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Abstract

Background: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice
allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood.

Methodology/Principal Finding: We report here on the generation of transgenic mice which specifically express
a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express
a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK), a gene highly
expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with
Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos
show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of
CtsKCreERT2+/2LacZ+/2 adult mice show a Cre-dependent b-galactosidase activity after tamoxifen stimulation.

Conclusions/Significance: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of
loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in
other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function
in bone physiology during different developmental stages and adulthood of mice.
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Introduction

The bone tissue is continuously remodelled throughout life to

maintain its physical properties. This remodeling process, in which

the bone matrix is digested and rebuilt, requires active bone

resorbing osteoclasts and bone rebuilding osteoblasts. The activity

of these two cell types is tightly coupled so that bone degradation is

balanced by bone formation during aldulthood [1,2,3]. Many

skeletal diseases result from a loss of this balance, as exemplified by

osteoporosis, a disease in which the activity of osteoclasts

overcomes the activity of osteoblasts leading to a decrease of the

bone mass [4].

Many studies have illustrated how osteoblasts control the

differentiation of osteoclast precursors into mature polynucleated

cells and thus bone degradation [5]. Osteoblasts and stromal cells

express the macrophage stimulating colony factor (MCSF), which

controls osteoclast precursor proliferation and the Receptor for

Activation of NF-kB Ligand (RANKL), which controls their

differentiation. There is evidence that osteclasts can control

osteoblast differentiation and thus bone rebuilding, as illustrated

by Ephrin E2 expressed by osteoclasts and recognized by Ephrin

B4 receptor expressed by osteoblasts, thereby modulating

osteogenic differentiation. [6,7,8]. Mature osteoclasts also secrete

growth factors such as PDGF-BB, which is recognized by PDGF

receptor beta on osteoblasts and their precursors and stimulate

their chemotaxis [9].

Studies on osteoclasts have been hampered by the lack of

proper systems to explore, both in vitro and in vivo, their function

in bone digestion and their relationships with other cell types that

contribute to bone homeostasis. Osteoclastogenesis can now be

recapitulated in vitro by stimulating osteoclast precursors with

recombinant MCSF and RANKL, thus facilitating biochemical

and cell biological studies. However, the systems to specifically

inactivate genes in osteoclasts have not been totally exploited.

Transgenic mouse lines that express the Cre recombinase, whose

expression is driven by the promoters of cathepsin K (CtsK) or

tartrate-resistent acid phosphatase (TRAcP), two lysosomal

hydrolases highly expressed in osteoclasts, have been generated

[10]. If such mouse lines enable cell/tissue specific deletion of

loxP site-flanked target genes in mouse osteoclasts, they do not
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overcome embryonic or perinatal lethality and do not allow to

precisely manipulate the timing of recombination, especially to

study gene function during adulthood. The Cre recombinase

fused to a mutant ligand-binding domain of the estrogen receptor

(CreERT2) circumvents this problem [11,12]. CreERT2 has high

affinity for the 4-hydroxytamoxifen (4-OHT) but not for the

endogenous estradiol. After its exposure to the specific inducer,

CreERT2 is translocated into the nucleus and mediates the

recombination of floxed genes. This allows the control of the

activation/inactivation of specific genes during a precise stage of

embryogenesis and aldulthood [13].

We report here on the generation of transgenic CreERT2

mouse lines, in which the cathepsin K promoter drives CreERT2

expression. Cathepsin K is a cysteine protease drastically

upregulated during osteoclastogenesis and is commonly used as

an osteoclast marker [10,14]. The characterization of these mouse

lines indicates that CreERT2 is essentially functional in osteoclasts.

These CtsKCreERT2 transgenic mouse lines provide a suitable

tool to specifically inactivate any loxP-targeted gene in osteoclasts

in a spatial and temporal manner.

Results and Discussion

Targeting construct and validation in cells
To generate an inducible osteoclast specific Cre transgenic

mouse line, we first cloned the mouse cathepsin K promoter

(23429 to +52 from the start codon). This fragment was inserted

upstream of a tamoxifen-regulated Cre recombinase-ERT2

plasmid (Fig. 1A). In order to test the functionality of this

tamoxifen inducible CtsKCreERT2 construct in vitro, Hela cells

were co-transfected with the CtsKCreERT2 construct and

a plasmid containing a 2 kb long, loxP-flanked neomycin cassette.

Cells were then treated with 4-OHT and the functionality of the

CreERT2 transgene was measured by the loss of the loxP flanked

neomycin cassette (Fig. 1B), resulting in appearance of a 200 bp

PCR fragment (Fig. 1C). This promoter region was sensitive to

RANKL induction when expressed in the Raw264.7 macrophage

cell line (data not shown). This CtsKCreERT2 construct was then

used to generate transgenic mice.

Generation of transgenic mice and characterization
The CtsKCreERT2 construct was injected into oocytes of

C57BL/6 and FVB mice. Out of fifty mice, seven C57BL/6 and

two FVB conditional Cre positive strains were identified as

potential founders and mated with C57BL/6 mice. The FVB

founders were crossed for more than eight generations with

C57BL/6 mice to eliminate their FVB background. Our

preliminary PCR characterization showed that CreERT2

mRNAs could be detected in bones but not significantly in

other tissues (data not shown) and therefore every strain

appeared suitable for further characterization. One mouse

founder from each background was selected for further

characterization. To define the ability of the CreERT2 to

induce specific recombination in the bone tissue, offsprings of the

two selected CreERT2 expressing transgenic lines, one originat-

ing from a founder with a C57BL/6background (strain #4) and

one originating from a founder with a FVB background (strain

#284), were bred with the ROSA26loxLacZ reporter strain

(R26R), in which the ROSA26 locus has been targeted with

a loxP flanked stop codon cassette and the LacZ gene encoding b-
galactosidase [15]. Offspring (8–10 weeks old) from crosses

between mice haboring the R26R locus and CtskCreERT2

transgenic mouse lines were treated with 4-hydroxytamoxifen.

Cre recombinase and b-galactosidase expression was triggered by

the Cre-mediated deletion of the loxed stop codon cassette,

which activated transcription of the LacZ gene. Cre and LacZ

activities were monitored by semi-quantitative PCR. Figure 2A

shows that the Cre recombinase and b-galactosidase could be

easily detected in bones (strain # 4) but not in other tissues with

the exception of testes. Semi quantitative RT-PCR performed on

tissues (Fig. 2B) also revealed some residual Cre expression in

other tissues like lungs and pancreas. However, b-galactosidase
activity could not be detected by histochemistry in these tissues

or others as illustrated in Fig. S1.

Figure 1. CtsKCreERT2 construct and In vitro functionality. A:
Schematic diagram of transgenic CtsKCreERT2 expression construct
used to generate transgenic mice, which includes the full sequence of
the CtsK promoter, the CreERT2 fusion sequence, and the SV40 polyA
signal. B. Schematic representation of the floxed neomycin construct
before and after Cre-mediated recombination and expected size of PCR
products. C: Cre-mediated recombination in Hela cells (upper panel).
Hela cells transfected with the floxed neomycin plasmid only (lane 1) or
co-transfected with CtsKCreERT2 and floxed nemycin constructs and
treated (lane 2) or not (lane 3) with 4-OHT. Untrasfected Hela cells are
shown in lane 4. The recombination resulted in a 200 bp PCR fragment.
Cre expression was also monitored in the same samples by PCR (lower
panel). M: molecular weight markers.
doi:10.1371/journal.pone.0037592.g001
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Characterization of Cre-ERT2 mouse embryos
We next investigated the specificity of recombination in

embryos. CtsKCreERT2LacZ positive females were crossed with

R26R males. Pregnant females were fed with tamoxifen for 3

days at day E13.5 of embryogenesis. Embryos were collected at

day E17.5 and then processed to detect b-galactosidase activity in

tissues. Embryos from CtsKCreERT2 lines #4 and #284

showed intense staining in long bones. Staining could also be

seen in vertebrae, calvaria and craniums (Fig. 3). As expected, no

staining was observed in CtsKCreERT22/2LacZ+/+ or

C57BL/6 wild-type embryos. These results strongly suggest that

the tissue-specific activation of the Cre recombinase had

occurred in mouse line #4 and #284. To observe in more

details the specificity of Cre recombination, paraffin sections of

the b-galactosidase-stained embryos were prepared. Sections of

strain #4 embryos showed an intense b-galactosidase activity in

long bones (Fig. 4B; b.1, b.2 and b.4,), vertebrae (Fig. 4B; b.1

and b.6), ribs (Fig. 4B; b.2 and b.6), cranium and calvaria

(Fig. 4B; b1). In contrast, CtsKCreERT22/2LacZ+/2 and

C57BL/6 wild-type embryos did not exhibit any b-galactosidase
activity in any tissue including bones (Fig. 4A and C), with the

exception of the intestine as usually observed in all embryos.

Sections of strain #284 embryos showed similar results (data not

shown). It is worth noting that some b-galactosidase staining was

observed at junctions between femur and tibia of embryos

(Fig. 4B, b.4, b.5) as well as in the periostium (Fig. 4B, b.3;

Fig. 5B, b.3). These mononucleated cells were not positive for the

osteoclast marker TRAcP (Fig. 5B; b.3 left). Because joints, bone

and its periostium are high vascularized, these cells could

represent mononucleated osteoclast precursors already commit-

ted to osteoclastic differentiation [16]. At higher magnifications,

b-galactosidase-positive, mutinucleated osteoclasts could clearly

be observed in CreERT2+/2LacZ+/+ long bones, especially in

the areas where osteoclasts are usually observed (Fig. 5A; a.1,

a.3, a.5 and a.7), and in vertebrae (Fig. 5A; a.9 and a.11). These

osteoclasts were also TRAcP positive (Fig. 5B).

Cre-ERT2 activity in primary osteoclasts differentiated in
vitro from bone marrow
Primary osteoclasts were differentiated and induced with 4-

OHT to test the functionality of the CreERT2 transgene in vitro.

Bone marrow from 8–10 weeks old CtsKCreERT2+/2LacZ+/2
mice (strain #4) was extracted. Bone marrow cells were treated

with MCSF and RANKL to induce osteoclast differentiation. The

differentiated cells were then treated with tamoxifen, and the b-
galactosidase expression was tested by detecting its enzyme

activity. Although some endogenous b-galactosidase staining was

detected in mononucleated cells treated only with vehicle

(96%EtOH) [17,18], primary multinucleated osteoclasts of the

transgenic mouse strain #4 showed a more intense b-galactosidase
staining than negative controls (Fig. 6A). These multinucleated

cells were also positive for TRAcP activity (Fig. 6B)

Bone research has been facilitated by the generation of

transgenic mice expressing the Cre recombinase under the

control of TRAcP or CtsK promoters [10]. This latter study

showed that the CtsK promoter is more appropriate to

specifically inactivate genes in osteoclasts than the TRAcP

promoter. Cathepsin K is not only expressed in osteoclasts but

also in other cell types, as evidenced by a detailed analysis of

cathepsin K-deficient mice [19,20,21]. However, cathepsin K is

drastically overexpressed during RANKL-induced osteoclasto-

genesis (a 200–400 fold increase in expression). This certainly

allows a more efficient expression of CreCRT2 in osteoclasts

Figure 2. Expression of Cre and b-galactosidase in adult mouse
tissues. b-galactosidase and Cre expression in organs and bones of
CtsKCreERT2+/2LacZ+/2 (strain #4).Total RNAs were isolated from
various tissues and expression was detected by semi quantitative (A)
and quantitative (B) PCR as described in materials and methods. GAPDH
was used as internal control and normalization.
doi:10.1371/journal.pone.0037592.g002

Figure 3. Tissue distribution of functional Cre recombinase in
CtsKCreERT2LacZ E17.5 embryos. CtsKCreERT2LacZ and wild-type
females were mated with ROSA26 males. Pregnant females were
treated with tamoxifen as described in materials and methods. At day
E17.5, the embryos were collected and analyzed for b-galactosidase
activity (X-gal staining) as described in materials and methods using
embryos with various genotypes.
doi:10.1371/journal.pone.0037592.g003
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than in other tissues. The mouse lines described in our study

were selected for expressing detectable levels of CreERT2 in

osteoclasts and no detectable levels of CreERT2 in other tissues

expressing cathepsin K although some leakiness was still

observed. Thus, these conditional CtsKCreERT2 mice may

provide an additional convenient tool to illustrate the physiolog-

ical importance of genes essential for osteoclast function during

development and, in particular, during adulthood when the

activity of osteoclasts in bone degradation becomes more

prominent and cannot be compensated by the activity of

osteoblasts in bone rebuilding, as seen in osteoporosis.

Materials and Methods

Generation of CtsKCreERT2 transgene
The CtsKCreERT2 construct was generated by including the

mouse CtsK gene sequence (23429 to +52) into a CreERT2

plasmid. Standard restriction digestions (SacII and SpeI) and

cloning techniques were used.

Testing the CtsKCreERT2 transgene in vitro
To assess the functionality of CreERT2 protein in vitro, an

equimolar ratio of CtsKCreERT2 construct and a plasmid

Figure 4. Cre-mediated b-galactosidase expression in tissue sections of transgenic embryos. E17.5 embryos obtained after crossing
CtsKCreERT2 positive or wild-type females with ROSA26 males were processed and stained for b-galactosidase activity as described under materials
and methods. A: E17.5 C57BL/6 wild-type control embryos; a.1: overview of b-gal activity; a.2, a.3 and a.6: arms; a.4 and a.5: legs; a.7: spinal cord B:
E17.5 CtsKCreERT2+/2LacZ+/+ embryos (strain #4); b.1: overview of b-gal activity. b.2 and b.3: arms; b.4 and b.5 legs; b.6: spinal cord. Arrows
show positive b-galactosidase activity in bones. C: E17.5 CtsKCreERT22/2LacZ+/+ embryos (strain #4); c.1: overview of b-gal activity; c.2 and c.3:
arms; c.4 and c.5: legs; c.6: spinal cord.
doi:10.1371/journal.pone.0037592.g004
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containing the selectable marker neomycin flanked by loxP sites

were transiently cotransfected in Hela cells. After 24 hours, the

transfected cells were treated with 1 mM tamoxifen during

24 hours. Then, the HeLa cells were harvested and the genomic

DNA was extracted. Cre-mediated recombination was deter-

mined by PCR using the primers flanking the loxP sites: F: 59-

CGACAACCACTACCTGAGCA-39 and R: 59-GGATGCA-

GAGTGTGCGTAGA-39.

Generation and identification of CtsKCreERT2 transgenic
mouse lines
A 1,7 kb fragment of the original vector was produced by

XmaI-SacII digestion. This fragment was microinjected into the

pronuclei of C57BL/6 or FVB fertilized mouse eggs and

transferred to pseudo-pregnant females. Founder mice were

genotyped using tail genomic DNA (gDNA) by polymerase chain

reaction (PCR) with the Cre-specific primers, F: 59-

CGGTCTGGCAGTAAAAACTAT-39 and R: 59-CAGGGTGT-

TATAAGCAATCCC-39. Genomic DNA was extracted from tails

using the Archivepure DNA Mouse Tail kit (5PRIME, Germany).

The Cre founders were back-crossed into the C57BL/6 back-

ground for production of transgenic offsprings. Animals were

housed at the Biomedical Service Facility (BMS) of the MPI-CBG

institute Dresden) at 24uC with a 12 hours light-dark cycle and tap

water as well as food were supplied ad libitum.

RNA expression levels of Cre recombinase in
CtsKCreERT2 transgenic mouse line #4
Positive animals between 8 and 10 weeks of age were sacrified to

isolate long bones (femur and tibia) and other organs. Tibias and

femurs were cleaned of the surrounding soft tissue. Following

excision of the ends of the long bones, bone marrow was removed

by flushing with ice-cold PBS. The remaining bone was crushed

with sterile forceps and homogenized (Polytron) in RNase

inhibiting solution (4 M guanidine isothiocyanate, 25 mM sodium

citrate, pH 7.0, 0.5% sarcosyl, 0.1 M 2-mercaptoethanol). The

homogenates were stored at 280uC prior to total RNA extraction.

Total RNA extraction was based on the acid guanidinium

thiocyanate-phenol-chloroform single-step method [22]. A 50 mg

piece of each collected organs was homogenized (Polytron) in 1 ml

Figure 5. Detailed Cre-mediated b-galactosidase expression in
tissue sections of transgenic embryos. 17.5-day-old embryos with
different genotypes (CreERT2+/2LacZ+/+ and CreERT22/2LacZ+/+;
strain #4) were collected after 3 days of tamoxifen induction and
processed for histochemistry to detect b-galactosidase activity. Sections
were either co-stained with Nuclear Fast Red (NFR) (A) or Tartrate-
resistent acid phosphatase (TRAcP) (B). a.1 and a.3: legs of
CtsKCreERT2+/2LacZ+/+ embryos; a.2 and a.4: legs of
CtsKCreERT22/2LacZ+/+ embryos; a.5 and a.7: arms of
CtsKCreERT2+/2LacZ+/2 embryos; a.6 and a.8: arms of
CtsKCreERT22/2LacZ+/+ embryos; a.9 and a.11: vetebraes of
CtsKCreERT2+/2LacZ+/2 embryos; a.10 and a.12: vetebraes of
CtsKCreERT22/2LacZ+/+ embryos. b.1, b.3 and b.5: arms of
CtsKCreERT2+/2LacZ+/+ embryos; b.2, b.4 and b.6: arms of
CtsKCreERT22/2LacZ+/+ embryos.
doi:10.1371/journal.pone.0037592.g005

Figure 6. Cre-mediated b-Galactosidase activity in osteoclasts
derived from bone marrow of CtsKCreERT2/LacZ-positive
transgenic mice. Primary osteoclasts were differentiated from bone
marrow of tibias and femurs of CtsKCreERT2+/2LacZ+/2 strain #4 as
described in materials and methods. They were then treated with 1 mM
4-OHT or EtOH alone. After 24 hours, they were then treated to detect
their b-galactosidase activity (A) or their TRAcP activity (B). The arrows
indicate multinucleated osteoclasts.
doi:10.1371/journal.pone.0037592.g006

Drug Inducible Cre Recombinase in Mouse Osteoclast
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TRIZOL reagent. Total RNA was then isolated with chloroform/

isopropanol using peqGOLD phase trap tubes (PEQLAB

Biotechnologies GmbH, 91052 Erlangen, Germany). Quantitative

RT-PCR (QPCR) using the above Cre-specific primers de-

termined the tissue distribution of Cre recombinase expression.

QPCR was performed with an Agilent Technologies Mx3000P

system and the Brilliant II SYBR Green QPCR kit according to

manufacturer’s instructions (Agilent Technologies, Böblingen,

Germany). Quantitative RT-PCR analyses were performed in

triplicates, and GAPDH (F: 59-TCACCACCATGGAGAAGGC-

39and R: 59-GCTAAGCAGTTGGTGGTGCA-39) was used to

normalize the data.

Cre recombinase functionality in embryos
To analyze the functionality and the distribution of the Cre

recombinase in embryos, CtsKCreERT2LacZ females were

crossed with ROSA26 reporter (R26R) males [15]. Pregnant

females were oral fed with 4 mg of 4-OHT for 3 consecutive days

starting at 13.5 dpc. Pregnant mice were sacrificed 48 hours after

the last oral feeding, and the embryos were isolated and processed

for whole-mount X-gal staining. Briefly, skin was removed and

embryos were fixed for 1 hour at RT with 0.2% glutaraldehyde,

2% formaldehyde, 2 mM MgCl2 in PBS (pH 7.3). Embryos were

then rinsed three times for 30 minutes in 0,1 M PBS (pH 7.3)

containing 2 mM MgCl2, 0.02% (vol/vol) Nonidet P-40, 0.01%

sodium deoxycholate. Staining was performed over night at 37uC
with the same rinsing solution supplemented with 1 mg/ml of 5-

bromo-4-chloro-3-indolyl b-D-galactopyranoside (X-gal), 5 mM

potassium ferrocyanide and 5 mM potassium ferricyanide. Color

development was stopped by immersion of samples in PBS

(pH 7.8) with 10 mM EDTA (pH 8.0). Pictures of the samples

were taken with the Zeiss SteMi Discovery V20 microscope.

For histological analysis of the X-gal stained embryos, samples

were postfixed in 2% formaldehyde (pH 7.8) overnight at 4uC.
Then, the embryos were dehydrated and paraffin embedded.

Sections of 8 mm were cut and counterstained with nuclear fast red

(NFR) (Sigma-Aldrich). Pictures of embryo sections were taken

with a Zeiss – Upright motorized Apotome. For more detailed

pictures of osteoclasts in embryo sections the Leica upright

videomicroscope was used. TRAcP staining, to localize osteoclasts,

was also performed in some of the embryo sections using a TRAcP

staining kit and according to manufacturer’s instructions (Sigma-

Aldrich).

Cre recombinase functionality in tissues of adult mice
To analyse b-galactosidase expression in tissues of adult mice, 8-

week-old wild-type C57BL/6 and CtsKCreERT2+/2LacZ+/+
strain #4 mice were used. Mice were oral fed with 4 mg of 4-

OHT for three days. After 48 hours, animals were perfused

intracardially with PBS. Organs were then collected and total

RNA isolated as described above. For histochemistry analises of b-
galactosidase activity, mice were fix by 0.2% glutaraldehyde (GA)

followed the PBS perfusion. Organs were then collected and

postfixed in 0.2% GA for extra 4 hours. Organs were then

cryopreserved in 30% sucrose/PBS overnight at 4uC and

embedded in O.C.T. compound (Tissue-TekH). Cryosections

(8 mm) of each organ were made and stained for b-galactosidase
activity. In short: cryosections were postfixed 10 minutes in 0.2%

GA, washed three times 5 minutes in LacZ wash buffer (2 mM

MgCl2, 0.02% NP-40, and 0.01% sodium deoxycholate in PBS)

and incubated 3, 6 and 12 hours at 37uC in LacZ staining buffer

(LacZ wash buffer supplemented with 1 mg/ml of 5-bromo-4-

chloro-3-indolyl b-D-galactopyranoside (X-gal), 5 mM potassium

ferrocyanide and 5 mM potassium ferricyanide). After incubation,

sections were washed three times 5 minutes in PBS, fixed

10 minutes in 0.1% GA, washed three more times in PBS and

counterstained with NFR. After a dehydratation with 50, 70,

100% EtOH and Xilol, organ sections were mounted with

Cytoseal XYL (Richard-Allan Scientific). Pictures were taken with

a WF Olympus upright, microscope.

Cre recombinase functionality in osteoclasts
Bone marrow cells of 8 to 10 weeks old CtsKCreERT2+/

2Lacz+/2 mice femurs and tibias were flushed out with aMEM

medium. Cells were then differentiated into osteoclasts or

macrophages by respective addition of 20 ng/ml Macrophages

Colony Stimulating Factor (MCSF, PeproTech, germany) and

50 ng/ml recombinant soluble Receptor activator of nuclear

factor kappa-B ligand (RANKL, PeproTech, germany) or MCSF

alone. Cells were grown in aMEM medium supplemented with

10% FCS, 2 mM HEPES, 1% penicillin/streptomycin and 1% L-

glutamine in 10% CO2, 95% humidity at 37uC. After differen-

tiation, 4-OHT (1023 M) diluted in ethanol was added to the

cultured cells. Ethanol alone was used for control cells. After

24 hours X-gal staining was performed using an In Situ b-
galactosidase Staining Kit (Agilent Technologies, Böblingen,

Germany) according to the manifaturer’s instructions. Cells were

stained for 6–8 hours at room temperature, washed three times

with PBS and then observed under light microscopy (Zeiss

Apotome microinjection videomicroscope, Germany).

Supporting Information

Figure S1 b-galactosidase activity in tissue sections of
adult mice. 8-week-old mice (CreERT2+/2LacZ+/2 strain #4

and wild-type C57BL/6) were sacrificed after 3 days of tamoxifen

induction. Organs were collected, cryosectioned (8 mm) and

processed for histochemistry to detect b-galactosidase as describe

in materials and methods. Organ cryosections were then counter-

stained with NFR. A: Thyroid glands sections of wild-type

C57BL/6 and CtsKCreERT2 strain #4. B: Testis sections of

wild-type C57BL/6 and CtsKCreERT2 strain #4. Arrows show

b-galactosidase activity (in blue). C: Lung sections of wild-type

C57BL/6 and CtsKCreERT2 strain #4. D: Pancreas sections of
wild-type C57BL/6 and CtsKCreERT2 strain #4.

(TIF)
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