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Abstract

F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but
its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed
under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to
undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery.
We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells,
the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression
coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the
hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably
in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the
endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the
regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the
blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin
in the CNS and periphery of the developing and adult vertebrate.
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Introduction

The extracellular matrix (ECM) is an essential component of

many tissues, providing for structural support and guidance, and

affecting signaling and homeostasis [1]. A small family of ECM

proteins, called spondins, is evolutionarily well conserved and

includes f-spondin, mindin and subcommissural organ (SCO)-

spondin [2]. F-spondin was found to be an important player in

embryonic morphogenesis in such diverse species as C. elegans and

rat [3,4]. It is also expressed in adult tissues and might play diverse

roles in the central nervous system (CNS) and the periphery [2,5–8].

The F-spondin molecule consists of about 800 amino acids, and

contains an N-terminal domain homologous to the amino

terminus of reelin, a spondin domain and six C-terminal

thrombospondin repeats [4]. This structure allows F-spondin to

affect different processes through binding to the ECM or

membrane receptors. For example, during development, the two

proteolytic fragments of F-spondin were found to play opposing

though complementary roles in guiding the growth of commissural

neurons between the floor plate cells and the basement membrane

[9]. Thus, whereas the C-terminal fragment binds to the ECM,

promoting neuronal outgrowth along the basement membrane
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beneath the floor plate, the N-terminal fragment binds to several

members of the low density lipoprotein receptor family (ApoER2,

LRP2/megalin, and LRP4), inhibiting neuronal outgrowth and

preventing these neurons from growing through the floor plate [9].

These effects of F-spondin are likely to be conserved, since it is

present in the embryonic floor plate in the frog, mouse, chick, and

zebrafish [4,10–12]. The expression of F-spondin in other brain

regions of embryonic rat or zebrafish and, at lower levels, in the

neocortex and hippocampus of adult rats, suggests its broader role

in CNS development and maintenance [12,13]. Indeed, studies in

vitro found that F-spondin accumulates in the ECM that ensheaths

the developing peripheral nerves [14], promotes neurite outgrowth

from embryonic hippocampal and commissural neurons [2,13],

and potentiates nerve precursor differentiation [5].

In vitro studies also suggest that the effects of F-spondin depend

on its concentration and presence in substrate-attached or soluble

form [5]. Thus, the exact sites of F-spondin production and its

release into the cerebrospinal fluid (CSF) compartments of the

brain might determine its availability and efficacy. This is

especially interesting in view of recent evidence that F-spondin is

a putative ligand for the Alzheimer disease-related amyloid

precursor protein (APP), and may exert its neurotrophic effects

in part via a specific interaction with APP [15–17]. Since F-

spondin binds ApoER2 via its thrombospondin domain, and APP

via its reelin and spondin domains, a single F-spondin molecule

could form a complex with APP and ApoER2 [17]. Indeed, an

interaction between F-spondin and APP and/or ApoEr2, affecting

the APP-downstream signaling molecule disabled-1 (DAB-1), has

been suggested as one of the mechanisms by which F-spondin

might control neuron survival and neuroblast migration [16,18].

Together, these findings underscore a need for systematic

characterization of F-spondin expression patterns in the CNS and

peripheral tissues during development and adulthood, which is

lacking at present. To address this, we employed zebrafish as a

model. This choice reflects the outstanding qualities of the

zebrafish as an in vivo model for studying vertebrate development

[19], the documented presence of F-spondin in this species [12],

and its striking capacity for active tissue renewal and regeneration

throughout life [20]. Thus, the zebrafish provides an excellent

opportunity to investigate the role of F-spondin in dynamic CNS

and peripheral tissue modifications throughout the life-span of a

vertebrate animal.

Results

Expression of the F-spondin Homologs in Zebrafish
The two F-spondin homologs in zebrafish, Spon1a and Spon1b

have an identity of 73% and 70%, respectively, with the human

SPON1 protein. The identity between the two zebrafish homologs is

74%. Using real time quantitative RT-PCR (qPCR), the mRNA

abundance for the two F-spondin homologs spon1a and spon1b was

measured in developing embryos. The onset of spon1b mRNA

expression occurred at 9–10 hours post fertilization (hpf), increasing

6.8 fold by the end of the first day of development, and reaching

16.3 fold by 72 hpf (Fig. 1A). In contrast, spon1a mRNA expression

was initiated only after 48 hpf, and increased 4.0 fold by 72 hpf.

Similarly, in adult zebrafish, mRNA abundance for spon1b was 2.0

fold and 72.3 fold higher than for spon1a assessed in the same brain

and eye tissue samples, respectively (n = 3–4 fish; for brain, paired

t(3) = 2.90, p,0.03; for eye, paired t(2) = 10.06, p,0.0005. The

higher abundance of spon1b mRNA in larval and adult zebrafish

suggested a potentially more important role for this homolog. We,

thus, proceeded to characterize the expression patterns for spon1b in

developing and adult zebrafish using three complementary

approaches. These included the imaging of a fluorescent transgene

signal (in vivo or in fresh-frozen brain tissue), immunohistochemical

(IHC) staining for GFP, and in situ hybridization (ISH) to localize

spon1b mRNA expression. The first two techniques allowed for

visualizing both the F-spondin positive cells and their projections,

while ISH highlighted the cell bodies only. The results were typically

consistent among the methods used and are referred to below as

spon1b or F-spondin expression, with any inconsistencies between

methods discussed, where applicable.

The Transgenic spon1b:GFP Zebrafish Reveals in vivo
Patterns of F-spondin Expression During Vertebrate
Development

To study the anatomical distribution of spon1b expression

throughout zebrafish development and maturation, we used the

10.3 kb upstream promoter region of the spon1b gene (Accession#
NM_131517) to drive expression of a fluorescent marker, the

enhanced green Yuorescent protein (EGFP, also referred to here

as GFP). This construct was used to establish a stable spon1b:GFP

transgenic zebrafish line. In Tg(spon1b:GFP) fish, GFP expression

was first detected around 15–16 hpf, being visible along the

developing body axis, with a stronger signal in the head and tail

regions (data not shown). This is consistent with the onset of spon1b

mRNA production at 10 hpf, as per qPCR, and allowing several

hours for the accumulation of newly-synthesized GFP. Thereafter,

rapid increases in spon1b:GFP expression were documented in the

embryonic tail bud, notochord and myotomes (Fig. 1B-D). By 18

hpf, the spon1b:GFP signal was clearly visible in the brain and eye

regions, with robust expression in the developing retina and

olfactory bulb by 20 hpf (Fig. 1C-D). During this period, F-

spondin expression intensified along the developing notochord,

and strongly labeled the entire row of individual cells of the floor

plate (Fig. 1E-G). Although both the transgene and ISH revealed

this F-spondin localization during development, the expression in

the notochord was more robust in vivo, in the Tg(spon1b:GFP) fish

(Fig. 1F-H). The spon1b:GFP signal in the most anterior end of the

notochord, known as the flexural organ, was particularly

pronounced (Fig. 1H). This region has been previously identified

as a source of Reissner’s fiber-related proteins, including F-

spondin [21]. As development proceeded, a gradual increase in F-

spondin expression along the developing spinal cord was

associated with the early developing Rohon-Beard sensory

neurons, and with the development and extension of primary

motor neurons (Fig. 1E, inset). The axons of the latter were

strongly labeled in the Tg(spon1b:GFP) zebrafish, highlighting the

descending pathways. These are known to innervate restricted

domains within each myotome and contribute to the first muscular

contractions initiated around 17 hpf [22]. The developing

midbrain and diencephalic regions were rich in F-spondin starting

at 24 hpf, and this could be observed in vivo in Tg(spon1b:GFP), and

using whole mount in situ hybridization (Fig. 1H-J). By 72 hpf, an

especially strong spon1b:GFP signal was localized to the neurons of

the laterally-positioned habenula (Hb) nulclei and their descending

projections forming the fasciculus retroflexus (FR; Fig. 1I). In the

midbrain, F-spondin positive cells were documented in the optic

tectum (TeO) and in the nucleus of the medial longitudinal

fasciculus (nMLF) (Fig. 1I-J). The distinct motor neurons of the

hindbrain were also rich in F-spondin expression, including the

large paired Mauthner cells (Fig. 1J).

F-spondin Expression in Adult Zebrafish Brain
Telencephalon. The robust spon1b expression in the olfactory

area and telencephalon (Tel, Fig. 1D, 2A-D), that was apparent at

F-Spondin Expression in Zebrafish
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20 hpf in the zebrafish embryo, remained prominent thereafter. In

the adult olfactory bulbs (OB), spon1b-positive cells and thick

projections were distributed within the glomerular (GL) cell layer,

but not the internal cell layer (ICL) (Fig. 2B-C). The medial and

lateral olfactory tracts (LOT/MOT), originating from these OB

layers, could be traced throughout the ventral and dorsal Tel

(Fig. 3A-B). A midline cluster of three large oval spon1b-positive

cells was consistently present at the boundary of the OB and Tel in

both larval and adult zebrafish (Fig. 2A,D red arrows). The origin

of these distinct cells is unknown to us.

In the telencephalon (Tel), the spon1b transgene signal and ISH

revealed several F-spondin-positive regions. In the periventricular

area of the ventral telencephalon (subpallium), spon1b was

expressed in the ventral nucleus (Vv), which is suggested to be

the teleost homolog of the mammalian septal nuclei [23,24]. The

entire rostro-caudal extent of the Vv was immunopositive for

spon1b:GFP, with labeled cells spanning the region from the medial

periventricular zone to the most lateral boundary of the nucleus

(Fig. 3A). The densely labeled LOT projections terminated in the

posterior nucleus of the dorsal Tel (Dp), the primary olfactory area

in zebrafish [23]. Their spon1b-positive fibers also traveled toward

the medial nucleus of the dorsal Tel (Dm) and partially crossed

into the contralateral hemisphere via the anterior commissure

(Cant, Fig. 3B-C).

In the dorsal pallium (D), spon1b was present in the cells of the

medial nucleus, Dm (Fig. 3C-D), a likely homolog of the

basolateral amygdala in mammals [25,26]. The spon1b-positive

cells were located in the midline region of Dm, periventricularly,

with their dense projections being constrained to the boundaries of

the nucleus (Fig. 3B-C). A few weakly stained cells could be

observed in the lateral (Dl) and posterior (Dp) nuclei of D (Fig. 3B-

D). Spon1b-positive cells were observed in the dorsal nucleus of D

(Dd), surrounding the sulcus ypsiloniformis (Fig. 3B-C). This

nucleus is considered to be part of the processing center for

somatosensory information from the lateral line [23].

In the preoptic region, spon1b expression was strong and

abundant in the anterior parvocellular nucleus (Ppa; Fig. 3C).

Individual cells and their dorsolaterally projecting axons were

evident in the most lateral regions of the Ppa. More caudally, the

magnocellular preoptic nucleus (PM) and its dorsal projections

were strongly immunoreactive, while fewer positive cells were

present in the medial region of the posterior parvocellular nucleus

(PPp, Fig. 3D). The most posterior parts of the Ppp, and the

suprachismatic nucleus appeared to be free of spon1b expressing

cells (Fig. 3D). More laterally, spon1b was expressed in the bed

nucleus of the stria medullaris (BNSM, Fig. 3D), a recently

described nucleus in adult zebrafish [27].

Diencephalon. Pronounced spon1b:GFP expression was

documented in the epithalamus and Dorsal Conduction Pathway.

This was especially robust in the habenula (Hb), which displayed a

strong fluorescence signal in the developing and adult

Tg(spon1b:GFP) fish (Fig. 2A and 4A-I). In larvae, the transgene

was expressed only in the laterally-positioned Hb nuclei, located at

the dorsal surface of the developing brain (Fig. 1I, 4A). As

development proceeded, the spon1b:GFP positive Hb nuclei

increased in size and gradually moved medially (Fig. 4A-C). By

3 months post fertilization (mpf) the Hb nuclei were adjacent to

each other at the midline (Fig. 4C). In both developing and adult

Tg(spon1b:GFP) zebrafish, the entire dorsal conduction pathway

(DCP) was highlighted, visualizing the fasciculus retroflexus (FR),

projecting from the Hb to the interpeduncular nucleus (NIn) and

superior raphe (SR) (Fig. 1I, 4D-L).

Consistent with the earlier findings that the laterally-positioned

Hb nuclei in larvae migrate ventrally during maturation [28], the

strongest spon1b labeling was present in the ventral Hb (vHb) in

adult zebrafish (Fig. 4G-I, 5A). The paired symmetrical vHb nuclei

each have a conical shape defined by a wide rostral end, occupying

the entire anterior region of the Hb, and a narrow caudal end

(Fig. 4H-I). Moreover, a region located dorsolateral to the vHb,

and separated from it by the emerging FR, was also spon1b:GFP

positive (Fig. 4I, 5A). Based on the localization of this additional

area, we have named it the inferior subnucleus (dmHbi) of the

earlier described dorsomedial nucleus of the Hb (dmHb) [29,30].

In contrast to the vHb having small densely packed cells (Fig. 5B),

dmHbi had relatively large and sparsely positioned cells (Fig. 5C).

Both of these cell types double-stained for spon1b:GFP and Hu C/

D, indicating their neuronal origin (Fig. 5A). It should be noted

that the vHb cells stained more weakly for Hu C/D than those in

the adjacent dmHbi nucleus. The rest of the dorsal Hb was also

immunopositive for Hu C/D, but not for spon1b:GFP (Fig. 5A).

Differentiating between the two spon1b:GFP positive areas of Hb

was further assisted by the distinctly different targets of dorsal and

ventral Hb nuclei. In zebrafish, the vHb projects to the raphe

nuclei [28]. In contrast, the two principal nuclei of dorsal Hb have

asymmetric projections. The dorsolateral Hb (dlHb) projects to the

dorsal part of the interpeduncular nucleus (dNIn), while fibers

originating in the dmHb are traced to ventral and intermediate

NIn (vNIn, iNIn) [29,30]. Accordingly, the spon1b-positive FR

fibers were present in ventral but not the dorsal NIn, consistent

with the dmHb pathway (Fig. 5D), and circumvented the NIn on

their way to the SR (Fig. 4J-L, 5D), consistent with the vHB

projections [28]. These latter fibers were seen as densely packed

spon1b-positive terminals in ventral regions of SR (Fig. 4F, K-L).

Spon1b expression was present in cells of the NIn core but not in

the SR (Fig. 4J-L). Moreover, projections between the Hb and

BNSM, as well as some ventral projections, were seen in sagittal

brain sections (Fig. 4E). Considering the conserved connectivity of

the dorsal conduction pathway in vertebrates [31], these

projections were, presumably, part of the stria medullaris.

Figure 1. F-spondin expression during early zebrafish development. A. Onset of spon1a and spon1b expression during embryogenesis.
Representative experiment showing mRNA abundance based on real-time RT-PCR (qPCR), with 1 fold corresponding to spon1b at 9 hpf. Zebrafish
eggs fertilized at the same time (n.360) were sampled at intervals over a 72 h period (n = 30 embryos/larva per time point) and mRNA abundance for
both genes was quantified in each same. B. Embryo schematic, 18 hpf. C-D. Spon1b:GFP expression in the tail bud, notochord and myotomes
(arrowhead), brain areas (red arrow), olfactory bulbs (OB, white arrow) and retina (asterisk) at 18 hpf (B) and 20 hpf (D). Photomontages of confocal
images. E. Spon1b:GFP expression pattern at 48 hpf. Photomontage of confocal images, sagittal view, asterisk: eye. Inset: developing motor neurons
of the spinal cord (red arrow), dorsal to floor plate and notochord. F-G. The floorplate and notochord highlighted by spon1b:GFP (F, live image, 4 dpf)
and in situ hybridization for spon1b mRNA (G, 4 dfp). Notochord (no), floorplate (fp). H. Spon1b expression in the flexural organ (arrow), and midbrain
(mb). (in situ hybridization, 4 dpf). Rostral end to the left. I. Dorsal view of the telencephalon (Tel) and TeO border at 3 dpf, showing spon1b
expression in habenula (arrowhead), in the fasciculus retroflexus (FR) emerging from it (black arrow), and in individual cells of the TeO (red arrow).
Confocal z-stack image. J. Dorsal view of midbrain-hindbrain area at 3 dpf showing spon1b:GFP in the developing nMLF (arrowhead), in MLF
projections (arrow) and in motor neurons of the reticular formation, including Mauthner cells (red arrow). Rostral end is up in I-J. Confocal z-stack
image. Scale bars: F-G: 25 mm; I-J: 100 mm.
doi:10.1371/journal.pone.0037593.g001

F-Spondin Expression in Zebrafish

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e37593



Unlike in the vast majority of brain areas where ISH for spon1b

recapitulated spon1b:GFP expression, the spon1b mRNA signal was

detected in additional nuclei of the dorsal Hb (data not shown) that

were not revealed by the transgene. This discrepancy is unlikely to

result from a positional effect of the transgene integration site,

since our two independent transgenic founder lines had similar

patterns of Hb expression, highlighting only laterally-positioned

Hb nuclei in larvae. Potentially, this result could indicate that

additional promoter or enhancer regions, beyond the 10.3 kb

upstream fragment, are required for the expression of spon1b in

dorsal Hb nuclei.

Thalamus. The ventrolateral thalamic nucleus, which is a

relay station for visual and other sensory inputs to the optic tectum

(TeO) [32], contained large, widely distributed cells with strong

spon1b:GFP expression (Fig. 6A). The central and dorsal posterior

thalamic nuclei (CP/DP), the medial and lateral preglomerular

nuclei (PGm, PGl), the paraventricular organ (PVO) and the

posterior tuberal nucleus (PTN) contained spon1b expressing cells

(Fig. 6–7). Large spon1b-positive CSF-contacting cells of the

posterior tuberculum (TPp) extended their neurites laterally, while

numerous thinner projections were visible throughout the

parenchyma of the thalamus, especially in its anterior region

(Fig. 6C).

Hypothalamus. Strong spon1b expression was revealed in

two distinct periventricular areas of the rostral and caudal

hypothalamus (H, Fig. 7). Their extreme ventral location allowed

for the observation of the spon1b:GFP positive cells on the ventral

side of the whole brain dissection, using fluorescence microscopy

(Fig. 7A). The rostral area, corresponding to the ventral nucleus of

the hypothalamus (Hv) that surrounds the mediobasal region of

Figure 2. Expression of spon1b:GFP in the olfactory bulbs (OB) and telencephalon (Tel) of larval and adult zebrafish. A. Dorsal Tel of 3
dpf embryo, showing individual cells of the OB (red arrowheads), and a cluster of three oval midline cells at the OB-Tel boundary (red arrow). Confocal
z-stack image. B. Latero-dorsal view of live larva, at 3 dpf, with robust spon1b:GFP expression in the oval cells of the Tel-OB boundary (red arrow), in
the paired habenular nuclei (white arrows), in individual cells of the TeO, and in the eye, with retinal ganglion cells visible through the lens (asterisk).
C-D. Sagittal (B) and coronal (C) sections of the adult OB showing spon1b-positive cells in the outer glomerular cell layers (GL), but not in the inner
cell layers (ICL). R: rostral end, in A & C. Scale bars: A: 200 mm; C-D: 50 mm.
doi:10.1371/journal.pone.0037593.g002
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the diencephalic ventricle, contained a well-defined population of

spon1b-positive cells. These extended their projections laterally,

forming a distinct tract, coursing along the ventral surface of the

hypothalamus (Fig. 7B-C).

In the inferior lobe, in the caudal zone of the periventricular

hypothalamus (Hc), a distinct horizontal band of the nucleus of the

posterior recess (NPR) [32] displayed large and densely packed

spon1b-positive cells, positioned along the ventral wall of the

diencephalic ventricle (Fig. 7D-F). These CSF-contacting neurons

extended their prominent processes dorsally, toward the lumen of

the posterior recess of the diencephalic ventricle and stained for

Hu C/D, confirming their neuronal nature (Fig. 7E-F). A dense

network of spon1b positive fibers could be observed in the dorsal

region of the Hc, extending dorsomedially toward the tegmental

areas (Fig. 7D). Part of those projections could be seen originating

from the cells in the caudal and lateral aspects of the posterior

recess of the DiV (Fig. 7D, inset). A weak spon1b signal from

scattered thin projections was documented in the mammillary

bodies (Fig. 7G).

Pretectum. In larval zebrafish, strong spon1b expression was

present in the nucleus of the medial longitudinal fasciculus

(nMLF), with spon1b:GFP highlighting its long projections along

the ventral border of the rhomboencephalic ventricle and ventral

region of the spinal cord (Fig. 1J). The distinct cells of this nucleus

and its projections, which communicate multimodal sensory

information and locomotor commands in zebrafish [33] continued

to express spon1b in adults (Fig. 7B). Both periventricular pretectal

nuclei, dorsal and ventral (PPv, PPd), contained small-size cells

with strong spon1b expression (Fig. 6C).

Mesencephalon. Another region of the brain with pro-

nounced staining for spon1b was the TeO (Fig. 8). The retinal

ganglion cells (RGC) expressed spon1b during early development,

Figure 3. Spon1b expression in the telencephalon of adult zebrafish. Immunostaining for GFP in Tg(spon1b:GFP), coronal sections from
rostral (A) to caudal (D) end. A. Spon1b expression in the central nucleus of ventral Tel (Vv), and terminal projections of the lateral olfactory tract
(LOT), medial to dorsal nucleus of dorsal Tel (Dp). Inset: thick projections of spon1b-positive cells in Vv. B. Spon1b expression in Vv and the lateral (Dl),
posterior (Dp) and dorsal (Dd) nuclei of the dosal Tel. Inset: small positive cells in Dd surrounding sulcus ypsiloniformis. Cant: anterior commissure. C.
Robust spon1b expression in the medial nucleus of the dorsal Tel (Dm) and in the medial olfactory tract (MOT). Inset C’: Thick and long projections,
originating from LOT area. Inset C’’: medially located spon1b positive cells in Dm with thin and dense projections extending laterally throughout the
nucleus (arrow). Ppa: parvocellular preoptic area D. Spon1b expression in the preoptic area. Inset: magnocellular nucleus (PM) and bed nucleus of
stria medullaris (BNSM). Strong spon1b expression in the ventral habenula (vHb) (only the right vHb is visible). Scale bars: A-D: 200 mm. Insets: 50 mm.
doi:10.1371/journal.pone.0037593.g003
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and continued expressing it throughout zebrafish life (Fig. 8A). In

adult brain, spon1b-positive retinotectal projections of the ventral

optic tract (VOT), coursed through the optic tract and innervated

two distinct layers of TeO (Fig. 8D, arrows). These corresponded

to the superior sublayer of the stratum fibrosum et griseum superficiale

(SFGS) and stratum opticum (SO), where 80% and 15% of RGC

terminate, respectively [34].

Individual spon1b-expressing cells were observed in the embry-

onic TeO around 48 hpf (Fig. 1J, 2D). In adult fish, five different

types of spon1b-positive neurons could be identified in the tectal

layers, based on their morphology and Hu C/D staining (Fig. 8C-

G). A large number of widely distributed rounded cells with thin

neurites were observed in the stratum periventriculare (SPV, Fig. 8D).

Also in the SPV, rhomboid-shaped neurons were located at the

most rostral and lateral TeO regions, extending thin apical

dendrites toward superficial layers. Their long basal axons crossed

the SPV, forming the tectobulbar tract (TTB) that projected on

both sides of the NIn toward the hindbrain and spinal cord

(Fig. 7D, 8G). The morphology of these cells is consistent with the

earlier described TeO neurons that project from the torus

semicircularis in rainbow trout [35], and are similar to cells

described as the type IVa/b and V in goldfish [36]. In the same

area, numerous multipolar spon1b positive cells with larger

perikarya demonstrated prominent dorsally oriented processes

(Fig. 8D). At the boundary of SPV and stratum album centrale (SAC),

a smaller population of spon1b-positive neurons extended their

processes alongside the horizontal axonal bundles (Fig. 8E).

In the stratum griseum centrale (SGC), a large population of

neurons extended their apical dendrites toward the TeO surface,

with elaborate arborizations terminating in the proximal SFGS

and SO layers (Fig. 8F). Most of these neurons were unipolar,

though some had short basal neurites or long descending axons

that crossed inner TeO layers and contributed to the TTB

(Fig. 8G). The pear-like shape of these neurons was similar to a

previously described population of cells that project to the torus

longitudinalis (TL) of the rainbow trout [37]. This was consistent

with the dense spon1b-positive projections observed in TL of

zebrafish (Fig. 8H). Moreover, TL contained granular cells

organized in individual rami, strongly labeled with spon1b:GFP

(Fig. 6B, 7B, 8H). Some of their long axons projected dorsolat-

erally, toward the most superficial layer of the TeO, the stratum

marginalis (SM), while the majority joined the tectal commissure

(Ctec) or coursed along the inner layers (Fig. 7B, 8H).

In the tegmentum, prominent spon1b-positive projections could

be observed in the ansulate commissure (Cans, Fig. 7D). Dorsal

and caudal to the Cans, thick fibers of the FR and TTB could be

seen projecting to the NIn/SR and hindbrain motor neurons,

respectively (Fig. 7D,G). This area also contained numerous

spon1b-positive projections and scattered cell bodies throughout the

torus semicircularis and superior reticular formation (Fig. 7B-D).

Metencephalon. By 5 dpf, spon1b expression was visible at

the most rostromedial region of the hindbrain. By 40 dpf, the

spon1b:GFP signal could be observed in the projections within the

valvula cerebelli (Val), cerebellar corpus (CCe), cerebellar crest (CC)

and granular eminence (EG, Fig. 9A). In the adult brain, cells

positive for spon1b:GFP were documented in the EG and CC of the

cerebellum, and in the secondary gustatory nucleus (SGN), nucleus

isthmi (NI), and superior reticular nucleus (SRN) (Fig. 9B-E),

which are all derived from the upper rhombic lip (URL) and

known to project to all lobes of the cerebellum [38]. Other spon1b-

positive afferents to zebrafish cerebellum might have originated

from the pretectal nuclei, torus longitudinalis, octavolateral region

[38], which were also positive for the transgene. This wide range of

spon1b-positive afferents explain, in part, the strong and uniform

spon1b:GFP signal throughout the cerebellum. Large spon1b-

positive cells were visible along both sides of the cerebellar

midline, in the ventral anterior tip of the Val and around the

dorsal surface of the Val and the CCe, marking the boundary

between the molecular and granular cell layers (Fig. 9D). Their

location and morphology are characteristic of Purkinje cells. It

should be noted that these cells had a weak spon1b:GFP signal,

though were well defined by spon1b mRNA in situ hybridization.

While the spon1b mRNA signal was absent from the SR (Fig. 9D),

GFP labeling was strong in Tg(spon1b:GFP) zebrafish (Fig. 9F),

confirming that the signal comes not from cells but from axons

originating in the Hb and traveling via the FR.

The most ventral tip of the rhomboencephalic ventricle (RV),

medial to MLF, was strongly positive for spon1b (Fig. 6A, 9D). The

spon1b mRNA expression in this area was especially well defined

by ISH and extended throughout the entire RV to the level of the

caudal medulla. This medullo-spinal region is characterized by the

presence of CSF-contacting neurons, which are abundant in

teleosts [39].

Myelencephalon. In the medulla oblongata, spon1b is

expressed in multiple symmetrically positioned hindbrain neurons

(Fig. 6A, 9E,G), including the large Mauthner cells (Fig. 1J), and in

the neurons of the motor nucleus of X (Fig. 9G). In the spinal cord,

the spon1b:GFP positive projections of these cells run along with

the MLF and ventral funiculus (Fv, Fig. 9G-H). The tectobulbar

tract (TTB) is also strongly labeled by spon1b:GFP (Fig. 7B-D, 8G,

9B), which sends motor output from the deeper layers of the TeO

to the premotor reticulospinal system in the hindbrain [40].

Spon1b is Expressed in Neurogenic Zones of the
Zebrafish Brain

In zebrafish, adult neurogenesis is a continuous process, much

more active than in mammals [20]. A total of 16 distinct

proliferative niches have been identified in zebrafish brain. These

are located mainly in periventricular areas, but also within the

brain parenchyma [41]. We have documented a notable overlap

of the areas of spon1b expression with proliferative zones in adult

zebrafish brain (Fig. 10A-B). Spon1b expression is present within or

next to BrdU-positive areas, such as the olfactory bulbs, ventral

and dorsal telencephalon, parvocellular preoptic nuclei, Hb,

ventral and dorsal thalamus, posterior tuberculum, posterior

tuberal nucleus, hypothalamus, median optic tectum, torus

longitudinalis, cerebellum, medulla and spinal cord (Fig. 10B).

To understand the relationship between spon1b and stem cells, we

examined cell proliferation patterns in several germinal zones in 1-

Figure 4. Spon1b:GFP expression in the habenular nuclei and their projections. A-C. Dorsal view of live zebrafish showing migration of
ventral habenular nuclei from lateral to medial position: 3 dpf (B), 20 dpf (C), and 2 mpf (D). Asterisk indicates the position of the eye. D. Schematic of
DCP in adult zebrafish showing areas of spon1b:GFP expression (E and F) and depicting the habenula (Hb), its afferent projections within the stria
medullaris (sm), its efferent projection: fasciculus retroflexus (FR), and target nuclei: interpeduncular nucleus (NIn), and superior raphe (SR). E-F. Para-
sagittal cut through fresh-frozen adult Tg(spon1b-GFP) brain. GFP fluorescence highlights all DCP structures, including vHb nuclei, FR and sm (E). Also,
cells of the bed nucleus of the stria medullaris (BNSM, arrow in E), and projections to NIn and SR in F. Rostral to the left. G. Schematics of the relative
shape and position of the spon1b-positive nuclei of the Hb, as shown in H-I. H-L. Coronal sections immunostained for GFP: rostral (H) and caudal (I)
Hb, NIn (J), and rostral (K) and caudal (L) SR. Scale bars: A-B: 100 mm; D: 25 mm; H-L: 50 mm.
doi:10.1371/journal.pone.0037593.g004
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year old zebrafish through a series of BrdU incorporation

experiments. We examined brain tissue at 2 hours, 4 days, 1

month and 2 months after BrdU injection, documented spon1b-

and BrdU-positive cell locations using double-immunohistochem-

istry, and searched for cells with co-localized spon1b and BrdU

signals.

Figure 5. Expression of spon1b and Hu C/D in the habenula (Hb) complex. A. Coronal section through the Hb showing spon1b:GFP
immunoreactivity in green and the pan-neuronal marker Hu C/D in red. Note spon1b negative areas at this level: Anterior nucleus of thalamus (A),
posterior preoptic areas (ppp). Inset to (A): schematic subdivisions of the Hb in spon1b-positive ventral nucleus (vHb), inferior nucleus of dorsomedial
zone (dmHbi), and spon1b-negative dorsolateral (dlHb) and dorsomedial (dmHb) zones. B-C. High magnification images of the small densely packed
cells in vHb (B) and the larger sparse cells in dmHbi (C). D. Coronal view of the interpeduncular nucleus (NIn) showing spon1b-positive terminal
projections to the ventral area (vNIn), but not the dorsal and intermediate Nin (dNIn, iNIn) (asterisk). Note bypassing fibers from FR circumventing NIn
on its way to the SR, and spon1b-positive cells at the core of Nin (arrow). Scale bars: A: 200 mm, inset: 50 mm; B-C: 25 mm; D: 100 mm.
doi:10.1371/journal.pone.0037593.g005
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In the habenular neurogenic niche, the majority of BrdU-

positive cells were located along the midline, adjacent to the

diencephalic ventricle and vHb. In some specimens, the Hb niche

extended ventrally, merging with the ventral thalamic niche. We

observed a distinct rostro-caudal organization of the Hb niche, 2

hours post-BrdU injection. At the most rostral levels, the BrdU-

positive cell nuclei were found immediately ventral to the vHb

(Fig. 10C). More caudally, the dividing cells were concentrated in

the medio-dorsal region of the vHb (Fig. 10D). Thereafter, at the

level of the habenular commmissure (cHb), BrdU-positive nuclei

again were located medio-ventral to the vHb nuclei (Fig. 10E). At

all levels, few BrdU cells could be observed within the parenchyma

of the Hb at 2 hours post-injection (Fig. 10C-E).

Four days after BrdU incorporation, the newly-divided cells

could be found close to the periphery of the Hb niche, migrating

dorsally along the ventricular walls and into the ventral and dorsal

Hb (Fig. 10F). At 1 month post-injection, the surviving BrdU-

labeled cells could not be detected in the niche per se, but were

localized in the ventral and dorsal Hb nuclei (Fig. 10G-H). Over a

2-month post-injection period, most of the BrdU-labeled cells

moved into the dHb nuclei (Fig. 10I). Importantly, none of the

Figure 6. Spon1b expression in thalamic and pretectal regions. A. Horizontal section showing spon1b mRNA-positive nuclei (in situ
hybridization): dorsoposterior (DP), centroposterior (CP) and ventrolateral (Vl) thalamic nuclei; anterior parvocellular preoptic (Ppa); Ventral Tel (Vv). B.
Coronal section through the thalamus, immunostained for GFP. Medial (PGm) and lateral (PGl) preglomerular nuclei, torus longitudinalis (TL), ventral
hypothalamus (Hv), optic tectum (TeO). C. Periventricular region (boxed area in B in adjacent section), showing spon1b-positive cells in the dorsal
(PPd) and ventral (PPv) periventricular pretectal nuclei, in the posterior tuberculum (TPp), in the posterior tuberal nucleus (PTN) and in fibers of the
fasciculus retroflexus (FR). Note absence of signal in the subcommissural organ (asterisk: SCO region, ventral to posterior commissure, Cpost). Scale
bars: A-B: 100 mm; C: 50 mm.
doi:10.1371/journal.pone.0037593.g006
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Figure 7. Spon1b expression in the hypothalamic area. A. Ventral view of a freshly-dissected adult Tg(spon1b-GFP) brain: fluorescence signal in
the ventral (Hv) and caudal (Hc) hypothalamic nuclei, the tectobulbar tract (TTB), the interpeduncular nucleus and superior raphe (asterisk), and fibers
from the fasciculus retroflexus (FR). B. Coronal section at the level of the ventral hypothalamus (Hv), immunostained for GFP. Note the strong
fluorescence signal in FR and medial longitudinal fasciculus (MLF), but its absence in the horizontal commissure (Chor) and lateral lemniscus (LLF).
Optic tectum (TeO), posterior tuberal nucleus (PTN), paraventricular nucleus (PVO), torus longitudinalis (TL), valvula cerebelli (Val). C. Spon1b
expression in periventricular cells (arrowheads) of the Hv nucleus (boxed area in B) with long projections extending laterally (arrows). D. Coronal
section at the level of the caudal hypothalamus (Hc) showing high spon1b expression in the nucleus of the posterior recess (NPR), and long
projections within the dorsal hypothalamus (asterisk). These projections, in part, originate from the most lateral cells of the NPR (arrow in inset). Note
strong signal in scattered cells and projections in the tegmentum (arrows), ansulate commissure (Cans), and tectobulbar tract (TTB). E. Robust spon1b
expression in the NPR. Note the dorsal projections of CSF-contacting neurons. F. Cells in NPR showing co-localization of the pan-neuronal marker Hu
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newly formed cells that migrated into the vHb or dHb expressed

spon1b at any post-injection interval examined.

The periventricular hypothalamic niche in zebrafish is divided

into dorsal, ventral and caudal zones (Fig. 10J-K), corresponding

to their location in specific periventricular hypothalamic regions

(Hd, Hv and Hc, respectively [41]). Spon1b-positive cells were

abundant in the Hd, Hv and Hc, being close to BrdU-positive cells

but not co-localizing with them at 2 hours or 30 days post-BrdU

C/D (red) and spon1b:GFP (green). G. Coronal section at the level of NIn showing spon1b:GFP in vNIn (white arrow), but its absence in dorsal NIn
(dNIn, red asterisk). Spon1b-positive fibers in the cerebellar corpus (CCe), FR (fibers circumventing NIn on the way to SR), mammillary bodies
(arrowhead) and TTB. Scale bars B,G: 100 mm; C: 25 mm, D: 50 mm; E-F: 20 mm.
doi:10.1371/journal.pone.0037593.g007

Figure 8. Spon1b expression in areas of the visual system. A. Spon1b expression in retinal ganglion cells (RGC) forming optic nerve (on) in live
zebrafish at 20 dpf. Confocal image. B. Coronal section of adult zebrafish fish brain at the level of the optic tectum (TeO) showing spon1b-positive
retino-tectal projections of the ventrolateral optic tract (VOT) splitting into two TeO layers: stratum fibrosum et griseum superficiale (SFGS, arrow) and
stratum opticum (SO, arrowhead). Spon1b-positive cells in the medial (PGm) and lateral (PGl) preglomerular nuclei, and in the posterior tuberal
nucleus (PTN). C. Double immunostaining in TeO demonstrates co-localization of spon1b:GFP (green) and Hu C/D (red) signal, confirming the
neuronal nature of spon1b-positive cells. D. Coronal section identifying six TeO layers, with spon1:GFP expression in retinotectal projections in SO and
SFGS, cell types 1 (in SPV border) and 4 (in SAC). E. Type 3 TeO cell, with horizontal projections in the SAC layer. F. Type 5 TeO cells with vertical
projections in the SGC layer. G. Type 2 TeO cell with vertical projections traversing all TeO layers and forming the tectobulbar tract (TTB). H: Spon1b-
positive cells and rami-like neuropil in the torus longitudinalis (TL). Scale bars: A: 10 mm; B: 100 mm; E-F: 15 mm; D,H: 20 mm, G: 50 mm.
doi:10.1371/journal.pone.0037593.g008
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administration (Fig. 10L-M). The spon1b-positive cells were

positioned in the peri-ventricular regions and parenchyma of the

hypothalamic nuclei, while the BrdU-positive cells were found

along the ventricular wall (Fig. 10J-M), consistent with previous

observations [41,42]. One month after BrdU injection, some of the

newly formed cells had migrated away from the ventricle and into

the parenchyma, although the majority remained closely associ-

ated with the niche. Similar to those in the Hb niche, the BrdU-

positive cells of the hypothalamus did not co-localize with

spon1b:GFP positive cells one or two months after cell division

had occurred (Fig. 10L-M).

The cerebellar niche is one of the largest and most complex

proliferation zones of the teleost brain, and the site of origin of the

majority of new cells in the zebrafish brain [43]. It is also the only

niche in the zebrafish that is not associated with the ventricles

[43,44]. The BrdU positive nuclei were found throughout the

molecular cell layer of the Val, CCe, CC and EG at 2 hours after

injection, consistent with earlier findings [43]. At 1 and 2 months

post injection, the new cells had migrated into the granular cell

layer of the cerebellum and could be observed among the

spon1b:GFP positive fibers (Fig. 10N). No cells with co-localized

Figure 9. Spon1b expression in the hindbrain. A. Dorsal view of a freshly-dissected Tg(spon1b:GFP) juvenile zebrafish showing relative position
of the paired habenular nuclei (Hb), emerging fasciculus retroflexus (FR), optic tectum (TeO), cerebellar corpus (Cce), granular eminence (EG), and
medulla (Me). B. Coronal section of adult zebrafish brain at the level of the cerebellar corpus showing spon1b:GFP positive projections within the
cerebellum, and to the superior raphe (SR). Tectobulbar tract (TTB). C. Spon1b:GFP signal in cells of the secondary gustatory nucleus (SGN), in the
gustatory commissure (Cgus), and in scattered cells and projections throughout the tegmentum (arrow), and nucleus isthmi (NI). (High magnification
picture of area in B). D. Spon1b mRNA expression (in situ hybridization) in Purkinje cell layer (Pur), ventral tip of rhomboencephalic ventricle (rv), SGN,
nucleus isthmi (NI), superior reticular nucleus (arrowhead) and mammillary bodies (CM). Note the lack of signal in the Cgus and SR, confirming that
the spon1b:GFP label in these regions comes from projections and not cell bodies. E. Coronal section at the level of the caudal cerebellum showing
spon1b-positive cells and thick projections from cerebellar crest (CC), the descending octaval nuclei (DON) and the commissure that joins the nuclei,
the internal arcuate fibers (IAF) coursing in between the axons of the medial longitudinal fasciculus (MLF). F. Spon1b-positive FR fibers (arrows)
terminating on both sides of the ventral region of SR (high magnification image of area boxed in B). G. Coronal section at the level of the caudal
medulla showing spon1b:GFP expression in the vagal motor nucleus (NXm), but not in the vagal lobe (LX). Note the symmetrically labeled motor
neurons (mn), and the strongly labeled axons of the MLF and motor neuron axons in the ventral funiculus (Fv). H. Coronal section of the spinal cord
showing spon1b:GFP expression in the axons of MLF and the ventral funiculus (Fv). Scale bars: B, F-H: 100 mm; C-D: 50 mm; E: 200 mm.
doi:10.1371/journal.pone.0037593.g009
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spon1b and BrdU signals were found in the cerebellum for up to 2

months post-BrdU injection.

Upon close examination, the only area of the brain where we

found BrdU-positive cells co-localizing with spon1b:GFP was the

tegmentum (Fig. 10O). One month after the division occurred,

these new cells had extended relatively long projections,

highlighted by a GFP signal, and their morphology was consistent

with a neuronal phenotype. Most likely, these new cells migrated

from the posterior mesencephalic lamina niche or from the dorsal

tectal proliferation zone [41].

Expression of spon1b in Peripheral Tissues
We have documented that F-spondin expression is not limited

to CNS but also present in a number of peripheral tissues in

developing and adult zebrafish. Unlike in the brain or eye of adult

zebrafish, very low levels of spon1b mRNA abundance could be

detected by qPCR in zebrafish muscles and skin (28.8 and 11.9

fold less than in zebrafish brain, respectively), with no apparent

transgene expression found. Nevertheless, as in the CNS, in both

of these tissues the abundance of spon1b mRNA was consistently

higher than that of spon1a (n = 224; unequal variance t-test,

muscle vs. brain t(2) = 9.22 p,0.005, skin vs. brain t(4) = 3.23

p,0.001).

The zebrafish have only pharyngeal teeth, located posteriorly to

the fifth pharyngeal arch, and these showed strong spon1b:GFP

expression during development (Fig. 11A). The teeth, known to

regenerate throughout the zebrafish lifespan [45], remained

strongly labeled with the transgene in adult fish (Fig. 11B-C),

and this was consistent with high spon1b mRNA levels determined

by qPCR (data not shown). Spon1b expression was restricted to the

soft tissue surrounding the mature teeth (Fig. 11C), which

corresponds to the tooth-associated lamina and the replacement

tooth developing from it [45].

The expression of spon1b:GFP in zebrafish enteric neurons was

evident during early development (Fig. 11D). These cells,

regulating gut motility, are located between the circular and

longitudinal smooth muscle layers [46] and retain robust F-

spondin expression throughout zebrafish life. An especially high

density of spon1b:GFP positive neurons around the anal pore

allowed us to easily observe them in live adult fish (data not

shown). The distinct spon1b:GFP positive neurite extensions could

be documented in adult gut using confocal microscopy (Fig. 11E).

Spon1b was also present in developing zebrafish fins. Early

massive spon1b expression in the tail bud and caudal fin rays

(Fig. 1C-E) was followed by a strong spon1b:GFP signal in the

pectoral and abdominal fin buds in larval fish. The larval caudal

fin in zebrafish is replaced by the adult fin through a well-

characterized process [47]. Consistent with this, around 8 dpf

spon1b:GFP expression was detected in the adult caudal fin

primordium (Fig. 11F-H). Later, the primordium gives rise to

the endoskeleton of the adult tail [47] and, in adult zebrafish, we

documented a thin layer of cells covering the endoskeleton that

continued expressing spon1b (Fig. 11I-J). Otherwise, in adult

zebrafish, the caudal fin rays were devoid of spon1b:GFP

expression.

Zebrafish are known to regenerate their caudal fin following

partial amputation. This complex process involves reprogramming

and cell migration, with extracellular matrix remodeling being

essential for this process [48]. To determine whether F-spondin

might be involved in fin regeneration, we conducted partial fin

amputation and documented spon1b:GFP expression over a 2-week

period of regeneration. There was no upregulation in spon1b

expression during the first day post-trauma, which corresponds to

the wound healing and epithelialization period. However, by the

end of the second day of regeneration, qPCR measurements in fin

tissue indicated initiation of spon1b mRNA production (data not

shown). This coincided with the appearance of spon1b:GFP

fluorescence at the distal ends of the fin rays (lepidotrichia)

(Fig. 11K-L), in an area called the blastema, a zone of actively

proliferating mesenchymal cells responsible for fin patterning and

re-growth [49]. The fluorescence signal was typically restricted to

paired domains at the tip of the growing rays of each

lepidotrichium (Fig. 11L). Spon1b expression was observed in these

areas throughout the fin regeneration process and disappeared

after its completion.

Discussion

The goal of the present study was to investigate F-spondin

expression patterns in developing and adult zebrafish, in order to

compare them to the regions of F-spondin expression reported in

mammals, and to relate these patterns to the functional role of F-

spondin suggested by in vitro studies. Unlike mammals, which have

one F-spondin gene, zebrafish have two F-spondin homologs,

spon1a and spon1b. Our systematic qPCR-based quantification of

relative differences between these two homologs documented that

spon1b expression is initiated much earlier, within hours post

fertilization, and that mRNA abundance for spon1b in embryonic,

larval or adult zebrafish tissues is consistently and substantially

higher than that for spon1a. An earlier study also reported lower

spon1a expression in zebrafish embryos, as determined by in situ

hybridization [12]. We thus focused on characterizing the patterns

of expression for spon1b and, for the first time, established a

transgenic vertebrate model with stable spon1b:GFP expression. The

localization of cells expressing the spon1b:GFP transgene in

developing and adult zebrafish proved to be consistent with the

areas highlighted by the complementary spon1b in situ hybridization

method, with minor exceptions (see Results). The major advantage

of the transgenic animal was that it permitted visualization of both

the cell bodies and the projections originating from them.

Here we demonstrate that, following the onset of spon1b

expression in structures involved in early patterning and polari-

zation of zebrafish CNS, F-spondin-positive neurons are present in

specific regions of the telencephalon, diencephalon, mesenceph-

Figure 10. Spon1b is expressed in neurogenic niches. A. Schematic of neurogenic niches in zebrafish brain based on BrdU immunostaining and
modified from Grandel et. al. (2006). Cerebellar corpus (CCe), Habenula (Hb), hypothalamic areas (H), parvocellular preoptic area (Ppa), thalamic area
(T), ventral nucleus of ventral telencephalon (Vv). B. Mid-sagittal of adult zebrafish brain showing spon1b mRNA expression (in situ hybridization).
Note the overlap of the spon1b-positive areas with the neurogenic niches. C-E. BrdU-positive nuclei in the habenular niche in rostral (D), and mid (E)
and caudal (F) areas, 2 hours post-BrdU injection. F-I. Double immunostaining of the habenular niche, showing spon1b- (green) and BrdU- (red)
positive cells, at 4d (F), 30d (G-H) and 60d (I) post BrdU-injection, showing migration of the BrdU nuclei away from the niche and into the surrounding
tissue. J-K. BrdU nuclei in the ventral (J) and caudal (K) hypothalamus, Hv and Hc, respectively, 2 hours post-injection. L-M. Double immunostaining
for BrdU (red) and spon1b:GFP (green) 30 days post BrdU injection in ventral hypothalamus (Hv, L), and in the nucleus of the posterior recess (NPR) in
Hc (M) showing lack of co-localization. N. Double immunostaining for BrdU (red) and spon1b:GFP (green) 30 days post BrdU injection in the
cerebellum. Note the BrdU-positive nuclei among the spon1b-positive fibers. O. Co-localization of BrdU (red) and spon1b:GFP (green) in cells
extending long projections in the tegmentum 30 days post-BrdU injection. Scale bar C: 200 mm, D-L,N: 50 mm, M: 20 mm.
doi:10.1371/journal.pone.0037593.g010
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Figure 11. Spon1b expression in peripheral tissues of Tg(spon1b:GFP). A. Spon1b expression in pharyngeal teeth of zebrafish larvae at 3dpf
(arrow). Asterisk: eye. B-C. Pharyngeal teeth in adult zebrafish with spon1b:GFP expressed in newly developing teeth. Asterisk: old mineralized teeth.
Green signal: spon1b-positive soft tissue. In C, soft tissue is moved off the hard tissue. D. Spon1b:GFP positive enteric neurons in intestine of
developing larva, 72hpf (sagittal view of live specimen). E. Spon1b:GFP positive enteric neurons in adult zebrafish (confocal z-stack). F-H. Progression
of spon1b expression in larval tail. Expression in larval fin rays at 5 dpf (F). Development of the adult tail primordium (arrow) by 8 dpf (G). Subsequent
splitting into 2 domains (arrows in H, 15 dpf) that will give rise to the two adult caudal fin lobes. I. Spon1b expression in the endoskeleton of the adult
zebrafish caudal fin. Note spon1b-positive axons of the motor neurons traversing the trunk and musculature (arrow). J. Dissected endoskeleton in (I),
showing a thin sheet of spon1b-positive tissue covering the bone. K. Spon1b signal at the distal end of the growing adult tail 4 days post caudal fin
amputation. Blue line shows the level of amputation and yellow line marks a growing lepidotrichium. L. High magnification image of region in (K)
showing the two spon1b-positive domains of blastema, patterning each growing lepidotrichium (yellow line). White line: distal edge of regenerating
caudal fin. Scale bars: 20 mm.
doi:10.1371/journal.pone.0037593.g011
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alon, hindbrain, and spinal cord. The projections of these F-

spondin positive neurons can be local but, more often, extend

between distant CNS regions, forming long neuronal tracts. The

significance of F-spondin as a secretory ECM protein is

highlighted by its expression in CSF-contacting cells with

projections directed toward the ventricular walls. Importantly,

the distribution of spon1b in adult zebrafish brain closely coincides

with the proliferative zones, suggesting that F-spondin might be

essential for adult neurogenesis. Use of this new transgenic model

organism also allowed for the documentation of F-spondin

expression patterns in the peripheral CNS, notably in enteric

neurons, and in peripheral tissues involved in active patterning or

proliferation in adults. These included the endoskeleton of

zebrafish fins, as well as their continuously regenerating pharyn-

geal teeth. The latter result is notable given that F-spondin was

recently found to be expressed in dental follicle cells of the

developing tooth germ in mice [8], and in human periodontal

cementoblasts, the activity of which is essential for mature tooth

stability [7]. The role of F-spondin in actively proliferating tissues

is further stressed by our observation of its de novo expression in the

blastema, a critical area of cell proliferation and patterning formed

during zebrafish fin regeneration. Together, these findings suggest

multiple roles for F-spondin in the CNS and periphery of the

developing and adult vertebrate and call for further investigations

into the mechanisms of its actions.

F-spondin Expression during the Segmentation Period
An important role of F-spondin during the segmentation period

[22] is suggested by massive spon1b:GFP transgene expression in

the fin buds, developing somites, optic primordia, floor plate and

notochord around 10 hpf. This expression pattern is, generally, in

agreement with previous in situ hybridization-based studies

conducted in embryonic zebrafish, frog, chick, mouse and rat

[4,10–12]. The expression of spon1b:GFP in the developing

forebrain and spinal cord neurons also suggests that F-spondin is

involved in early patterning and polarization of the zebrafish CNS.

This is consistent with in vitro studies showing that F-spondin can

guide and promote the extension of neurites and axons of dorsal

spinal [4], commissural [11] and hippocampal [13] cells in

mammals, while inhibiting motor neuron outgrowth [50] and

neural crest cell migration [51]. Overall, the visualization of

spon1b:GFP accumulation in specific areas of the developing

zebrafish embryo allows for earlier detection of spon1b-producing

cells. This might explain prior ISH-based reports of more

restricted spon1b expression during early zebrafish development

[12].

F-spondin-expressing Neurons form Long Projections
In zebrafish CNS, F-spondin expression appears to be limited to

neurons, indicated by consistent co-localization with Hu C/D.

Many of these neurons extend long projections, including RGC

axons to the TeO, medial and lateral olfactory tracts (MOT and

VOT), and sensory and motor neurons of the midbrain, hindbrain

and spinal cord. Moreover, F-spondin expression highlights all the

components of the long dorsal conduction pathway (DCP) [31],

with an especially strong spon1b:GFP signal in the FR, extending

from the Hb in the dorsal diencephalon to the NIn and SR of the

ventral tegmentum. Together, this expression in adult brain

implies that F-spondin function is not limited to the initial

patterning and direction of long axons, but that it may serve as a

short-range cue that remains associated with the cell producing it,

promoting maintenance of its long axon and synaptic connections.

Similar roles have been previously suggested for other ECM

proteins, including Reelin [52,53].

F-spondin Expression in Circumventricular Regions and
CSF-contacting Neurons

F-spondin is reported to be a diffusible signaling molecule [5].

Consistent with this, we observed its expression in several regions

that contain CSF-contacting neurons. These cells have two

principal functions. Through their dendrites, they can receive

information about chemical content, pressure or flow of the CSF,

then convey it to various brain regions via their axons that

terminate not only in the periventricular areas but as far away as

the telencephalon or the spinal cord [54]. Alternatively, the axons

of the CSF-contacting neurons can produce and release neuro-

transmitters, peptides and other biologically active molecules into

the CSF, providing chemical signals to other brain areas lining the

ventricular spaces. Accordingly, we find that F-spondin positive

neurons located along the mediobasal part of the diencephalic

ventricle (Hv) form distinct tracts directed away from the ventricle,

thus potentially serving as chemosensory neurons. This is in

contrast to other CSF-contacting cells that extend their F-spondin

positive axons into the ventricular lumen and are likely to

contribute soluble F-spondin protein to the CSF. Especially rich in

such cells are the nuclei positioned along the wall of the

diencephalic ventricle and its recesses, including the preoptic

nuclei, the paraventricular organ, and the nucleus of the posterior

recess (NPR) of the caudal hypothalamus (Fig. 7). The two latter

nuclei are known to be strongly labeled for several catecholamin-

ergic markers in zebrafish [55], indicative of serotonergic [56] and

dopaminergic [57] activity. Other magnocellular neurosecretory

neurons in this nucleus in lower vertebrates, including fish, show

immunoreactivity to neurophysin, vasotocin, isotocin/mesotocin,

somatostatin or enkephalin antibodies [54]. Together, this raises

an important question as to which neurochemical systems may

regulate F-spondin release into the CSF, and which ones might be

affected by the presence of F-spondin.

The medullo-spinal component of the CSF contacting system,

which extends throughout the rhomboencephalic ventricle and

central canal [54], also expresses F-spondin mRNA. The neurons

of this area extend stereocilia into the CSF, which act as

mechanoreceptors when they contact Reissner’s fiber [54]. This

enigmatic thread-like glycoprotein fiber, spanning the entire length

of the central canal in the majority of vertebrates, is produced

largely by the subcommissural organ (SCO), with some contribu-

tion from other circumventricular areas [21]. An earlier study in

embryonic zebrafish reported the expression of F-spondin mRNA

in the SCO (in situ hybridization) and the presence of spon1b

protein in Reissner’s fiber (immunohistochemistry) [12]. In

contrast, we could not detect spon1b in the SCO in developing

or adult animals with the methods used here. Nevertheless, the

spon1b:GFP transgene highlighted the flexural organ, which is also

a source of Reissner’s fiber-forming proteins [21] and the

habenula, located immediately dorsal to the posterior commissure

and SCO.

Indeed, among the circumventricular organs (CVO) identified

in zebrafish [58], the Hb nuclei attracted our special attention due

to the early onset and exceptionally robust nature of spon1b

expression in this important structure. Although the CSF-

contacting properties of Hb neurons have not yet been charac-

terized in zebrafish, evidence collected in other species suggests

that Hb nuclei may contain actively secreting mast cells (e.g., in

doves) [59] and may receive afferent projections from the CSF-

contacting PVO via the FR (e.g., in lungfish) [54]. Using in situ

hybridization, the expression of F-spondin was detected in the

dorsal Hb nuclei of developing zebrafish in some [29] though not

other [12] studies. We have also documented broad F-spondin

expression in Hb of adult zebrafish using an in situ hybridization

F-Spondin Expression in Zebrafish

PLoS ONE | www.plosone.org 17 June 2012 | Volume 7 | Issue 6 | e37593



approach and the same probe used in an earlier study that

demonstrated the presence of F-spondin in Hb [60]. Although the

spon1b:GFP transgene showed prominent expression in Hb starting

early in development, its localization was more restricted than that

suggested by in situ hybridization, highlighting only laterally-

positioned Hb nuclei in larval fish. Thereafter, the transgene

allowed for detailed in vivo tracing of the migration of the two

lateral Hb nuclei toward the midline during maturation, until they

finally acquired their rostro-ventral location, corresponding to the

ventral Hb nucleus (vHb) in adult zebrafish. This is consistent with

a recent report on the complex migratory path of the lateral Hb

nuclei during zebrafish ontogenesis and the identification of the

lateral Hb in mammals as being homologous to the lateral Hb in

larval zebrafish but the ventral Hb in adult zebrafish [28].

In addition to the distinct ventral and dorsal nuclei of the Hb,

the dorsal Hb in zebrafish is further divided into the dorso-lateral

(dlHb) and dorso-medial (dmHb) sub-divisions, indicated by

distinct gene expression patterns and projections to the dorsal

and ventral NIn, respectively [29,30,61]. In other species, it has

been suggested that the Hb has even more complex morphological

and functional structure [62,63]. Our data, as well as others’,

suggest that the Hb in zebrafish is also likely to have more than

three subdivisions [29,30], since the spon1b:GFP transgene, in

addition to vHb, highlighted a previously undescribed subnucleus.

We named it the inferior subnucleus of the dorso-medial Hb

(dmHbi) based on its localization, cell morphology and projections

to ventral NIn, consistent with dmHb. However, the dlHb and

dmHb are known to keep a midline position starting with early

development [60,64], while we do not detect a spon1b:GFP signal in

the midline region until maturation occurs. It is thus possible that

dmHbi starts expressing the transgene only later in life, in contrast

to the early onset of spon1b production in the lateral, later turned

ventral, Hb. Overall, in view of the major role that the Hb plays in

emotional and cognitive functions in diverse species, including

humans [65], specific mapping of spon1b:GFP transgene expression

here could shed light on the role of the lateral Hb in CNS

development and function throughout vertebrate life.

F-spondin Expression in Neurogenic Zones
During embryonic stages in vertebrates, ECM proteins are

abundant in the developing brain. Later, in adults, they become

more restricted to brain regions with germinal capacities [66]. For

example, the rostral migratory stream (RMS) and granular zone of

adult rodents, regions abundant in neural stem cells, are also

characterized by high expression of ECM proteins [67]. In

particular, F-spondin is present in the RMS of mice and was

suggested to be part of the signaling cascade for chain formation,

migration, and detachment of neuroblasts from the stream via its

interaction with the ApoER2 receptor and intracellular adapter

Dab1 [18]. Here, we report that spon1b in zebrafish is abundant

not only in the areas that resemble mammalian neurogenic niches

(i.e., Vv as RMS [68]), but also in all other proliferative zones

along the rostro-caudal axis of the zebrafish brain. This suggests

that the role of F-spondin in neurogenesis might be broad and not

specific to the telencephalic niches. In vitro studies in mammalian

hippocampal and cortical progenitor cell lines have identified F-

spondin as a secreted protein that regulates migration and

differentiation of neurons [5]. A potential role for F-spondin in

these processes is also supported by our data showing that the

habenular and cerebellar niches, which contain the largest

migratory stem cells populations in zebrafish [41], are also the

regions that contain the highest density of F-spondin-expressing

cells (in Hb) or fibers (in CCe).

Double staining for spon1b:GFP and the proliferative marker

BrdU revealed that, in all of the stem cell niches examined, the

newly divided cells do not express spon1b. Even a month later, the

BrdU-positive cells that migrate to the spon1b-rich areas, e.g., vHb,

remain spon1b negative. Nevertheless, we could observe a few cells

positive for both BrdU and spon1b:GFP that migrated to the

tegmentum within a month after cell division, and were in the

process of extending long projections. Still to be elucidated is the

extent to which F-spondin is involved in adult neurogenesis, and

the mechanism through which this ECM protein could contribute

to the microenvironment of the neurogenic niches, the migration

of new cells, and their ability to form long projections.

The Role of F-spondin in Peripheral Tissues
In addition to the proliferative niches in the brain, the

peripheral tissues involved in patterning of newly forming or

regenerating structures express spon1b throughout the life of the

zebrafish. These include the endoskeleton of the zebrafish fins,

involved in patterning, and the unique blastema region of fin rays

undergoing regeneration following partial amputation. Moreover,

quite remarkable is the massive and constant expression of spon1b

in the soft lamina surrounding the pharyngeal teeth, which

continuously renew throughout zebrafish life. In fact, recently F-

spondin was identified as being important for mammalian tooth

development and maintenance, and its specific expression in the

dental follicle cells of the tooth germ in mice [8], and in human

periodontal cementoblasts, essential for the stabilization of the

periodontal ligament and the tooth itself [7]. Similarly, the

presence of F-spondin in embryonic chick and rat cartilage and its

ability to stimulate chondrocyte activity and collagen degradation

in cultured cartilage explants, [6] suggest additional F-spondin

functions.

The peripheral nervous system arises from neural crest cells that

migrate to different areas of the organism. F-spondin has been

found to be involved in patterning of the sympathetic nervous

system by acting as a signaling molecule that prevents neural crest

cells from entering the caudal end of each somite [50]. Our finding

that F-spondin is expressed in enteric neurons of zebrafish, raises

the interesting question of whether it might also play a role in

enteric neuron differentiation, migration, or maintenance, in other

vertebrates, including humans, and calls for further investigation

of this issue.

Together, our findings imply multiple roles for F-spondin in the

CNS and periphery of the developing and adult vertebrates,

making the zebrafish an attractive model to investigate the role of

this ECM protein in normal and pathological conditions.

Methods

Animal Care and Maintenance
Adult male and female zebrafish (Danio rerio, AB wild type strain,

5 fish/3-L tank) were housed in a 14 h light/10 h dark cycle, in a

temperature (26.5uC) and pH (7.0–7.4) controlled multi-tank re-

circulating water system (Aquaneering, San Diego, CA, USA).

Animals were fed three times a day with live brine shrimp (Brine

Shrimp Direct, Ogden, Utah. USA), enriched with fish pellets

(Lansy NRD, Salt Lake City, UT. USA). Embryos were raised at

28.5uC in a 12 h light/12 h dark cycle before being transferred to

system tanks at 21 dpf.

All animal procedures were performed in accordance with the

protocol approved by the Institutional Animal Care and Use

Committee (IACUC) at Boston University School of Medicine.
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Generation of Transgenic Zebrafish
A plasmid with the enhanced green Yuorescent protein (EGFP)

under the control of the zebrafish spon1b promoter (Accession#
NM_131517) was constructed. The recombinant spon1b:GFP

construct was obtained by a combination of assembly PCR and

traditional cloning. By PCR, using the appropriate primers, a

10.3-kb DNA sequence from the 59 promoter region of the spon1b

gene, obtained from the genomic CH211-20O6 clone (BACPAC

Resources Center, Children’s Hospital Oakland Research Insti-

tute, Oakland, CA), and a 0.86-kb fragment containing the 39

flanking region of spon1b, were placed upstream and downstream,

respectively, of the EGFP sequence. The resulting 12.2-kb

construct was transferred into a modified pNEB193 plasmid

containing two meganuclease I-SceI sites. The one-cell stage

zebrafish embryos were co-injected with the plasmid DNA

containing the construct and the meganuclease I-SceI, as

recommended [69]. Injected embryos were screened for the

presence of GFP fluorescence between 48 and 72 hpf. Positive

embryos were raised to sexual maturity and out-crossed with wild

type fish to identify transgenic carriers. The presence of green

fluorescence in the F1 offspring identified transgenic founder

zebrafish. Out of 69 adult GFP-positive fish, two had germ-line

transmission of spon1b:GFP, with similar expression patterns in

transgenic F1 progeny. The line that had the stronger fluorescence

signal was used for the studies described here.

Real-time Quantitative Reverse-Transcriptase PCR (qPCR)
Total RNA was extracted and purified from whole embryos at

desired stages and adult brains using RNAeasy Qiagen (Qiagen,

Chatsworth, CA, USA), according to the manufacturer’s protocol.

RNA extraction from brain tissue was conducted using QIAzol

Lysis Reagent (Qiagen, Chatsworth, CA, USA) before RNA

isolation using RNAeasy Qiagen kit. The quantity and quality of

RNA was determined spectrophotometrically, at 260 nm and

260/280 nm. The same amount of RNA from each sample was

converted into cDNA using the High-Capacity cDNA Archive Kit

(Applied Biosystems, Foster City, CA, USA), according to the

manufacturer’s instruction. qPCR was performed using a

TaqManH Universal PCR Master Mix and ABI Prism 7300 Real

Time PCR System (ABI, Foster City, CA, USA). The TaqManH
primers and probes {59 FAM, 39 TAMRA} for spon1a and

spon1b were designed based on previously reported sequences of

zebrafish genes and obtained from ABI: spon1a Forward, 59-

GTGACCAAGAGGAGGATTATGCT-39, Reverse, 59-TGTC-

ATGAATTGCGTGTCTTCCT-39; {ATCGATTATCTGGAA-

ATTT}, spon1b Forward, 59-GAAGGAGAGCCAGAAACTTA-

CCAA -39, Reverse, 59-CAATGAGGGTAAAACCACGAAA-

GT-39; {CACCTACAGAGTGAGTTTG}, and b-actin Forward,

59-GCTGTTTTCCCCTCCATTGTTG -39, Reverse, 59-TTT-

CTGTCCCATGCCAACCA-39; {CCCAGACATCAGGGAG-

TG}. Gene expression was normalized using b-actin expression

level for each individual fish sample. A second housekeeping gene,

EGF-1, was also used in some of the assays to control for lack of

non-specific changes in mRNA abundance Forward, 59-

TCCTTGCGCTCAATCTTCCAT -39, Reverse, 59-GCACGG-

TGACAACATGCT-39; {ACCAGCCCATGTTTGAG}. Rela-

tive mRNA expression level was calculated using the standard

comparative delta-Ct method. Within each experiment, embry-

onic or adult brain tissue samples were collected and processed in

parallel, and the expression was measured within the same

microplate, each sample in triplicate.

Tissue Preparation for RNA and Protein Staining
To obtain tissue samples, adult zebrafish were anesthetized

using tricaine (MS-222, Sigma). When they stopped breathing,

they were decapitated and the heads fixed in 4% paraformalde-

hyde in 0.1 M phosphate buffer (PFA) for at least 2 hours. Then,

the brains were dissected out and re-fixed in 4% PFA overnight.

The following day, the brains were cryopreserved in a solution of

30% sucrose until they sank. Then, they were fast frozen in

isopentane, embedded in OCT (Tissue-Tek, Torrance, CA, USA),

and serially cryosectioned in the coronal plane every 20 mm.

Sections were stored at 280uC until processed for in situ

hybridization or immunohistochemistry. Embryos were collected

without removing the chorion, at different developmental stages,

and fast frozen in liquid nitrogen for qPCR analysis.

In situ Hybridization
The plasmid containing the sequence for spon1b was kindly

provided by Drs. Halpern and Gamse. After digestion with EcoRI,

in vitro transcription was conducted using T7 RNA polymerase and

digoxigenin labeling mix to generate antisense RNA probes. For in

situ hybridization, the sections were brought to room temperate

(RT) for 45 minutes. Then they were rehydrated in PBS 2 x 10

minutes. After triethanolamine/acetic anhydride treatment for 10

minutes, the sections were permeabilized in 1% Triton X-100/

PBS for 30 minutes and washed with PBS. Then, the slides were

pre-hybridized for 2 h at RT in a solution containing 10% of 50%-

Dextran sulfate (American Bioanalytical), 20% 20X SSC buffer

(Ambion), 50% formamide (American Bioanalytical), 2% 50X

Denhardt’s (Sigma), 5% fish sperm DNA (Invitrogen) and 15%

DEPC water, followed by overnight hybridization with DIG-

labeled RNA probes (0.2 ng/ul) at 65uC. The next day, the

sections were incubated in 0.2X SSC at 65uC for 2 hours, followed

by 2 more washes of 0.2XSSC at RT for 10 min each. Sections

were blocked in 2% normal sheep serum in TBST for 1 hour at

RT, and then incubated with anti-DIG alkaline phosphatase

conjugate (1:7000, Roche) overnight at 4uC. The third day, the

sections were washed with TBST 3610 minutes, and incubated in

color reaction buffer (0.1 M Tris, 0.1 M NaCl, 0.05 MgCl2,

0.05% Tween-20) for 10 minutes. Then, the signal was visualized

with BM Purple substrate solution (Roche) according to the

manufacturer’s protocol, and the reaction stopped with PBS.

Whole-mount in situ hybridization was performed essentially as

previously described (Musson et al., 2009). Briefly, specimens were

rehydrated, digested with Proteinase K, pre-hybridized for 2 hours

at 70uC in solution containing 50% formamide, 56 SSC buffer,

1% sodium dodecyl sulfate, 50 mg/ml yeast RNA and heparin,

followed by overnight hybridization with DIG-labeled RNA

probes (0.2 ng/ml). Samples were then incubated with anti-DIG

alkaline phosphatase conjugate overnight at 4uC. Signal was

visualized with centrifuged BM Purple substrate solution (Roche

Diagnostics), according to the manufacturer’s protocols.

Immunohistochemistry
Immunohistochemical procedures were performed following

standard protocols [70]. In brief, sections were brought to RT and

rehydrated in 0.1M KPBS. Cryosections were blocked in 5%

Normal Donkey Serum in KPBS for 60 min (only for double

fluorescent immunostaining), and incubated in primary antibodies

diluted in 0.4% Triton-X100/KPBS for 48 h at 4uC. Then,

sections were washed and incubated in secondary antibodies

diluted in 0.4% Triton-X100/KPBS for 1 hour at RT. For double

immunostaining experiments, sections were washed before

repeating the same procedure with the following antibody. Slides

were coverslipped using Immuno-mount (Vector). Modifications
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to the protocol: For HuC/D, sections were boiled for 30 min in

1 M TBST after rehydration. For BrdU, slides were pretreated

with 50% formamide/50% 2X SSC at 65uC for 2h, followed by

2 M HCl at 37uC for 45 minutes and washed with boric buffer

pH 8.5 and KPBS for 10 min, according to Zupanc et al. [42].

The following primary antibodies were used: goat anti-GFP

(1:500000 for chromogenic staining and 1:5000 for fluorescent

staining, Abcam); mouse anti-Hu C/D (1:100, Invitrogen), rat

anti-BrdU (1:1000, Abcam), rabbit anti-GFAP (Abcam). The

following secondary antibodies were used: donkey anti-Goat Alexa

568 (1:1000, Invitrogen), donkey Anti-Rat Alexa 488 (1:1000

Invitrogen), donkey anti-Rabbit (1:2000 Invitrogen), rabbit anti-

goat biotin (1:1000, Vector), and rabbit anti-mouse Biotin (1:1000,

Vector). Chromogenic visualization was done with the Standard

ABC Elite Kit (Vector) with NiDAB as a substrate. Fluorescent

visualization was done with appropriate secondary antibodies

labeled with Alexa 568 or, in the case of Hu C/D, with

amplification by streptavidin Alexa 488 (Invitrogen).

Imaging
Screening of live animals and freshly cut brain tissue was carried

out using a Leica dissecting fluorescence microscope. For detailed

in vivo analysis of spon1b:GFP expression patterns at different stages

of zebrafish development, embryos or larvae were embedded in

1% low-melting point agarose (Shelton Scientific) in the desired

orientation, and covered by egg-water after solidification. Fluo-

rescent images were taken in an inverted Zeiss Axiovert 200M

LSM 510 confocal laser-scanning system (Zeiss, Thornwood, NY)

through the dry 20X and the water-immersion 40X objective

lenses. The Z-sections were taken at an optical slice of 1–2 mm.

Confocal settings were optimized to control for signal crossover.

Detector gain and amplitude offset were set to maximize the linear

range without saturation and were kept consistent throughout

experiments. Images were stacked, composites were generated,

and co-localization was determined by means of orthogonal slice

analysis of each section using the LSM 510 software.

Nomenclature
Sections were analyzed in comparison to the Atlas of the

Neuroanatomy of the adult zebrafish brain [71]. Neuroanatomical

designations follow mostly those of Wullimann and colleagues [71]

complemented by additional studies on BNSM [27], NPR [32],

TeO layers [34], and Hb [28].
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