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Abstract

The advantages of ultra-high magnetic field (7 Tesla) MRI for basic science research and neuroscience applications have
proven invaluable. Structural and functional MR images of the human brain acquired at 7 T exhibit rich information content
with potential utility for clinical applications. However, (1) substantial increases in susceptibility artifacts, and (2) geometrical
distortions at 7 T would be detrimental for stereotactic surgeries such as deep brain stimulation (DBS), which typically use
1.5 T images for surgical planning. Here, we explore whether these issues can be addressed, making feasible the use of 7 T
MRI to guide surgical planning. Twelve patients with Parkinson’s disease, candidates for DBS, were scanned on a standard
clinical 1.5 T MRI and a 7 T MRI scanner. Qualitative and quantitative assessments of global and regional distortion were
evaluated based on anatomical landmarks and transformation matrix values. Our analyses show that distances between
identical landmarks on 1.5 T vs. 7 T, in the mid-brain region, were less than one voxel, indicating a successful co-registration
between the 1.5 T and 7 T images under these specific imaging parameter sets. On regional analysis, the central part of the
brain showed minimal distortion, while inferior and frontal areas exhibited larger distortion due to proximity to air-filled
cavities. We conclude that 7 T MR images of the central brain regions have comparable distortions to that observed on a
1.5 T MRI, and that clinical applications targeting structures such as the STN, are feasible with information-rich 7 T imaging.
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Introduction

The advantages of ultra-high field (7 Tesla (T) and beyond)

MRI machines for basic science research and neuroscience

applications, have proven to be invaluable [1,2,3].

Functional MRI (fMRI) studies conducted at high-fields,

capitalizing on the enhanced sensitivity and specificity of the

measured blood-oxygen-level-dependent (BOLD) signals, success-

fully demonstrated the mapping of functional organizations of

neuronal architectures in cerebral cortex at unprecedented levels

of details [4,5]. Structural (i.e., anatomical) images of the human

brain acquired at 7 T exhibit rich informational content with

potential utility for clinical applications [6,7,8,9]. Such publica-

tions have led to a continued growth of interest in high-field MRI

for research and clinical applications, and continued support of

7 T product lines by the major manufacturers.

Although of obvious clinical interest, there are potential

obstacles for the clinical application of 7 T MRI. In particular,

those of most concern are: (1) increased power deposition, (2) the

substantial increase in susceptibility artifacts, and perhaps most

important for surgical applications, (3) geometrical distortion. All

of these confounds increase with magnetic field strength, and can

significantly compromise image acquisition, and interpretability of

the images. Despite these limitations, and due to the unique

contributions of 7 T MRI mentioned above, the question to be

addressed is whether 7 T MRI can be of use for clinical

applications.

Recently, 7 T MRI was demonstrated to improve the resolution

of the internal architecture of basal ganglia and thalamic

structures, including surrounding regions—a finding which is of

significance for the placement of deep brain stimulating (DBS)

electrodes during the treatment of certain movement and

neuropsychiatric disorders [7,8,9]. Critical to the success of DBS

surgery is the precise localization of the intended target structure

for subsequent implantation of the DBS electrode. Current

techniques involve stereotactic imaging combined with consensus

coordinates [10] to identify a first approximation of the DBS

target, which is then modified or confirmed based on intraoper-

ative electrophysiological techniques, including microelectrode

recording and macrostimulation, as well as patient behavioral

feedback. However, certain DBS targets, such as the ventro-

intermediate nucleus (VIM) of thalamus for the treatment of

essential tremor, have not yet been visualized using standard

clinical imaging. Visualization of internal thalamic nuclei is a

challenging, if not impossible, task using clinically-available 1.5 or
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3 T MRI systems [11,12,13]. The use of 7 T MRI with enhanced

signal-to-noise ratio (SNR), combined with MR sequences that are

more advantageous at higher magnetic field, such as susceptibility-

weighted imaging (SWI) [14,15,16], has yielded high-resolution

images with enhanced contrast, allowing visualization of internal

thalamic nuclei in individual patients. However, concerns have

been raised as to the validity of these images for stereotactic

targeting, due to the possibility of increased distortion at high field

[9].

Previous work that evaluated hardware-related geometrical

distortion of 7 T and 1.5 T images, using an MRI phantom, found

very low amounts of distortion in both cases [17,18]. However, a

question remaining is whether these phantom-based findings, are

applicable in vivo with actual subject-dependent susceptibility-

induced changes, and in the clinical setting where an accurate

targeting of a specific brain target is required.

In this work, we sought to characterize, in vivo, the amount of

geometrical distortion present at 7 T relative to standard clinical

imaging obtained on a 1.5 T scanner, in subjects undergoing

preoperative evaluations for DBS surgery. We demonstrate that

the common practice for brain surgery planning, where co-

registering clinical stereotactic 1.5 T MR images to CT images is

done in order to correct possible geometric distortion, can be

applied in a straightforward way for 7 T images. Further, we

demonstrate that images acquired at 7 T exhibit minimal

distortions in the midbrain region, compared to 1.5 T images,

and can be corrected by piecewise (regional-based) linear

registrations, thereby documenting the feasibility of using high-

field MRI as a clinical tool.

Materials and Methods

Approval for this study was obtained from the Institutional

Review Board at the University of Minnesota. All subjects

provided informed written consent prior to participating in the

study. Subjects were derived from the population of patients

undergoing preoperative evaluation for DBS surgery in the

Department of Neurosurgery at the University of Minnesota

Medical Center. Inclusion criteria included patients with a

diagnosis of idiopathic Parkinson’s disease deemed suitable

candidates for DBS surgery [19]. Subjects with claustrophobia

or contraindications to MR imaging were excluded from this

study.

Twelve patients diagnosed with Parkinson’s disease (eight men

and four women) with average age 61 years and average disease

duration of 10 years, were enrolled in this study. All subjects

underwent scanning on both a clinical 1.5 T Philips Intera MRI

system and a Siemens Somatom Sensation 16 CT scanner at the

University of Minnesota Fairview Hospital, and on a 7 T MRI

scanner (Magnex Scientific, UK) at the Center for Magnetic

Resonance Research (CMRR) at the University of Minnesota,

using T1-Weighted (T1W) and T2-Weighted (T2W) imaging

protocols. Six patients were scanned with a first-generation

passively shielded 7 T magnet (7T/PS), using a Siemens Avanto

body gradient set capable of 40 mT/m and a maximum slew rate

of 200 T/m/s, and six patients were scanned with a new actively

shielded 7 T magnet (7T/AS), using SC72 gradients capable of

70 mT/m and a 200 T/m/s slew rate. Both 7 T magnets were

driven by a Siemens console (Erlangen, Germany).

All 1.5 T images were acquired using a Philips Synergy Flex

Interventional – Large coil. All 7 T images were acquired with a

24-element head array coil (Nova Medical, Inc, Burlington, MA)

and were acquired with the MRI vendor’s 3D distortion

correction, which compensates for geometrical distortions origi-

nating from gradients nonlinearities.

Acquisition parameters for 7T/PS and 7T/AS images
T1-Weighted MRI. Images with 1 mm isotropic resolution

were acquired with the standard Siemens 3D MPRAGE sequence:

FOV: 25662566176 mm3 (25662566176 matrix),

TR = 3000 ms; TI = 1500 ms, TE = 4.03 ms (for 7T/PS), and

3.27 ms (for 7T/AS), nominal flip angle = 5u, band-

width = 140 Hz/pxl (for 7T/PS) and 180 Hz/pxl (for 7T/AS),

maximum readout gradient strength = 22 mT/m (for 7T/PS) and

40 mT/m (for 7T/AS), total acquisition time = 3.5 minutes,

acceleration factor of 2 (GRAPPA) along the phase encode

direction.

T2-Weighted MRI: An axial slab oriented parallel to the AC-PC

line that runs from the top of thalamus down through the upper

pons was acquired using a 2D turbo spin echo (TSE) sequence

with the following image parameters: FOV: 2006200640 mm3;

5126512620 matrix (0.3960.3962.0 mm3), TR/TE 8000/

58 msec, flip angle = 150u, bandwidth = 255 Hz/pxl, maximum

readout gradient strength = 15.4 mT/m, acceleration factor of 3

(GRAPPA) along the phase encoding direction. The total

acquisition time was 5.5 minutes for 4 averages.

Acquisition parameters for 1.5 T images
T1-Weighted MRI. Images with 1 mm isotropic resolution

were acquired using the following standard clinical protocol: FOV:

25662566165 mm3; 25662566165 matrix (16161 mm),

TR = 7.07 ms; TE = 3.19 ms, nominal flip angle of 8u, bandwidth

of 241 Hz/pxl, and total acquisition time of ten minutes.

T2-Weighted MRI. A commercial Philips sequence T2W

TSE (Turbo Spin Echo) 5–19 CLEAR (Multi-channel RF coil

sensitivity normalization) clinical protocol was used with the

following image parameters: FOV: 2566256658 mm2;

5126512629 matrix (0.560.562.0 mm3), TR/TE 4866/

90 msec, bandwidth of 222 Hz/pxl and 10 averages, for a total

acquisition time of 13 minutes.

CT acquisition parameters
Images were acquired with 0.75 mm slice thickness, 5126512

matrix, FOV: 2506250 mm2 (to encompass fiducial marks), 0.0

degree gantry tilt, 120 kV, 250 mAs.

Distortion analysis
The method used to evaluate the geometric distortion present

on 7 T images relative to 1.5 T MR images was critically

dependent on achieving a satisfactory co-registration between

corresponding images using visual inspection, as is routinely done

in clinical practice. Obtaining this adequate co-registration,

together with the analysis of the transformation operator that

was required for the registration, allows for both a qualitative and

quantitative assessment of any deformations imposed by the

different scanners be it related to magnetic field strength or

scanner hardware (i.e. gradients).

Figure 1 shows the workflow of the pre-processing, registration,

and evaluation of the global registration quality. Initially, the T1W

7T MR images were corrected for non-uniformity using the FSL

FAST tool [20,21,22]. Following the non-uniformity correction,

non-brain structures (e.g., skull, neck, nose, etc.) were extracted

from both 7 T and 1.5 T images using FSL’s Brain Extraction

Tool (BET) [23], allowing for better co-registration results. The

7 T images were registered to the 1.5 T images by a standard

linear image co-registration technique, using the FSL FLIRT

Applicability of 7 T Images for DBS Surgery
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software [24]. The co-registrations were performed first with 6

degrees-of-freedom (DOF) and a search-angle resolution of 3

degrees for coarse search and alignment of the images (rigid

rotation and translation). Following the 6 DOF co-registration, an

affine 12 DOF registration was applied for fine adjustment of

scaling and shearing. The cost function for the optimization

process was Mutual Information (MI), a common and robust cost

function that is widely used for the registration of medical images,

and is routinely used for the co-registration of multiple imaging

modalities [25]. This type of affine registration is fundamental,

robust and is commonly used in the clinic for stereotactic surgery

planning. Each registration produced an affine transformation

matrix, which consists of rigid body transformations, scaling

factors, and shear angles.

We employed three methods to evaluate the degree of

correspondence between the registered 7 T images and the

clinical 1.5 T images. First, we used FSL’s Slicer function to draw

edge lines to qualitatively and visually assess the degree of image

correspondence and the co-registration quality. In this method,

edges obtained from the registered 7 T image were superimposed

on the 1.5 T image (Figure 2). This method follows the current

standard practice used in the operating room, in which the

surgeon overlays the registered image(s) on top of the reference

image (e.g., Medtronic Stealth Station, Framelink software,

Minneapolis, MN), and toggles between them in order to

determine, visually, how well brain structures coincide in the

different image sets.

The second evaluation method used anatomical landmarks to

(1) evaluate quantitatively the registration quality, and (2) evaluate

global distortions by analyzing the transformation matrix values.

Seven anatomical landmarks were selected by an experienced

neurosurgeon on each 1.5 T and 7 T MRI scans prior to image

co-registration. Each landmark was characterized by a clearly

defined and unique anatomical location in 3D space. The

landmarks chosen for the T1W images were: 1) the ventricular

surface of the anterior commissure at its rostro-caudal midpoint

(AC), 2) the ventricular surface of the posterior commissure at its

Figure 1. Workflow of data processing and analysis. The workflow process of image post-processing and quantitative estimation of the global
degree of correspondence between co-registered 7 T and 1.5 T MR images, using anatomical landmarks method.
doi:10.1371/journal.pone.0037328.g001

Figure 2. Visual example of the registration results. Edges of
brain structures obtained from the registered 7 T image (right column)
are superimposed on the 1.5 T image (left column). Top row: T1W
coronal images acquired at (a) 1.5 T and (b) 7 T. Bottom row: T2W axial
images acquired at (c) 1.5 T and (d) 7 T, respectively. Note the high
degree of correspondence between the 7 T red iso-contour edge lines
superimposed on the 1.5 T images, indicating minimal distortion in the
7 T images compared to the clinical 1.5 T images. This method follows
the current standard practice used in the operating room, in which the
surgeon overlays the registered image on top of the reference image
and toggles between them in order to determine, visually, how well
regional brain structures coincide in the different image sets.
doi:10.1371/journal.pone.0037328.g002

Applicability of 7 T Images for DBS Surgery
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rostro-caudal midpoint (PC), 3) the rostro-caudal midpoint of the

cerebral aqueduct, 4) the midpoint of the optic chiasm, and 5) the

midpoint of the pituitary infundibulum. Additional landmarks

were added on the cortical surface and sulci where a clear 3D

location could be defined. In some cases, landmark #5 could not

be identified due to lose of signal at the inferior frontal areas, near

air cavities, where high susceptibility is present (see Discussion).

Landmark selection and identification on the T2W images was

more challenging since it employed an axial non-isotropic

acquisition (0.460.462 mm3) from the top of thalamus down

through the upper pons slab (18–22 slices). The non-isotropic

nature of this slab made it difficult to determine precise anatomical

locations in 3D. Amira 5.3.3 software (Visage Imaging, Richmond,

Australia) was used to interpolate and re-slice the T2W images in

order to increase the accuracy while determining the 3D landmark

location. The landmarks were chosen based on corresponding

anatomical structures such as AC, PC, and clearly defined

structures that were contained in one slice only.

Following landmark positioning, the global transformations that

resulted from the above-mentioned registration (7 T to 1.5 T)

were applied to the landmark coordinates of the 7 T images,

transforming them into 1.5 T image space coordinates. Note that

we used a landmark-free registration, involving validation based

on anatomical landmarks. The transformed 7 T landmarks were

visually evaluated for consistency with their corresponding 1.5 T

anatomical landmarks. In addition, the 3D Euclidean distances

between the landmarks of the 1.5 T images and the transformed

landmarks of the 7 T images were calculated for each landmark.

This allowed for a quantitative estimation of the global registration

of the 7 T images. Figure 1 illustrates schematically the workflow

of this process of evaluating the global registration quality using

the landmarks method. The values for scaling, skews and

determinant of the transformation matrices were evaluated in

order to determine the amount of non-rigid transformation that

was required for the registration.

A third evaluation method was used in order to estimate the

regional (per-region) contribution to the global degree of corre-

spondence between the two sets of registered images. Following

the global registration, T1W images of the brains were parceled

into nine corresponding sub-regions as shown in Figure 3a. T2-

weighted images were parceled into three sub-regions, which

approximately corresponded to the three middle sub-regions of the

T1W images (regions 4,5 and 6). Each 7 T sub-volume was then

co-registered separately and independently, within its correspond-

ing 1.5 T sub-volume, and the registration results were visually

evaluated, where the success criteria for the registration was

improving on the result of the global registration for that area [26].

The total regional transformation matrix was calculated by

combining the resulting local transformation matrix with the

global transformation matrix. The values of total scaling, skews,

and transformation determinants for registration of each sub-

volume were derived from the resulting transformation matrices

and were recorded for each sub-volume. The scaling, skew, and

transformation determinant required for the piecewise registration

indicate, as a first order approximation, the amount of geometrical

distortion of each region. The three most inferior regions

containing the cerebellum, brainstem, and the orbital regions,

were excluded from the analysis due to expected significant signal

loss and susceptibility artifacts, resulting from proximity to air

cavities and regions with large inhomogeneity.

A comparison was performed between the results of the

distortion analysis of the two 7 T magnets (7T/PS and 7T/AS),

as the latter is expected to present more challenges in terms of

distortion correction, due to the employment of higher performing

gradients with probably less overall uniformity.

Results

A visual example of the registration results is shown in Figure 2,

in which edges (red lines) obtained from the registered 7T/PS

image are superimposed on the 1.5 T image. Two examples are

shown: the top row depicts T1W coronal images acquired at (a)

1.5 T and (b) 7T/PS; the lower row depicts T2W axial images

acquired at (c) 1.5 T and (d) 7T/PS, respectively. Similar image

orientations as shown are used for planning the trajectory of the

DBS electrode into the subthalamic nucleus (STN) for the surgical

treatment of Parkinson’s disease. The geometrical accuracy of

these images is crucial to the success of any imaging-based

Figure 3. Regional contribution to global registration. a) Nine
sub-volumes to which the T1W brain images were parceled for the local
registration method. The regions are: 1. Posterior-superior, 2. Mid-
superior, 3. Antero-superior, 4. Posterior-middle, 5. Middle (includes the
midbrain and portions of the temporal lobes), 6. Antero-middle, 7.
Posterior-inferior (corresponds mostly to the posterior fossa contents
i.e., cerebellum), 8. Mid-inferior (corresponds primarily to the inferior
portion and floor of the middle fossa) and 9. Antero-inferior
(corresponds primarily to the anterior skull base and temporal poles).
T2W images were parceled into three sub-volumes, which approxi-
mately correspond to the three middle regions of the T1W images
(regions 4, 5 and 6). b) Average local skews of the parceled regions,
superimposed on a surface rendering of a representative brain. The
colors (cold-to-hot) reflect the amount of average regional skew
required for a registration at that region (measured as the tangent of
the skew angle). Note that distortions at the middle region, which
include the midbrain and portions of the temporal lobes, are minimal
and indicate the clinical applicability of 7 T imaging of these sub-
volumes for DBS procedures for example. The registrations of the
inferior regions (regions 7, 8 and 9) were typically unsuccessful due to
loss of signal in these areas in the 7 T images, which did not allow
meaningful estimation of distortion when using this method.
doi:10.1371/journal.pone.0037328.g003

Applicability of 7 T Images for DBS Surgery
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stereotactic procedure. As suggested by this figure, there was a

high degree of correspondence between the same anatomical

features in the two image datasets, providing qualitative support

for an adequate registration between the images.

The next level of analysis quantifies and characterizes the

distortions and the degree of correspondence between the two sets

of images using the anatomical landmarks. Figure 4 provides a

quantitative summary of these findings, with boxplots showing the

distribution of the distances between the selected anatomical

landmarks, assigned on 1.5 T images, and their corresponding

anatomical landmarks on the 7 T images. Each box represents the

statistical distribution of the 3D Euclidean distances, obtained in

the individual patients, for T1W (top row – a and b) and T2W

(bottom row – c and d) images, respectively. We further compared

the results of the 7T/PS MRI (a and c) and the 7T/AS MRI (b

and d). Most distances were less than one voxel, indicating

quantitatively high degrees of correspondence and a successful co-

registration of the two image datasets. The results of the 7T/AS

T1W images (4b) show greater distances between the correspond-

ing registered landmarks (160.5 mm), likely resulting from

differences in gradient linearities.

Outlier landmarks were observed mainly in inferior frontal

areas (e.g., optic chiasm and the midpoint of the pituitary

infundibulum), which, due to proximity to air-filled cavities, have

higher susceptibility issues, resulting in local distortion and loss of

signal. Images acquired from subjects P008 and P010 were notable

for an excessive amount of motion during the acquisition, as a

consequence of the patients’ resting tremor, resulting in degraded

image quality and more challenging registration and landmark

identification. Nevertheless, the quality of the registration for

datasets acquired from these two subjects was well within the

range of error of one voxel for the landmarks.

Figure 5 summarizes the transformation values for the co-

registrations of T1W (top row – a and b) and T2W (lower row – c

and d) images, as derived from the transformation matrices (see

Methods). A comparison is shown between the results of 7T/PS (a

and c) and 7T/AS (b and d). As the values indicate, the

registration operators are essentially rigid body transformations

with extremely small corrections in scaling and skew. The

maximum scaling factors—i.e., those most divergent from 1—

are on the order of a 1% change, and the maximum skews

(maximum absolute skew value) are less than 0.01 (measured as the

tangent of the angle). The transformation determinants, which

relates the volume change of a region in the original image to the

volume of the corresponding region after being transformed, are

close to 1, meaning that essentially no volume change was required

for registration. Transformation values for the T2W images suggest

even lower distortions. In several datasets acquired on the 7T/PS,

(i.e., P001, P003, P005 and P006), 6 DOFs were sufficient to get

an accurate co-registration. In summary, the co-registration of

both T1W and T2W images between 7T/PS and 1.5 T datasets

required basically rigid body transformation.

A larger amount of scaling, skew and volume change was

required for the 7T/AS T2W image registration (Figure 5d). This

was not unexpected, as discussed below.

The third level of analysis involved an evaluation of the degree

of correspondence, on a regional basis, between the 7 T and 1.5 T

images. These results are summarized in Figure 6, showing a

comparison between T1W (a and b) and T2W (c and d), and

between 7T/PS (a and c) versus 7T/AS (b and d). The values in

Figure 4. Quantitative and statistical summary of anatomical based registration. Box plots of the statistics of the co-registered landmarks’
distances, obtained from individual patients, for T1W (top row – a and b) and T2W (low row – c and d) images. Further comparison is done between
images acquired by 7T/PS (left column – a and c) and 7T/AS (right column – b and d). The red lines represent the average, top and bottom of the box
represent the first and third quintile, respectively, the whiskers show the maximum and minimum values, and the asterix represent the outliers. The
statistics is of distances between the anatomical landmarks assigned on 1.5 T images and the corresponding anatomical landmarks assigned on the
7 T images, after a global landmarks-free coordinates transformation to the 1.5 T image space. As can be seen, the distances are on the order of one
voxel, indicating a high degree of correspondence between the two co-registered images.
doi:10.1371/journal.pone.0037328.g004

Applicability of 7 T Images for DBS Surgery
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Figure 6 depict a first-order approximation of the amount of

distortion associated with each part of the volume data. As

expected, the posterior-superior, antero-superior and antero-

middle sub-regions (regions corresponding to areas 7, 8, & 9 in

Fig. 3a), were associated with the largest deformations, while the

middle sub-region, which included the midbrain and portions of

the temporal lobes, required minimal corrections. A minimal

amount of correction was observed in the 7T/PS T2W images

(Fig. 6c) compared with the amount needed for the 7T/AS T2W

images (Fig. 6d). This finding is likely a consequence of the

difference in gradient design between the 7T/AS and 7T/PS

systems, as further discussed below. Figure 3b illustrates the nine

sub-regions into which the brain was divided, superimposed on a

surface rendering of a representative brain. The colors are a heat

map reflecting the average amount of regional skew that was

required for each region during the registration of the T1W 7T/PS

datasets (measured as the tangent of the skew angle). The

registration of the most inferior regions (Posterior-inferior, Mid-

inferior and Antero-inferior) was typically unsuccessful due to

signal loss in these areas in the 7 T images, which did not allow for

a meaningful estimation of distortion when using this (regional

registration) method. Therefore, only data acquired for the six

upper regions are presented.

Discussion

In this work, we qualitatively and quantitatively estimated the

degree of correspondence between ultra high-field (7 T) MR

imaging and clinical 1.5 T MR imaging within a realistic clinical

setting. The results of this investigation demonstrate that direct

clinical applications of 7 T MRI are feasible.

Geometric distortions in MR images can originate from (a) MRI

system imperfections, and from (b) subject-dependent sources. The

former include gradient nonlinearities, inhomogeneity in constant

magnetic fields (B0), and imperfect shimming. The primary

subject-dependent sources include chemical shift artifacts and

susceptibility effects which are enhanced at higher magnetic field

strength [27].

In this work, an affine registration was used as a tool to estimate

and characterize possible geometrical distortion. The first stage of

the analysis involved achieving an acceptable level of co-

registration and then verifying the adequacy of the co-registration

Figure 5. Global registration matrices values. Transformations values for the registration used for the T1W (top row – a and b) and T2W (low row
– c and d) and for 7T/PS (left column – a and c) and 7T/AS (right column – b and d) images, as derived from the corresponding transformation
matrices. The transformation values are measured as maximum scaling change (deviation of the scaling form 1), maximum skew (measured as the
tangent of the skew angle), and volume change (deviation of the transformation determinant form 1) that were needed for global registration
between 7 T and 1.5 T images. The values indicate that the registration operators are essentially rigid body transformations with negligible linear
corrections in scaling, skew, and the transformation determinant. Given the high degree of correspondence between the registered images, these
values indicate minimal amount of geometric distortion between the 1.5 T and 7 T images. Greater amount of scaling and skew was recorded for the
7T/AS T2-weighted images (5d). This is due to a stronger gradient employed in the 7T/AS MR system.
doi:10.1371/journal.pone.0037328.g005

Applicability of 7 T Images for DBS Surgery
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both qualitatively (iso-contours/edges method) and quantitatively

(anatomical landmarks method). Following this co-registration, the

analysis of the transformation matrices enabled detection of the

presence, and estimation of the amount, of geometric distortion

between the co-registered image datasets.

As shown in the Results section, an affine transformation

already allowed for high quality registrations, both qualitatively

and quantitatively. Quantitative evaluation of the registration

showed that the error associated with the co-registration of 7 T

MR images to 1.5 T MR images is on the order of 1 mm, which is

comparable to the intrinsic error of approximately one voxel,

expected from the technique used for estimating the registration

quality (see Error Analysis section). The error in the registration of

the 7T/AS T1W images (Figure 4b) appears to be slightly greater.

This result is expected as the 7T/AS employs a different gradient

design intended to allow higher performance, which may suffer

from increased nonlinearities, for which compensation is more

difficult. Nevertheless, the registration error is still well within the

sub-millimeter range.

The overall T2W image registration error was significantly less

than 1 mm. This might be in part due to imaging only the mid-

part of the brain, thereby avoiding regions of higher susceptibility

artifact and gradient non-linearity.

Few outliers were observed for which the distances between

corresponding anatomical landmarks varied from 2 mm to 4 mm

(see Figure 4). As expected, these landmarks were situated in

inferior frontal areas, adjacent to air-filled sinuses (e.g., optic

chiasm and pituitary body), where higher susceptibility causes

greater local distortion as well as signal loss. Clinical applications

aimed at targets in the inferior frontal region will need to take into

account this propensity for greater distortion, and methods for

mitigating the distortion will need to be developed, e.g., by

considering non-linear registration techniques or simply limiting

the use of 7 T in those particular sub-regions. However, these local

nonlinear distortions did not affect DBS targets in the region of the

basal ganglia or thalamus.

The next stage involved analyzing the transformation matrices

in order to estimate and characterize the distortions. An affine

registration process as the one studied here can be divided into

three types of transformations: (1) rigid body, (2) scaling, and (3)

shearing. A rigid body transformation is merely a change in the

location and position of the object being imaged. Performance of

this type of transformation does not indicate the presence of any

distortion. Scaling indicates only a change in the focal point. This,

we suggest, can be regarded as a weak form of distortion, as it does

not change the geometrical relationship between different points

(regions) in the image and does not change the overall planning of

clinical applications once accounted for (as long as the image scale

is known or can be estimated). In contrast, shearing must be

regarded as a real geometrical distortion, and it likely originates

Figure 6. Regional registration matrices values. Average values (per brain region) of maximum scaling change (measured as the scaling
deviation form 1), maximum skew (measured as the tangent of the skew angle) and volume change (measured as the deviation of the transformation
determinant form 1), that were needed for regional registration between 7 T and 1.5 T images. Presented are the values of T1W (top row – a and b),
T2W (low row – c and d), 7T/PS (left column – a and c) and 7T/AS (right column – b and d). These values represent first order approximations of the
amount of distortion associated within each part of the imaging volume. As expected, the Posterior-superior, Antero-superior and Antero-middle,
exhibit greater distortion, while central and mid-back regions presented minimal levels of distortion.
doi:10.1371/journal.pone.0037328.g006
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from the nonlinearities of the gradients. Nevertheless, as long as

image co-registration through the use of an affine transformation

(for example) is possible, other imaging modalities which are less

susceptible to geometric distortions, such as CT [28,29], can be

used to transform the high-field image into the true patient

coordinates, without losing any information or the integrity of the

data.

As summarized in Figure 5, analysis of the transformation

matrices demonstrates minimal amounts of scaling, skew, and

volume change. This finding, together with the observed,

quantitatively measured, adequate registration, is strong evidence

that there are minimal geometric distortions in the 7 T images

compared to the clinical 1.5 T images in regions relevant for

surgical planning of DBS.

A larger amount of scaling, skew, and volume change was

observed in the 7T/AS T2W transformation matrices. A detailed

analysis of the origin of these changes reveals a significantly larger

scaling in the cross-plane (gradient Z) direction (inferior-superior

human axis) and significantly more skew on the YZ plane (sagittal

plane) compared with the 7T/PS MRI system. Given the fact that

the gradients used in the sequence and the sequence parameters

(bandwidth, etc), are identical for both 7 T scanners, this

difference in distortion is most likely due to the larger known

gradient nonlinearities in the 7T/AS MRI systems, which are

harder to be compensated for by the distortion correction

algorithm that is employed by the MRI manufacturer. These

non-linearities depend only on the physical characteristics of the

gradient hardware. Nevertheless, as can be deduced from the

registration results, these distortions can be effectively compensat-

ed for by a simple affine registration to a modality less susceptible

to distortion, such as CT. Note that registering clinical 1.5 T MR

images to CT images in order to compensate for distortions in the

1.5 T MR images is also common practice for neurosurgical

planning. To further emphasize the ability of using CT to correct

for the geometrical distortions of 7 T MR images, we followed the

clinical procedure and co-registered 1.5 T and 7 T MR images to

pre-operation baseline CT images in five representative cases.

Figure 7 depicts one such example and illustrates the quality of co-

registration between pre-operation CT and a) 1.5 T T1W, b) 7 T

T1W and c) 7 T T2W. Although CT images are far less

informative than MRI, it can be seen that the ventricles are

aligned, indicating an adequate quality of registration. These co-

registrations were confirmed by an experienced neurosurgeon

(AA) to be sufficient for use in the operation room for navigational

planning.

As the results suggest, the distortion in these regions, with the

imaging protocols used, are not dominated by high-field effects,

but more likely by gradient non-linearity effects. This can be

deduced by comparing the results of the 7T/PS to the results of

the 7T/AS. Using more conventional gradients, or improving the

distortion corrections of the gradients, will result in smaller

geometrical displacements or distortions as depicted by the 7T/PS

results (Figure 5c).

Finally, it should be noted that we do not claim that the

registration algorithm used here is optimal. It is possible that an

optimized (non-linear) registration algorithm would lead to even

better results. We used only a conventional registration algorithm

that is widely used in clinical settings as a tool (1) to obtain a

quantitative estimate of geometrical distortions, and (2) to

demonstrate that compensation for this distortion is achievable,

even with such simple, but clinically plausible techniques.

Further analysis was performed by independently registering

selected sub-regions of the images, and estimating the spatial

distributions of the local distortions. As the results summarized in

Figure 6 show, the distortion of the 7 T MR image was distributed

non-uniformly. Generally, the images tend to be more distorted at

parts located further away from the gradient center, where

correcting for the non-linearity of the gradient field is more

challenging (and might call for non-linear methods). This is

apparent in the local registration of the T1W images, where

peripheral regions of the brain present more scaling, skew, and

volume changes than the central regions. Analysis of co-

registration of the middle part of the brain demonstrated minimal

amounts of distortion, which is an encouraging result for clinical

applications that involve imaging this region, such as targeting

STN, VIM, or the internal segment of the globus pallidus (GPi)

during DBS surgery.

Analyzing the results of the regional registration of the T2W 7 T

images (figures 6c and 6d), further supports the claim that minimal

distortion occurs in the middle slab of the image, close to the

center of the gradient. Comparing the results from the global

registration to the local registration shows that almost no

correction was required for the global registration, resulting in

similar transformation matrices values.

Local registration of each sub-region within the brain requires

some fine-tuning of the registration process. Registration of each

sub-region within the brain may result in better local registrations

as a consequence of relaxing the constraint that requires the whole

brain to be properly registered. However, relaxing these

constraints might also result in reducing the robustness of the

registration process and potentially increasing the overall registra-

tion error (e.g., clear corresponding areas outside of a sub-region

might help in the registration of the sub-region itself). The large

error bars in the values of the local transformation matrices

Figure 7. Registration of 7T MRI to CT. An example of co-registration between CT and a) 1.5 T T1W, b) 7 T T1W, c) 7 T T2W. Although CT images
are far less informative than MRI, it can be seen that the ventricles are perfectly aligned, indicating an adequate quality of registration. Registering
1.5 T MR images to a CT is a common practice for planning of neurosurgical procedures including DBS surgery and tumor resections. This practice
allows for using the superior contrast of MRI while capitalizing on the geometric integrity of the CT image. Here we suggest that the same practice
may be used for correcting for whatever geometrical distortions that may be present in 7 T MRI.
doi:10.1371/journal.pone.0037328.g007

Applicability of 7 T Images for DBS Surgery

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e37328



(Figure 6) were a result of such a loss of robustness. Consequently,

in cases where the local sub-region registration failed, additional

strategies were employed to improve the results (e.g., limiting the

searching angle, changing the cost function to correlation ratio,

and trying different initial conditions). It is again worth noting that

optimizing the registration method was not the aim of this work,

and results obtained here would likely improve using more

advanced techniques.

Error analysis
The error of the landmark-based method for evaluating the

registration quality and estimating the geometric distortion

originates from three main sources: First, landmark placement is

subject to the accuracy of the human eye, experienced as it may be

(in our case, they were placed by a neurosurgeon). To minimize

this source of error, only clear and relatively discrete locations in

3D space were selected for landmark placement. Since the size of

the anatomical structures used as landmarks were approximately

1 mm, and the landmark marker was 0.5 mm in diameter, we

estimate the resulting marking error to be approximately 0.5 mm

in size. We have validated this estimation by reanalyzing the entire

data from two patients, in which we have repeated the landmarks

selection and computed the overlap between the earlier and

current landmark positions. On average, the two sets of landmarks

diverged by 0.61 mm, confirming our estimation. Second, the

image resolution itself poses an intrinsic limit to the accuracy of the

landmark placement. Sub-voxel structures are spatially averaged

(partial-volume effect), and therefore landmarks often cannot be

placed with accuracy of less than one voxel in size. Selecting

structures with high contrast-to-noise ratio (CNR) allows the use of

interpolation in order to enhance the accuracy of the landmark

placement. Both sources of landmark placement error are highly

correlated and therefore the total expected error is estimated to be

one voxel. Note that in the case of anisotropic voxels, the error size

is anisotropic as well. For example, while the in-plane error of the

T2W images is 0.4 mm, the cross-plane error is approximately

2 mm, which is same as the slice thickness. In order to mitigate the

cross-plane error, it is possible to acquire slices in the coronal

orientation of the region-of-interest (ROI) and fuse these with the

axial view in order to get a higher resolution image of the ROI

[30]. Note that such errors in landmark location are also part of

the current standard clinical practice, where manually selected

landmarks are used to register the patient images to consensus

coordinates.

Finally, the registration algorithm does not guarantee that the

resulting transformation is the best possible. Different choices of

degrees-of-freedom, cost function, interpolation method, search

angles, and optimization method, may result in different (and

possibly improved) outcomes. Nevertheless, finding an affine

transformation that maps one set of landmarks (7 T) to the other

(1.5 T), sets an upper limit on the amount of expected distortion,

at least for the regions covered by these landmarks. As

demonstrated here, the upper limit obtained with these simple

techniques is already extremely low.

Conclusion
The transformations that were used here for co-registration of

7 T to 1.5 T MR image datasets were essentially rigid body

rotations and translations provided that all non-brain tissues (e.g.,

skull, neck, nose) were removed. Our ability to register images

from a 7 T magnet to images from a 1.5 T magnet, using rigid

body transformations, suggests that geometrical image character-

istics of ultra-high field MRI are comparable to those of images

acquired on a clinical 1.5 T MR system, at least with the imaging

protocols used and for the regions investigated here - region

housing current FDA-approved targets for the treatment of

movement disorders and are relevant for surgical planning in

DBS.

It is not our intention to state that there was no geometrical

distortion present. We simply suggest that the distortions currently

seen on 7 T MRI are comparable with distortions observed on

1.5 T MRI in a clinical setting. Nevertheless, 1.5 T MR images

are routinely used for planning of neurosurgical procedures

including DBS surgery and tumor resections, despite the fact that

7 T can provide significantly improved visualization [8,9]. This

research suggests that the development of ultra-high field

instrumentation has progressed to a point where the benefits of

higher resolution and better contrast-to-noise (CNR) afforded by

high-field MRI are clinically feasible. Our finding that essentially

only affine transformations are mandatory for sufficient co-

registration between 1.5 T and 7 T images imply that minor

changes in conventional platforms’ (e.g., Stealth) algorithms and/

or protocols may be sufficient to allow 7 T data to be utilized in

the clinic. Furthermore, preliminary and ongoing research based

on the 7 T to 1.5 T registration reported here, suggests that 7 T

images can improve targeting objectives in the clinical setup

during DBS surgery (manuscript in preparation). In addition,

future research could capitalize on the enhanced resolution of

high-field imaging and explore the topic of distortions associated

with intracranial processes, resulting in brain shifts, and their

impact on direct targeting.
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