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Abstract

Background: Heat-related impacts may have greater public health implications as climate change continues. It is important
to appropriately characterize the relationship between heatwave and health outcomes. However, it is unclear whether a
case-crossover design can be effectively used to assess the event- or episode-related health effects. This study examined the
association between exposure to heatwaves and mortality and emergency hospital admissions (EHAs) from non-external
causes in Brisbane, Australia, using both case-crossover and time series analyses approaches.

Methods: Poisson generalised additive model (GAM) and time-stratified case-crossover analyses were used to assess the
short-term impact of heatwaves on mortality and EHAs. Heatwaves exhibited a significant impact on mortality and EHAs
after adjusting for air pollution, day of the week, and season.

Results: For time-stratified case-crossover analysis, odds ratios of mortality and EHAs during heatwaves were 1.62 (95%
confidence interval (CI): 1.36–1.94) and 1.22 (95% CI: 1.14–1.30) at lag 1, respectively. Time series GAM models gave similar
results. Relative risks of mortality and EHAs ranged from 1.72 (95% CI: 1.40–2.11) to 1.81 (95% CI: 1.56–2.10) and from 1.14
(95% CI: 1.06–1.23) to 1.28 (95% CI: 1.21–1.36) at lag 1, respectively. The risk estimates gradually attenuated after the lag of
one day for both case-crossover and time series analyses.

Conclusions: The risk estimates from both case-crossover and time series models were consistent and comparable. This
finding may have implications for future research on the assessment of event- or episode-related (e.g., heatwave) health
effects.
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Introduction

Heatwaves or excessive ambient heat exposures have significant

impacts on mortality and morbidity [1–6]. For example, during

the 1995 Chicago heatwave, there were over 700 excess deaths in

a single day [7]. The well-known 2003 heatwaves led to 15,000

excess deaths in France alone [8,9], and over 70,000 deaths across

Europe [10,11]. The 2006 California heatwave resulted in an

increase in morbidity which included 16,166 excess emergency

department visits and 1,182 excess hospitalizations state-wide [12].

Heat-related impacts may have greater public health implications

as climate change continues. It is important to appropriately

characterize the relationship between heatwaves and health

outcomes.

Two common epidemiologic methods have been frequently

used to assess the heat-related health effects. Time series analysis

has been used to investigate the health impact of time varying

environmental exposures (eg, air pollution and temperature) for

many years [13,14]. Recently, a case-crossover design (introduced

by MaClure in 1991) has been increasingly used to examine an

association between a transient exposure (eg, temperature or air

pollution) and acute health outcomes [15,16]. This design controls

for time-invariant confounders by study design itself [17].

Therefore, it has some advantages compared with commonly-

used time series analysis. However, some methodological issues in

the use of case-crossover analysis have attracted much research

attention. For example, unidirectional case-crossover design was

initially applied and the referent period was designated by specific

time period(s) before the case period [18]. Recently, ambidirec-

tional and time-stratified case-crossover analyses have been

assumed as ideal approaches because unidirectional design has

often produced biased results [18–20]. The previous research

mainly focused on the risk assessment of time-varying exposures

(eg, air pollution and temperature) using relatively long time series

datasets. However, little information is available on whether these

findings are applicable to the assessment of event- or episode-

related (eg, heatwave) health effects. Since time series and case-

crossover methods are often viewed as two competing analytical
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approaches, this study examined whether these methods produced

equivalent risk estimates in the assessment of the health effects of

heatwaves in Brisbane, Australia.

Materials and Methods

Data collection
Brisbane, Australia’s third largest city, is located in the south-

east corner of the Queensland state (27u299S, 153u89E) and has a

sub-tropical climate. The population increased from 896,649 on

30 June 2001 to 991 260 on 30 June 2006. 18% of the residents in

Brisbane were aged 0–14, while 11% of them were aged 65+[21].

We obtained emergency hospital admissions (EHAs) data

during 1st January 1996 to 31st December 2005, and mortality

data during 1st January 1996 to 30th November 2004. Daily data

on mortality and EHAs were provided by the Office of Economic

and Statistical Research of the Queensland Treasury and the

Health Information Centre of Queensland Health, respectively.

Non-external causes (NEC) mortality and EHAs were categorised

according to the International Classification of Diseases (revisions

9 and 10) (ICD 9, ,800; and all ICD 10 codes excluding S00–

U99 for external causes).

Daily data on maximum temperature and relative humidity

data were obtained from the Australian Bureau of Meteorology

during January 1996 to December 2005. The daily average values

of climatic variables were calculated from five monitoring stations.

We retrieved daily air pollution data from the Queensland

Department of Environment and Resource Management (former-

ly Queensland Environmental Protection Agency), including

ambient 24-hour average concentrations of particulate matter

with diameter less than 10 mm (PM10), daily maximum 1-hour

average nitrogen dioxide (NO2) and ozone (O3). Daily air pollution

concentrations were averaged from seventeen monitoring stations

in Brisbane. When data were missing for a particular monitoring

station on a given day, the data recorded from other monitoring

stations were used to calculate the daily average values.

Data analysis
According to the local heatwave definition (ie, daily maximum

temperature higher than 37uC for two or more consecutive days)

developed in the previous research [22,23], three heatwaves

occurred (20 and 21 January 2000; 24 to 26 December 2001; 21

and 22 February 2004) during the whole study period. We

examined the short-term effects of heatwaves on mortality and

EHAs within three different periods, 84 days (28 days as a strata

length for time-stratified case-crossover analysis), summer season

(from December to February) and whole study period (1996–

2005). Spearman’s correlation coefficients were used to evaluate

the interrelations between air pollutants and climate variables in

these three periods.

In this study, both time-series and case–crossover analyses were

used to examine the heatwave effects on NEC mortality and

EHAs. Poisson generalised additive model (GAM) was used to

perform time series analyses on three different periods. We also

used time-stratified case–crossover with a stratum length of 28

days, and matched case-control days using day of the week (one

Table 1. Summaries of daily weather, air pollutants and health outcomes in Brisbane, Australia.

84 days Summer 1996–2005

Mean SD Range Mean SD Range Mean SD Range

Tmaxa (uC) 30.9 3.8 21.0 to 41.5 30.0 2.6 21.0 to 41.5 26.3 3.9 12.6 to 41.5

Humidity (%) 70.8 8.1 44.9 to 90.2 71.7 8.1 39.6 to 96.9 71.1 10.3 24.6 to 96.9

PM10 (mg/m3) 21.1 8.9 7.2 to 43.7 17.8 6.7 6.5 to 78.6 17.7 7.6 2.5 to 151.6

NO2 (ppb) 13.1 4.2 5.2 to 26.8 12.1 4.0 3.6 to 30.8 18.0 6.7 3.3 to 46.3

O3 (ppb) 35.4 12.3 13.9 to 67.8 31.7 12.1 7.7 to 88.2 31.8 9.8 7.1 to 88.2

Deaths 17 6 5 to 4 15 4 5 to 42 16 4 5 to 42

(1,400)c (11,432)c (51,233)c

EHAsb 142 21 101 to 202 128 21 71 to 202 134 22 71 to 212

(11,962)c (115,406)c (488,005)c

amaximum temperature.
bemergency hospital admissions.
cthe number of outcomes.
doi:10.1371/journal.pone.0037500.t001

Table 2. Spearman correlation between climatic variables
and air pollutants in Brisbane, Australia.

Humidity PM10 NO2 O3

84 days

Tmaxa (uC) 20.18 0.61** 0.72** 0.84**

Humidity (%) 20.40** 20.08 20.10

PM10 (mg/m3) 0.40** 0.62**

NO2 (ppb) 0.68**

Summer

Tmaxa (uC) 20.06 0.35** 0.24** 0.65**

Humidity (%) 20.31** 0.01 20.09*

PM10 (mg/m3) 0.33** 0.46**

NO2 (ppb) 0.51**

1996–2005

Tmaxa (uC) 20.06** 0.25** 20.47** 0.35**

Humidity (%) 20.26** 2.0.06** 20.20**

PM10 (mg/m3) 0.30** 0.47**

NO2 (ppb) 0.28**

aTmax = maximum temperature.
*P,0.05.
**P,0.01.
doi:10.1371/journal.pone.0037500.t002
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case day was matched with three control days). Because only three

heatwaves were defined during the whole study period, three

strata (84 days) were used for the case–crossover analysis.

Heatwave days were categorised as 1, while non-heatwave days

were categorised as 0. We adjusted for humidity and air pollutants

(PM10, NO2 and O3) in these models. Additionally, lagged effects

(ie, lag 0 to lag 5 and moving average of lags 0–5) were assessed

using the same methods. When lagged effects of heatwaves on

NEC mortality and EHAs were assessed, the same lagged effects of

humidity and air pollution were controlled for. Relative risks (RRs)

for time series analysis, odds ratios (ORs) for time-stratified case–

crossover analysis, and 95% confidence intervals (CIs) were

calculated in each model. R software (version 2.12.2) and the

‘‘mgcv’’ package were applied to fit the time series GAM and

case–crossover analyses. The R codes are provided in Information

S1 using an example dataset (Information S2), and results of

estimation using different degree of freedom were presented in

Figure S1.

Results

There were a total of 51,233 deaths and 488,005 EHAs

recorded in Brisbane during the whole study period. Table 1

shows summary statistics of climatic variables, air pollutants,

Table 3. Odds ratios (ORs) and Relative risks (RRs) of mortality and EHAs during heatwaves in Brisbane (84 days).

OR/RR (95% CI)

HW effect Model Ia Model IIb Model IIIc Model IVd

Deaths

Case-crossover

Lag 0 1.53 (1.27, 1.85) 1.47 (1.22, 1.78) 1.52 (1.25, 1.83) 1.51 (1.25, 1.83)

Lag 1 1.67 (1.40, 2.00) 1.63 (1.36, 1.95) 1.65 (1.38, 1.97) 1.64 (1.38, 1.96)

Lag 2 1.39 (1.16, 1.67) 1.37 (1.14, 1.65) 1.39 (1.15, 1.67) 1.38 (1.15, 1.66)

Lag 3 1.15 (0.94, 1.42) 1.16 (0.94. 1.42) 1.15 (0.94, 1.41) 1.14 (0.93, 1.41)

Lag 4 1.18 (0.96, 1.46) 1.17 (0.95, 1.45) 1.17 (0.95, 1.45) 1.18 (0.95, 1.45)

Lag 5 1.15 (0.92, 1.44) 1.19 (0.95, 1.49) 1.16 (0.93, 1.45) 1.16 (0.93, 1.45)

6-day average 1.36 (1.12, 1.65) 1.37 (1.12, 1.66) 1.36 (1.11, 1.65) 1.35 (1.11, 1.64)

Time-series

Lag 0 1.44 (1.22, 1.70) 1.26 (1.03, 1.54) 1.48 (1.23, 1.79) 1.25 (1.02, 1.55)

Lag 1 1.72 (1.48, 2.01) 1.83 (1.51, 2.22) 1.99 (1.67, 2.38) 1.70 (1.39. 2.08)

Lag 2 1.47 (1.25, 1.73) 1.50 (1.22, 1.83) 1.66 (1.38, 2.00) 1.45 (1.18, 1.79)

Lag 3 1.10 (0.92, 1.33) 1.14 (0.92, 1.42) 1.21 (0.98, 1.48) 1.07 (0.85, 1.35)

Lag 4 1.04 (0.87, 1.26) 1.05 (0.84, 1.31) 1.12 (0.91, 1.39) 1.09 (0.86, 1.37)

Lag 5 0.94 (0.77, 1.14) 1.05 (0.83, 1.33) 1.02 (0.82, 1.27) 1.13 (0.89, 1.44)

6-day average 1.28 (1.08, 1.52) 1.29 (1.07, 1.56) 1.29 (1.078, 1.564 1.29 (1.07, 1.55)

EHAs

Case-crossover

Lag 0 1.17 (1.10, 1.26) 1.16 (1.08, 1.24) 1.16 (1.09, 1.25) 1.17 (1.10, 1.26)

Lag 1 1.23 (1.15, 1.31) 1.22 (1.14, 1.30) 1.23 (1.15, 1.32) 1.23 (1.15, 1.32)

Lag 2 1.17 (1.10, 1.26) 1.17 (1.09, 1.25) 1.18 (1.10, 1.26) 1.18 (1.10, 1.26)

Lag 3 1.13 (1.05, 1.21) 1.13 (1.05, 1.21) 1.13 (1.05, 1.21) 1.13 (1.05, 1.21)

Lag 4 1.11 (1.03, 1.19) 1.10 (1.03, 1.18) 1.11 (1.03, 1.19) 1.11 (1.03, 1.19)

Lag 5 1.04 (0.97, 1.12) 1.04 (0.97, 1.11) 1.04 (0.97, 1.12) 1.04 (0.97, 1.11)

6-day average 1.14 (1.07, 1.23) 1.15 (1.07, 1.23) 1.14 (1.07, 1.23) 1.14 (1.07, 1.23)

Time-series

Lag 0 1.14 (1.07, 1.21) 1.08 (1.01, 1.17) 1.12 (1.04, 1.20) 1.09 (1.01, 1.17)

Lag 1 1.20 (1.13, 1.28) 1.15 (1.07, 1.24) 1.19 (1.11, 1.27) 1.13 (1.05, 1.22)

Lag 2 1.16 (1.10, 1.24) 1.13 (1.05, 1.21) 1.18 (1.10, 1.26) 1.11 (1.03, 1.20)

Lag 3 1.09 (1.03, 1.16) 1.06 (0.98, 1.14) 1.11 (1.03, 1.19) 1.03 (0.96, 1.12)

Lag 4 1.07 (1.01, 1.14) 1.03 (0.96, 1.11) 1.08 (1.01, 1.16) 1.01 (0.94, 1.10)

Lag 5 1.03 (0.97, 1.10) 1.01 (0.94, 1.09) 1.04 (0.97, 1.12) 0.99 (0.92, 1.07)

6-day average 1.12 (1.05, 1.19) 1.04 (0.97, 1.11) 1.08 (1.01, 1.15) 1.05 (0.99, 1.12)

aunadjusted.
badjusted for humidity and O3.
cadjusted for humidity and PM10.
dadjusted for humidity and NO2.
doi:10.1371/journal.pone.0037500.t003

Heatwaves and Health Outcomes

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37500



mortality and EHAs for three different periods, as well as the total

number of different health outcomes used in each model. There

was some variation in these variables during three periods. The

mean concentrations of PM10, NO2 and O3 differed slightly across

the different periods. The daily average deaths (17) and EHAs

(142) during 84 days were higher than those during summer days

(15 deaths and 128 EHAs) or whole study period (16 deaths and

134 EHAs).

Table 2 shows that maximum temperatures positively correlated

with most air pollutants in all periods except for NO2 during the

whole study period. Moderate to high correlations were observed

for temperature and PM10, NO2 and ozone. However, humidity

inversely correlated with most air pollutants in different periods,

although most of these correlations were week. There were

significant associations between air pollutants.

In time-stratified case-crossover analysis we used 28 days as a

stratum length. Since three heatwaves occurred during the study

period, therefore 84 days (ie, three strata: 3628 days) were used in

data analysis. Table 3 shows the estimated odds ratios (ORs) and

relative risks (RRs) for NEC mortality and EHAs during heatwave

days compared with non-heatwave days during these 84 days.

There was a broadly consistent and statistically significant increase

in ORs or RRs for both mortality and EHAs during heatwaves.

Figure 1 shows the similar results as Table 3 when both methods

was used to adjust for humidity, PM10, NO2 and O3. ORs of

mortality and morbidity during heatwaves were 1.62 (95% CI:

1.36–1.94) (Figure 1A) and 1.22 (95% CI: 1.14–1.30) (Figure 1B)

at lag 1, respectively. RRs of mortality and morbidity during

heatwaves were 1.72 (95% CI: 1.40–2.11) (Figure 1A) and 1.14

(95% CI: 1.06–1.23) (Figure 1B) at lag 1, respectively. The risk

estimates also generally alleviated after lag 1 for both mortality and

EHAs.

Table 4 shows the delayed effects of heatwaves on NEC

mortality and EHAs for summer season and whole study period

using time series models to adjust for different sets of confounders.

There were also broadly consistent increased risks for both

mortality and EHAs during heatwaves across different periods.

The highest risk estimates were observed at lag 1 for both

mortality and EHAs after adjusting for confounders.

Figure 2 reveals the similar results as Table 4 when time series

GAM models were used with different periods to adjust for

humidity, PM10, NO2 and O3. The results show that RRs of

mortality and EHAs ranged from 1.77 (95% CI: 1.53–2.04) to 1.81

(95% CI: 1.56–2.10) in Figure 2A and 1.28 (95% CI: 1.21–1.36)

(Figure 2B) at lag 1, respectively. The risk estimates generally

attenuated after the lag of one day for both mortality and EHAs.

Discussion

An increase in the frequency, duration and intensity of

heatwaves is one of the most certain impacts of global climate

change [24], and therefore, it is important to characterise the heat-

related health risks. In this study, we found consistent and

significant risks of NEC deaths and EHAs during heatwaves using

both time series and case-crossover methods. For time series

analyses, a similar pattern of heatwave-related risks was observed

even though different periods of data were used. In general, the

Figure 1. Odds ratios and Relative risks of daily mortality (1A) and emergency hospital admissions (1B) during heatwaves (84 days),
using both case crossover and time series analyses.
doi:10.1371/journal.pone.0037500.g001
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effect estimates using time series analyses were quite comparable

to those estimated by the case-crossover method. We also found

that heatwaves had acute effects on mortality and EHAs, and the

highest impact usually occurred at lag 1 in Brisbane – a subtropical

city in Australia.

In a recent study of the relationship between temperature and

mortality among the elderly, the results from a case-crossover

study design using three different approaches for the selection of

referent periods were compared with those from the time-series

analysis [19]. Consistent results were found by using either the

time-series or time-stratified case-crossover analysis. Our findings

support and extend the previous study, demonstrating that time-

stratified case-crossover design can also be used to estimate the

event or episode-related (e.g., heatwave) health effects, and both

time series and time-stratified case-crossover methods produced

robust and comparable results.

Previous studies reported that increases in mortality and

morbidity usually occurred within a short time frame after a

heatwave [5,25–28]. For example, in the 2003 French heatwave,

relative risk for mortality increased rapidly in most cities during a

Table 4. Relative risks (RRs) of daily mortality and EHAs during heatwaves in Brisbane (summer season and whole study period),
using time series analysis.

OR/RR (95% CI)

HW effect Model Ia Model IIb Model IIIc Model IVd

Deaths

Summer

Lag 0 1.59 (1.36, 1.86) 1.49 (1.27, 1.75) 1.53 (1.31, 1.80) 1.54 (1.32, 1.81)

Lag 1 1.87 (1.62, 2.16) 1.80 (1.55, 2.08) 1.85 (1.60, 2.14) 1.86 (1.60, 2.15)

Lag 2 1.64 (1.41,1.91) 1.60 (1.36, 1.87) 1.63 (1.39, 1.90) 1.63 (1.39, 1.91)

Lag 3 1.24 (1.04, 1.48) 1.22 (1.02, 1.46) 1.23 (1.03, 1.47) 1.24 (1.04, 1.48)

Lag 4 1.17 (0.98, 1.40) 1.15 (0.96, 1.38) 1.17 (0.98, 1.41) 1.18 (0.98, 1.42)

Lag 5 1.05 (0.87, 1.27) 1.07 (0.88, 1.30) 1.06 (0.88, 1.29) 1.09 (0.90, 1.32)

6-day average 1.42 (1.21, 1.67) 1.39 (1.18, 1.65) 1.40 (1.19, 1.65) 1.42 (1.21, 1.68)

1996-2005

Lag 0 1.47 (1.26, 1.72) 1.44 (1.23, 1.68) 1.45 (1.25, 1.70) 1.49 (1.27, 1.73)

Lag 1 1.73 (1.50, 1.99) 1.71 (1.48, 1.98) 1.71 (1.48, 1.97) 1.73 (1.50, 2.00)

Lag 2 1.52 (1.30, 1.77) 1.53 (1.31, 1.78) 1.51 (1.30, 1.76) 1.52 (1.31, 1.77)

Lag 3 1.15 (0.97, 1.37) 1.17 (0.98, 1.39) 1.15 (0.96, 1.37) 1.16 (0.97, 1.38)

Lag 4 1.09 (0.91, 1.30) 1.10 (0.92, 1.32) 1.08 (0.91, 1.30) 1.09 (0.91, 1.30)

Lag 5 0.98 (0.81, 1.18) 1.02 (0.84, 1.23) 0.99 (0.82, 1.19) 0.99 (0.82, 1.19)

6-day average 1.32 1.12, 1.55) 1.37 (1.16, 1.61) 1.33 (1.13, 1.56) 1.39 (1.18, 1.64)

EHAS

Summer

Lag 0 1.26 (1.19, 1.34) 1.21 (1.14, 1.29) 1.20 (1.13, 1.27) 1.23 (1.15, 1.30)

Lag 1 1.32 (1.25, 1.40) 1.28 (1.21, 1.36) 1.27 (1.19, 1.34) 1.30 (1.22, 1.38)

Lag 2 1.29 (1.22, 1.37) 1.26 (1.18, 1.33) 1.24 (1.17, 1.31) 1.27 (1.19, 1.34)

Lag 3 1.21 (1.14, 1.29) 1.19 (1.12, 1.26) 1.17 (1.10, 1.24) 1.20 (1.13, 1.28)

Lag 4 1.18 (1.11, 1.26) 1.15 (1.09, 1.23) 1.14 (1.07, 1.21) 1.18 (1.11, 1.25)

Lag 5 1.14 (1.07, 1.21) 1.12 (1.05, 1.19) 1.10 (1.03, 1.17) 1.13 (1.07, 1.21)

6-day average 1.23 (1.16, 1.31) 1.22 (1.15, 1.29) 1.19 (1.12, 1.26) 1.23 (1.16, 1.30)

1996–2005

Lag 0 1.20 (1.13, 1.27) 1.20 (1.13, 1.27) 1.18 (1.11, 1.25) 1.20 (1.13, 1.27)

Lag 1 1.26 (1.19, 1.34) 1.27 (1.20, 1.34) 1.25 (1.18, 1.32) 1.26 (1.19, 1.34)

Lag 2 1.23 (1.17, 1.31) 1.24 (1.17, 1.32) 1.22 (1.15, 1.29) 1.23 (1.16, 1.30)

Lag 3 1.16 (1.09, 1.23) 1.17 (1.10, 1.25) 1.15 (1.08, 1.22) 1.15 (1.09, 1.22)

Lag 4 1.13 (1.07, 1.20) 1.15 (1.08, 1.22) 1.12 (1.06, 1.19) 1.13 (1.06, 1.20)

Lag 5 1.09 (1.02, 1.16) 1.10 (1.04, 1.17) 1.08 (1.01, 1.15) 1.08 (1.02, 1.15)

6-day average 1.18 (1.11, 1.25) 1.22 (1.15, 1.29) 1.17 (1.11, 1.25) 1.20 (1.13, 1.27)

aunadjusted.
badjusted for humidity and O3.
cadjusted for humidity and PM10.
dadjusted for humidity and NO2.
doi:10.1371/journal.pone.0037500.t004
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4-day period from 10 to 13 August [9]. Similarly, in the Chicago

heatwave, there was the highest dose–response relationship for lags

of 1 and 2 days of high minimum or maximum temperatures

before all-cause mortality occurred, with an RR of 1.20 (95% CI:

1.15–1.27) for high temperature on lag day 1 and an indication of

a cumulative effect (RR = 1.40; 95% CI:1.30–1.51) when temper-

atures stayed high both on lag days 1 and 2 [15]. In our study, we

also found that exposure to heatwaves at the same day, lag 1 and

lags 0–5 was strongly associated with risks of mortality and EHAs.

The strongest heatwave effects appeared at lag 1 and lagged effects

were gradually decreased after lag 1 for both EHAs and mortality

(Figures 1 and 2).

Previous studies including our own research show an immediate

impact of high temperature on the patients with cardiovascular

diseases [29], suggesting that cardiovascular deaths tend to happen

quickly during hot days because their ability to cope with heat is

already compromised. Several pathophysiological mechanisms

may explain this. Firstly, heat stress can reduce cerebral blood

velocity and markedly impair orthostatic tolerance in humans

[23,30]. Secondly, water loss and reduced plasma volume during

hot days may facilitate the release of platelets into circulation and

increase red and white cell counts, blood viscosity, and plasma

cholesterol levels, which may be connected to the increased

mortality from arterial thrombosis in hot weather [31]. Finally,

results from a mice study indicate that heat stress will stimulate

cells of living organisms to generate heat shock proteins which may

cause systematic damages in the body [32].

This study has three main strengths: (1) it is the first study to

compare time series and case crossover analyses in the examina-

tion of heatwave effects on mortality and EHAs. Time-stratified

case-crossover design is comparable to time series analysis in

estimating event or episode-related health risks; (2) sophisticated

statistical methods were used to assess lagged and cumulative

average effects of heatwaves on both mortality and EHAs after

adjustment for confounding factors; and (3) the datasets used is this

study are quite comprehensive, with no missing values.

Several limitations of this study must also be acknowledged. We

only focused on one city, so the results might not be generalisable

to other areas. However, the approaches applied in this study can

be used in further research in other areas. We only compared time

series and case crossover analyses using the data on NEC mortality

and EHAs. We did not use cause-specific mortality and morbidity

because the number for each category was much smaller.

Additionally, there might be exposure misclassification, as we

used exposure data from fixed monitors rather than individual

exposure data.

In conclusion, the results of this study demonstrate that both

time-stratified case-crossover and time series analyses produced a

similar pattern of the relationship between heatwave and health

outcomes. This finding may have implications for future studies of

event or episode-related health effects.

Figure 2. Relative risks of daily mortality (2A) and emergency hospital admissions (2B) during heatwaves (summer season and
whole study period), using time series analyses.
doi:10.1371/journal.pone.0037500.g002
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