

= 1.0507,

e830 nm
HHb = 0.7804, e690 nm

HbO2
= 0.3123, e690 nm

HHb = 2.1382) and differential

pathlength factors (DPF830 nm = 5.86, DPF690 nm = 6.51) were

taken from the literature [19,20]. Il
0 was calculated over the 8

second period preceding the 20 second response interval.

Feature Extraction
The hemodynamic response to mental tasks typically appears as

an increase in ½HbO2�, with a corresponding decrease in ½HHb�,
peaking at approximately 5–8 s after onset of activity [21]. Note,

however, that other trends have been reported [9,22]. To capture

this behavior, we considered as features the signal slope over a

number of possible time windows within the 20 second response

interval [3]. Each time interval was defined by a start time and an

end time. Start times ranged from 0 to 15 s in 5 second

increments, while end times ranged from 5 to 20 s, also in 5

second increments. All possible combinations of start and end

times, where the latter exceeded the former, were considered as

valid time intervals for feature calculation. In total, ten different

time windows were considered. Thus, the resultant feature pool

consisted of 180 candidate features comprising the slope of the

regression line fit to each of the 18 concentration signals over each

of the 10 time windows. The different time windows were

considered in order to capture the unique temporal response for

each individual, as there could be inter-subject variability in the

time required for the hemodynamic response to peak, and/or in

the number of peaks.

Feature Selection
Optimal feature subsets were selected using a sequential

feedforward feature selection algorithm. To evaluate the fitness

of a candidate feature subset,~xx, linear discriminant analysis (LDA)

was performed on the training set to obtain the weight vector, ~ww,

and threshold constant, b, that provided optimal separation of the

classes when projected into a one-dimensional feature space via.

~yy ~~ww :~xx z b: ð4Þ

The Fisher criterion in this projected space, FCy, served as the

fitness function and was computed via

FCy~
(yMA{yNC)2

s2
y,MA

zs2
y,NC

ð5Þ

where y and s2 represent the mean and variance, respectively, of

the indicated class. For a given run of the feature selection

algorithm, the feature subset, ~xx, yielding the highest projected

Fisher criterion, FCy, as estimated from a training data set, was

selected as the optimal feature set and used in the classification of a

test data set. The different classification problems explored are

described in the next section.

Classification
Consistency of response detection across sessions. To

answer our first question regarding the consistency with which the

MA and NC states can be distinguished across multiple sessions,

we performed 25 runs of 6-fold cross-validation (using the feature

selection method described above, and an LDA classifier)

separately for each of the five experimental sessions, for each

participant. Note that for each fold of the cross-validation, the test

set was involved in neither the feature selection nor classifier

training. Mixed model linear regression was used to determine if

accuracies changed significantly across the five sessions.

Consistency of response characteristics across

sessions. To answer our second question regarding the

consistency of the discriminatory response characteristics across

multiple sessions, we examined whether or not classification

accuracy changed significantly when training and test data came

from different sessions as compared to when they came from the

same session. If the discriminatory response characteristics are

consistent from session to session, then one would expect similar

classification accuracies in both scenarios.

Thus, we repeated the cross-validation classification procedure

described above, where, as usual, the training and test data came

from the same session, and compared the classification results to

those of a ‘‘pseudo-cross-validation’’ (also 25 runs) where the

training and test sets were taken from different sessions. In the

‘‘pseudo-cross-validation’’ analysis, each of the five sessions acted

separately as the training session, with each of the four remaining

sessions being used for testing. This resulted in a total of 20

training/test session combinations per participant. More specif-

ically, for a given training session, the resulting classifier from

each fold of the pseudo-cross-validation was used to test a

different set of test data from each of the four remaining sessions.

This intersession ‘‘pseudo-cross-validation’’ procedure is clarified

in Figure 3. To investigate the effect of the number of training

samples, the k-fold cross-validation and ‘‘pseudo-cross-validation’’

analyses were repeated for different values of k. The values of k

used resulted in training sample sizes of

n~12,16,24,32,48,64,72,80.

Repeated measures mixed model linear regression was used to

compare the classification results obtained when the training and

test sets came from the same session (i.e., the intrasession cross-

validation) to those obtained when the training and test sets came

from different sessions (i.e., intersession ‘‘pseudo-cross-valida-

tion’’), for each value of n.

Different classifier training protocols. Finally, based on

the results of the intra- and intersession cross-validation analysis,

we investigated various training protocols suitable for implemen-

tation in a practical NIRS-BCI system that differed only in terms

of the training sets. We were interested in scenarios in which the

training and test data came from the same session, different

Consistency of Mental Task Classification by NIRS
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sessions, and a combination of both. Specifically, we considered

four different training conditions as outlined in Table 1.

For all four training protocols of interest, the feature selection

algorithm described previously was performed on the training set

under consideration, and the resulting optimal features of the

training data were used to train the classifier. To reduce variability

and obtain more generalizable results, the analysis was performed

(on an individual participant basis) for every possible combination

of training and test sessions for a given condition. That is, for

Conditions I and III, each session served independently as the test

session, with each of the four remaining sessions serving as

separate, dedicated training sessions. For Condition IV, each

session again served independently as the test session, with each

pairwise combination of the four remaining sessions used for

training. For Condition II, each session was tested only once, using

a single classifier trained on data from that same session. Note that

to keep the size of the test set constant across conditions, in all

cases the test set comprised the last 60 samples from the test session

under consideration. Repeated measures mixed model linear

regression was used to compare the four conditions for different

values of ncurr.

The amount of training data used in each of the four conditions

was limited to what would be practical for a real-life BCI system.

In particular, for Conditions II and III, the number of training

samples taken from the current test session (i.e., ncurr) was limited

to what could be collected in at most 30 minutes (including

equipment set-up), which is comparable to the calibration time

(not including equipment set-up) reported for some EEG-based

online systems [23]. Values of ncurr~16,24,32,40 were considered.

For the conditions in which training data from one or more

dedicated training sessions were used (i.e. Conditions I and IV), all

96 samples from the given session(s) were used for training. As

mentioned, it took approximately 1.5 hours to collect 96 samples

(including equipment set up and breaks). Based on informal

feedback, this seemed to be approaching the limit of what

participants could comfortably tolerate in a single session.

For Condition III, training samples consisted of 96{ncurr from

a dedicated training session and ncurr from the current test session,

so that ntotal would be equal to that of Condition I. In this way,

Figure 6. Intersession variability in spatiotemporal response characteristics. Histograms show frequency of feature selection during 25
runs of 6-fold cross-validation (feature subset dimensionality of 5) for each of the 5 sessions for Participant #1. Features (all representing slopes of
regression lines fit to the concentration signals) are indicated by a combination of location and time window. Note that no distinction is made
between HbO2 and HHb in the histogram, but for this participant, HbO2 features were selected approximately two times as often as HHb features
(on average across sessions). This is reflective of the overall trend; on average across participants and sessions, HbO2 features were selected 1.75
times as often as HHb features.
doi:10.1371/journal.pone.0037791.g006
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any change in accuracy between Conditions I and III could be

attributed to the inclusion of current session training data rather

than differences in training sample size.

Results

Data for one participant who reported having considerable

difficulty remaining attentive to the experimental protocol were

excluded from analysis; results for the remaining nine participants

are reported. P3 reported feeling ill during one of the five sessions

(unrelated to the experimental protocol); the session was cut short

and the data were excluded from analysis. A significant portion of

Session #3 data for P7 was corrupted due to an instrumentation

failure; the entire session was excluded from analysis.

The detailed intrasession cross-validation results for the case of

6-fold cross-validation (which corresponds to n = 80 samples in the

training set) are reported in Table 2. Overall LS mean

classification accuracy (across participants and sessions) is 72.6%.

Mixed model linear regression showed that there was no

significant effect of session on classification accuracy (p = 0.67).

Note that we also evaluated the classification ability of each of the

two chromophores individually, by performing the 6-fold cross-

validation with feature pools only comprising either the HbO2, or

HHb, features. The two chromophores yielded similar classifica-

tion accuracies on average (HbO2 = 61%, HHb: 62%), with

neither performing as well individually as when the two were

considered together.

Figure 4 shows the least squares mean (across participants and

sessions) classification accuracies (error bars represent 95%

confidence limits) obtained for the intra- and intersession k-fold

(pseudo-) cross-validation analysis for different values of k. In the

figure, mean classification accuracy (%) is plotted against the

number of training samples in the training set (n), rather than

against k. Mixed model repeated measures linear regression

revealed that for all values of n there was a significant effect of

condition, i.e., accuracies obtained when the training and test sets

came from the same session were significantly greater than those

obtained when the training and test sets came from different

sessions (pv0.0001 for all n).

Figure 5 shows the least square mean classification accuracies

obtained for the four different classifier training schemes, plotted

against ncurr. Note that accuracies for Conditions I and IV, in

which no training samples are taken from the current test session,

are independent of ncurr. The bottom plot of Figure 5 indicates the

statistical significance for pairwise comparisons between conditions

for the different values of ncurr.

Note that training on three (ntotal = 288; ls mean accura-

cy = 69.1%) and four (ntotal = 384; ls mean accuracy = 69.3%)

separate, dedicated training sessions did not result in significantly

Figure 7. Example of intersession variability in response characteristics. Data shown are for Participant #1. TW = time window. A) The two
juxtaposed graphs exemplify a case in which a feature space that allows good separation of the NC and MA states in one session is completely
ineffective for separating the two classes in a different session. B) The two graphs portray a case in which a given feature space allows good
separation of the NC and MA states in two separate sessions, however the specific distributions of each class are shifted between the two sessions
such that different decision boundaries are needed to provide optimal classification accuracy. The dimensions of all axes are mM=s (i.e., change in
concentration per time).
doi:10.1371/journal.pone.0037791.g007
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higher accuracies (pw0:41) than training on two (ntotal = 192; ls

mean accuracy = 68.5%).

All results reported are for a prescribed feature subset

dimensionality of 5.

Discussion

Consistency of Response Detection Across Sessions
This study represents the first investigation into the consistency

of single-trial classification of task-induced prefrontal activity using

NIRS over multiple sessions. The results of the intrasession cross-

validation confirm that the response to the mental arithmetic task

does indeed exist in the prefrontal cortex, and remains

distinguishable from the baseline state using NIRS signals, across

multiple sessions. The results of the repeated measures mixed

model linear regression indicate that there is no significant

deterioration of classification accuracy over sessions, suggesting

that factors such as habituation due to task repetition do not

adversely affect the prefrontal response to the MA task. While

these results also suggest that there was no significant increase in

task differentiability over multiple sessions, it is important to note

that participants were not given any sort of feedback regarding

their performance on a trial-to-trial basis, and therefore did not

undergo training of any kind. There is no evidence that precludes

participant improvement upon provision of formal feedback

training.

Consistency of Response Characteristics Across Sessions
Though the results of the intrasession cross-validation show that

the mental arithmetic task can be consistently distinguished from

the baseline state across multiple sessions, the results of the

intersession ‘‘pseudo-cross-validation’’ suggest that the character-

istics of the response change from session to session. For a given

training sample size, n, the classification accuracies achieved in the

‘‘pseudo-cross-validation’’, when the training and test sets came

from different sessions, were significantly lower than those

achieved in the intrasession cross-validation, when the training

and test sets came from the same session. Clearly, models trained

using data taken from the same session as the test data generally

characterized the response more accurately than models trained

using data taken from a different session. This suggests that the

discriminatory response characteristics varied from session to

session.

These quantitative results are supported by further investigation

of the spatiotemporal characteristics of the response. The

histograms in Figure 6 show the distribution of features selected

during the 25 runs of 6-fold intrasession cross-validation for each

of the five sessions for Participant #1. Features are depicted as a

combination of location of interrogation and time window (no

distinction is made between HbO2 and HHb signals). Note the

obvious contrast in the overall distribution of selected features

across the five sessions. Though there are some consistencies

across sessions in terms of individual features selected, there are

also some clear differences; for example, 1) ‘‘Location 2, Time

Window 2’’ was selected frequently in Sessions 1, 3, 4 and 5, but

was not selected at all in Session 2, and 2) ‘‘Location 9, Time

Window 10’’ was selected frequently in Sessions 2 and 5,

somewhat frequently in Sessions 3 and 4, but not at all in Session

1. Further visualization of the intersession variability in response

characteristics is depicted in Figure 7. Figure 7a shows an example

in which a feature space that allows clear separation of the mental

arithmetic and no-control classes in one session, is completely

ineffective for separating the classes in a different session. Figure 7b

gives an example in which a given feature space allows separability

of the classes in two different sessions, but the specific distribution

of the response in this feature space has shifted between the two

sessions, and thus different decision boundaries are needed to

optimize classification.

The observed intersession variation in the prefrontal response

characteristics may be attributable to user-related (e.g., task

strategy, fatigue [24], motivation, attention [25], baseline charac-

teristics, emotional state [26]), environmental (e.g., auditory

distractions [27]) and/or instrumentation-related (e.g., small

variation in sensor placement, coupling) factors. Such factors have

also been noted as sources of variance in EEG-BCI systems [28].

These intersession results have serious implications for the

development of a practical NIRS-BCI system, especially in terms

of the classifier training protocols adopted. To date, most studies

investigating the feasibility of NIRS-BCI have been preliminary

investigations of task differentiability in which classification is

performed offline, usually using cross-validation with large training

sets [4,6,10,18]. Though this is a very important first step in BCI

development, this method of analysis (i.e., a large amount of

training data collected during the same session as the ‘‘test’’ data)

does not reflect what would be possible in a practical situation -

users cannot be expected to sit through extended calibration

sessions each time they wish to use their device. As conjectured in

[18], an obvious alternative is to collect the classifier training data

during a separate training session, eliminating the need for lengthy

calibration sessions before each subsequent use of the system. The

results presented above, however, suggest that this method may

result in significantly lower performance than that forecasted by

offline cross-validation analysis. The intersession findings further

show that as the size of the training set (n) decreases, so does

classification accuracy. This, of course, is not unexpected, but it

implies that if the number of training samples is reduced to what

could reasonably be collected during a pre-use calibration session,

performance would again be lower than what conventional offline

cross-validation methods using large data sets might suggest.

Different Classifier Training Protocols
The classification results achieved for the four training

conditions (see Table 1) correspond well to the results of the

intra- and intersession cross-validation analyses discussed above.

Classification accuracies obtained for Condition II, where the

training data came from the same session as the test data, matched

or even exceeded the accuracies of the two scenarios where the

training and test data came from different sessions (Conditions I

and IV), even though the size of the training set (ntotal ) for

Condition II was several times smaller. However, Figure 5

indicates that when training and test data derive from different

sessions, intersession variation can be mitigated and comparable

accuracies achieved (as in Condition IV) as long as a sufficiently

large training set is available. Given that it would be much more

convenient to do a one-time collection of a large amount of

training data (even if it had to be spread over multiple sessions, as

necessitated by the user’s specific needs and abilities) than collect

even moderate amounts of training data before every use, the

former may actually be the preferred compromise between

accuracy and practical convenience. For example, even if 200

training samples are needed from previous training sessions to

achieve the same accuracy that can be achieved with only 40

training samples collected at the beginning of the current session, it

would be much more convenient to do this one time collection of

200 samples than to have to collect 40 samples before each use of the

system.

Accuracy seems to be further improved by augmenting the data

collected during a separate, dedicated training session with a small

Consistency of Mental Task Classification by NIRS
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number of calibration samples from the current test session. Note

that even though ntotal was equal for Conditions I and III,

accuracies for the latter condition (which included samples from

the current test session) significantly exceeded the former for all

values of ncurr considered; for larger values of ncurr, Condition III

accuracies even met/exceeded those for Condition IV, despite

ntotal being smaller. However, as discussed, collecting these

samples before every use would represent an inconvenience for

the user. A compromise between accuracy and convenience -

based on the user’s preferences, needs and abilities - would have to

be made in terms of how much current session calibration data, if

any, to collect.

Study Limitations
One limitation of this study is the lack of immediate feedback to

the user. Consequently, it is unclear how the findings translate to a

practical scenario in which the user will receive feedback of the

classification result after each response. Indeed, it has been

suggested that EEG signal characteristics undergo a shift when

moving from the non-feedback to feedback conditions [29]; no

similar investigation has yet been done for NIRS signal

characteristics. If such a shift does occur, it may be necessary to

collect a set of training data (giving no feedback) to initially train

the classifiers, then using the trained classifiers to provide

feedback, collect another set of data to retrain the classifiers under

the feedback condition. This latter set of training data would then

more closely represent the practical-use scenario.

It is also worth noting that we cannot be completely certain that

the measured responses used in the classification of mental

arithmetic and no-control represent localized cortical activity, as it

is possible that, for some participants and/or locations, the

observed trends could be the product of a task-induced global

systemic response that affects the entire brain. Of course, this

would be a significant problem if our aim was to, for example, map

cortical function or compare cortical activation among disease

groups. However, given that our objective in BCI design is simply

to differentiate between the two mental states, not to draw any

conclusions about underlying neural mechanisms, the physiolog-

ical origin of the detected hemodynamic response is inconsequen-

tial. Furthermore, it is impossible to know what effect task-induced

frontalis muscle tension [30] might have had on the optical signals

collected. Though we are confident that no related motion

artefacts exist in the signals, there could theoretically be other

effects related to potential spectroscopic changes due to tissue

compression, blood flow, etc. While this tension, if present at all,

would have been minimal and unlikely to have a significant

influence, it cannot be conclusively ruled out. Though not usually

considered, this is a concern for all NIRS studies of mental tasks

based on prefrontal activity.
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