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Abstract

It is well established that tau pathology propagates in a predictable manner in Alzheimer’s disease (AD). Moreover, tau
accumulates in the cerebrospinal fluid (CSF) of AD’s patients. The mechanisms underlying the propagation of tau pathology
and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by
neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading
of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the
overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved
at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which
presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that
phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12
sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential
cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that
hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in
the brain and its accumulation in the CSF.
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Introduction

The microtubule-associated protein tau that is normally

enriched in the axon becomes hyperphosphorylated and accumu-

lates in the somato-dendritic compartment in several neurode-

generative diseases named tauopathies that are characterized by

dementia [1,2]. In these diseases that include AD, tau aggregates

in insoluble filaments that form lesions called neurofibrillary

tangles (NFTs) [3]. The appearence of these lesions in a

predictable manner in the brain correlates with the degree of

cognitive deficits [4,5,6,7]. Moreover, the amount of tau found in

CSF increases during progression of AD [8]. It remains unclear

how tau pathology propagates in the brain and how tau reaches

the CSF. Recent studies have reported that the secretion of tau

could contribute to both of these events. In vitro, tau was shown to

be secreted by M1C, NB2a/d1, COS-7 and KEK-293 cells

[9,10,11]. When human tau cDNA was microinjected in central

lamprey neurons, human tau could transfer from one neuron to

another indicating that secreted tau could be involved in the

propagation of the disease in vivo [10]. However, it was unclear

whether this phenomenon was specific to this model until two

recent studies demonstrating the trans-synaptic propagation of tau

pathology in a mouse model [12,13]. In this model, where human

tau overexpression was restricted in the entorhinal cortex, the first

region to be affected in AD, the spreading of tau pathology was

observed along synaptically connected circuits. From these studies,

one can conclude that the secretion of tau at the synapse might be

involved in the propagation of tau pathology in mouse brain. Tau

secretion could also result in the increase of tau in the CSF as

reported in a study showing that the increased amount of tau in

the CSF could not be linked to neurodegeneration in tau

transgenic mouse models [14].

In AD, tau is phosphorylated at more than 40 sites compared to

9 sites in normal patients [15]. Until now, only few phosphory-

lation sites were examined in CSF. In several studies, both the

amount of total tau and phosphorylated tau (ptau) were measured

in the CSF [8]. Indeed, the ratio of ptau/total tau was shown to be

more accurate in distinguishing Alzheimer’s patients from controls

than the mere measure of total tau. The phosphorylation of

threonine 181 (T181) is extensively used for measuring tau in the

CSF [8]. In AD and in mildly cognitive impaired patients, the

phosphorylation of T181 is significantly higher than in normal

patients whereas it is decreased in patients presenting a fronto-

temporal dementia (FTD) [16,17]. Moreover, phopshorylation of

T181 was used to differentiate AD from dementia with Lewy

bodies (DLB) [18]. The phosphorylation of T231 was also

increased in CSF tau obtained from AD patients
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[19,20,21,22,23]. However, some studies reported that the

phosphorylation of T231 decreased with the progression of AD

[24]. The phosphorylation of T231 is lower in FTD than in AD

[18]. The above observations revealed that the distinct pattern of

tau phosphorylation could be used to discriminate between

tauopathies. The phosphorylation of other sites such as S199,

S202 and T205 (epitope recognized by the phospho-tau antibody

AT8) and S396 and S404 (epitope recognized by the phospho-tau

antibody PHF-1) were less examined and their phosphorylation in

CSF remains controversial [25]. The low amount of tau in the

CSF has been a limiting factor in characterizing its phosphory-

lation state. So far, the increase of tau in the CSF was attributed to

neuronal cell death. A recent study reported that intracellular tau

released in the culture medium upon cell death was dephosphor-

ylated [26]. It remains to be determined whether tau found in the

CSF has a phosphorylation pattern similar to that of intraneuronal

tau.

Tau found in the CSF of AD and progressive supranuclear palsy

(PSP) patients is cleaved [27,28,29]. The main cleavage seems to

occur at the C-terminal. It is still unclear whether tau is cleaved

before it is released in the CSF. A study reported that when full-

length tau was added to the CSF, it did not get cleaved indicating

that the cleavage of tau took place before its release in the CSF

[27]. Interestingly, CSF-tau obtained from tau transgenic mice

was also cleaved at the C-terminal [14]. A recent study reported

that tau secreted by M1C and NB2a/d1 cell lines was cleaved at

the C-terminal in a pattern reminiscent to tau found in the CSF

[9,30]. All together, the above observations revealed that tau

cleaved at the C-terminal is preferentially released in the CSF.

Until now, no study has examined whether phosphorylation and

cleavage of tau favor its secretion. In the present study, we showed

that the overexpression of human tau resulted in its secretion by

Hela cells. Interestingly, secreted tau was dephosphorylated at

several sites in comparison to intracellular tau and that only tau

cleaved at the C-terminal was found in the medium. Our data also

revealed that hyperphosphorylation and cleavage of tau favored its

secretion by Hela cells. Therefore, hyperphosphorylation and

cleavage enhancing the secretion of tau in AD brain could

contribute to the propagation of its pathology in the brain and to

its accumulation in the CSF. From the present results showing that

secreted tau was dephosphorylated and the previous study

reporting that tau released in the culture medium upon cell death

was dephosphorylated, one can also speculate that tau found in the

CSF would be dephosphorylated.

Materials and Methods

Cell Culture and Transfection
Hela cells (ATCC, Manassas, VA, USA) were cultured in

DMEM (Invitrogen, Burlington, ON, Canada) supplemented with

10% foetal bovine serum (Hyclone, Logan, UT) and 2 mM L-

glutamine (Sigma, Oakville, ON, Canada) at 37uC in a humidified

5% CO2 incubator. For transfection, Hela cells were plated at a

density of 1.1 6 106 cells in 60-mm Petri dishes and grown

overnight to 80% confluency. Lipofectamine 2000 (Invitrogen) was

used to transfect Hela cells with the expression vector (pEGFP-C1

from Clonetech) containing either wild-type human 4R tau (wild-

type htau) or human 4R tau mutant fused at the C-terminus of a

Green Fluorescent Protein (GFP) tag or with the pRc/CMV

vector containing wild-type human tau fused at the C-terminus of

a Flag tag (kindly provided by Dr. Gloria Lee, University of Iowa,

Iowa, IA). Briefly, for each petri, 8 mg of plasmid DNA was mixed

with 500 ml of Opti-MEM medium (Invitrogen), and 16 ml of

Lipofectamine 2000 was mixed with 500 ml of Opti-MEM

medium. Both mixtures were incubated for 5 min then mixed

and left standing for 20 min. Then, 1 ml of the mixture was added

to each petri. After an incubation of 4 hrs at 37uC, culture

medium was replaced by 6 ml of fresh medium. The GFP-4Rtau

construct was kindly provided by Dr. Ken Kosik (University of

California, Santa Barbara, CA, USA; Lu and Kosik 2001), human

4R tau mutants, A12 and E12, containing 12 phosphorylation sites

(S199, S202, T205, S214, T231, S235, S262, S356, S396, S400,

S404 and S409) mutated in alanine and glutamate respectively,

were modified from the GFP-4Rtau construct in our laboratory

and tauD413–441 and tauD422–441 were generated from GFP-

4Rtau construct by Mutagenex (Piscataway, NJ, USA). Two days

after transfection or as mentioned in the text, culture medium was

harvested and cells were lysed for immunoblotting.

Preparation of Cell Lysate and Culture Medium
Containing Tau

Two days after transfection, the culture medium was collected

and centrifuged at 3000 RPM for 10 min at room temperature to

remove cell debris. After the culture medium was collected, the

cells were immediately washed twice with phosphate buffered

saline (PBS) and once with PBS containing 0.5 M NaCl to detach

proteins non-specifically attached at the cell surface [31]. The cells

were then lysed in 6 ml of fresh culture medium supplemented

with 0.1% Triton X-100 and protease inhibitor cocktail 1X

(Complete EDTA-free from Roche Diagnostics, Indianapolis, IN,

USA) and then incubated on ice for 10 min. The cell lysate was

vortexed and then centrifugated at 3000 RPM for 10 min at room

temperature.

Isolation of Microvesicles/exosomes
Two days after transfection, the culture medium was collected.

The isolation of microvesicles/exosomes was performed using

differential centrifugation as described by Thery et al. [32]. Briefly,

the culture medium was centrifuged at 300xg for 10 min, then at

2000xg for 10 min and at 10,000xg for 30 min at 4uC to remove

cell debris. The microvesicles/exosomes were isolated by a

centrifugation at 100,000xg for 120 min at 4uC. Microvesicles/

exosomes were washed in PBS and centrifuged again at 100,000xg

for 60 min at 4uC. The presence of tau in the pellet containing the

microvesicles/exosomes was analyzed by western blotting.

Immunoprecipitation
To analyze the phosphorylation pattern of secreted tau, tau

was immunoprecipitated from the culture medium and the cell

lysate. Magnetic beads coupled with anti-mouse antibodies

(DYNAL Biotech, DynabeadsH M-280 Sheep anti-Mouse IgG)

were washed in PBS and incubated O/N at 4uC with the

following antibodies: 0.3 mg Tau-1, 0.1 mg HT7 and 6 ml CP13

(kindly provided by Dr. Peter Davies, Albert Einstein University,

Bronx, NY, USA). The beads were then washed and incubated

for 2 hrs at 4uC with 1.5 ml of the culture medium or the cell

lysate. The complex bead-antibody-antigen was then washed,

resuspended in 80 ml of sample buffer 1X and boiled for 5 min.

Then, 40 ml of the samples were loaded per well and separated

on 7.5% polyacrylamide gel. Immunoblotting was performed as

described below.

Immunoblotting
Equal amount of the culture medium and the cell lysate (20

or 40 ml) were loaded in each lane and electrophoresed on a

7.5% polyacrylamide gel. Following separation, proteins were

electrophoretically transferred to a nitrocellulose membrane.
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The nitrocellulose stripes were incubated with the primary

antibodies O/N at 4uC. They were then washed with Tris-

buffered saline with 0.2% Tween-20 (Sigma) and incubated with

the peroxidase-conjugated secondary antibodies (Jackson Im-

munoresearch Laboratories, Missisauga, ON, Canada). Mem-

branes were again washed and revealed by chemiluminescence

(Amersham Pharmacia Biotech, Quebec, Quebec, Canada).

Many tau antibodies were used to visualize either the

phosphorylation state or different epitopes of the protein (see

Table 1). We also used a mouse monoclonal anti-tubulin

(1:2000) (clone DM1A from Sigma) to assess the cell death and

a mouse monoclonal anti-GFP antibody (mix of clones 7.1 and

13.1) (1:5000) (Roche Diagnostics).

Treatment with Brefeldin A, Caspase-3 Inhibitor and Low
Temperature Assays

Two days after transfection, the culture medium was changed

for fresh medium and the cells were treated for 4:30 hrs with

brefeldin A (BFA) (Sigma) at a concentration of 5 mg/ml, diluted

in 0.05% of dimethyl sulfoxide (DMSO) (Sigma). Control cells

were treated with 0.05% DMSO. Cells were also treated with the

caspase-3 inhibitor Z-DEVD-FMK (TOCRIS, Minneapolis, MN,

USA). Twenty-four hrs after transfection, the culture medium was

changed for fresh medium and the cells were treated with 20 mM

of the caspase-3 inhibitor or 20 mM of DMSO for 24 hrs.

Alternatively, cells were subjected to changes in temperature.

To do so, cells were plated in 25 cm2 flasks instead of 60-mm

petri dishes. The transfection was performed as described above.

Two days after transfection, culture medium was changed for

fresh medium and the cells were incubated at 18 or 4uC for

6 hrs. Control cells were incubated at 37uC. The cell lysate and

the culture medium containing tau were prepared as described

above.

Quantification of Cell Death
Cell death was assessed by the measurement of the LDH activity

in the culture medium and the cell lysate using the LDH

cytotoxicity assay kit from Cayman Chemical Company (Ann

Arbor, MI, USA), according to the manufacturer’s instructions.

The cell death percentage was evaluated by the LDH activity in

the culture medium (M) and the cell lysate (L) using the following

formula: LDH Activity in M/total LDH Activity (Activity in M +
L). Triplicates were performed for each sample. The LDH content

in the samples was measured with a BIO-TEK Elx800 plate

reader. The percentages of cell death are presented as the mean 6

standard error of the mean (SEM).

Cell death was also evaluated by trypan blue exclusion

method. Briefly, Hela cells were cultured on glass coverslip.

Two days after transfection, cells were washed twice with PBS

and then incubated in 0.2% trypan blue (Sigma) diluted in PBS

for 4 min at room temperature (RT). Cells were then washed

once with PBS and fixed in 4% paraformaldehyde in PBS for

5 min at 4uC and 10 min at RT. Cultures were kept in PBS

until they were observed by light microscopy. The number of

blue cells (dead cells) and total cells were counted on ten

different fields and the cell death percentage was evaluated by

the ratio of blue cells on total cells.

Table 1. List of tau antibodies.

Antibody Type Epitope WB dilution Source

HT7 Mouse monoclonal between a.a. 159–163 1:500 Pierce Biotechnology, Rockford, IL, USA

K9JA Rabbit polyclonal a.a. 243–441 1:20 000 DakoCytomation, Glostrup, Denmark

Tau1 Mouse monoclonal dephosphorylated a.a. 195, 198, 199 and 202 n/a Millipore, Billerica, MA, USA

Tau12 Mouse monoclonal Between a.a. 9–18 1:5000–1:20 000 Abcam, Cambridge, MA, USA

Tau46 Mouse monoclonal a.a. 428–441 1:500 Abcam, Cambridge, MA, USA

AT270 Mouse monoclonal pT181 1:100 Pierce Biotechnology, Rockford, IL, USA

Phospho-S199 Rabbit polyclonal pS199 1:1000 Biosource-Invitrogen, Burlington, ON,
Canada

CP13 Mouse monoclonal pS202 1:50 Kindly provided by Dr. Peter Davies, Albert
Einstein College of Medicine, NY, USA

Phospho-T205 Rabbit polyclonal pT205 1:500 Biosource-Invitrogen, Burlington, ON,
Canada

Phospho-T212 Rabbit polyclonal pT212 1:1000 Biosource-Invitrogen, Burlington, ON,
Canada

Phospho-S214 Rabbit polyclonal pS214 1:100 Biosource-Invitrogen, Burlington, ON,
Canada

Phospho-T217 Rabbit polyclonal pT217 1:1000 Biosource-Invitrogen, Burlington, ON,
Canada

Phospho-S262 Rabbit polyclonal pS262 1:1000 Signalway antibody, Pearland, TX, USA

Phospho-S409 Rabbit polyclonal pS409 1:100 Biosource-Invitrogen, Burlington, ON,
Canada

Phospho-S422 Rabbit polyclonal pS422 1:1000 Biosource-Invitrogen, Burlington, ON,
Canada

AT180 Mouse monoclonal pT231/pS235 1:100 Pierce Biotechnology, Rockford, IL, USA

PHF-1 Mouse monoclonal pS396/pS404 1:100 Kindly provided by Dr. Peter Davies, Albert
Einstein College of Medicine, NY, USA

doi:10.1371/journal.pone.0036873.t001
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Quantification of the Signal Detected with Tau
Antibodies by Densitometry

Films were scanned with an EPSON PERFECTION 1240U

scanner and transparency module EPSON EU-33, using Adobe

Photoshop version 7.0 software. Image J software version 1.38X

from the National Institute of Health was used to quantify the

intensity of the band obtained with the different antibodies in the

culture medium and the cell lysate prepared from Hela cells

overexpressing either wild-type tau or mutated tau. To compare

the secretion levels of wild-type tau with that of tau mutants, A12,

E12, tauD413–441 and tauD422–441, the immunoblots were

stained with the anti-tau antibody Tau12 that recognizes

phosphorylated and non-phosphorylated tau and then the

intensity of bands was measured by densitometry to calculate the

ratio of the signal in the culture medium and the cell lysate. To

compare the secretion levels of wild-type tau with or without the

caspase-3 inhibitor, the immunoblots were stained with the anti-

tau antibody Tau12 and then the intensity of bands was measured

by densitometry to calculate the ratio of the signal in the culture

medium and the cell lysate.

Statistical Analysis
Statistical significance was evaluated with a one-way analysis of

variance (ANOVA) followed by Dunnett multiple comparisons test

against tau mutant E12 for the set of experiments on the effects of

phosphorylation on tau secretion and against wild-type tau for the

set of experiments on the effects of the C-terminal cleavage on tau

secretion. The effect of caspase-3 inhibition on tau secretion was

analyzed by a Paired t test. The statistical analysis was performed

using the GraphPad InStat 3 software and p,0.05 was considered

significant.

Results

Human Tau is Secreted by Hela Cells
Human tau fused to the GFP tag (GFP-tau) was overexpressed

in Hela cells. In the cell lysate at 48 hrs after transfection, a tau-

postive band revealed by the anti-tau antibody Tau12 was found

just above 75 kDa as expected when tau is fused to GFP

(Figure 1A). A Tau12- positive band at 75 kDa as well as lower

molecular weight bands between 37 and 50 kDa and 25 and

37 kDa were consistently observed but at a significantly lower

intensity than the band of full-length tau indicating that

overexpressed human tau was cleaved in Hela cells. A similar

pattern of tau-positive bands was observed with the anti-tau

antibody, HT7, and a polyclonal anti-tau antibody (poly anti-

tau). No tau-positive band was detected with the anti-tau

antibodies Tau12 and HT7 but three non-specific bands were

detected with the polyclonal anti-tau antibody when cell lysates

were prepared from Hela cells transfected with the empty GFP

vector (Figure 1A). Surprisingly, the tau-positive band found at

75 kDa in the cell lysate was also present in the culture medium

and became more abundant with time as noted at 24, 41 and

51 hrs after transfection (Figure 1B). However, full-length tau

was consistently absent from the culture medium. Tau-positive

bands were also noted between 37 and 50 kDa and 25 and

37 kDa in the culture medium as observed in the cell lysate. The

fact that tau-positive bands detected in the medium were also

noted in the cell lysate could indicate that some extracellular tau

remained attached to the cells after washing them before lysis.

To verify this possibility, cells were washed with PBS containing

0.5 M NaCl, a solution used to remove non-specific binding of

proteins at the surface of cultured cells [31]. Under this washing

condition, the tau-positive band at 75 kDa was still present in the

cell lysate indicating that it could correspond to an intracellular

pool of cleaved tau.

We next examined whether tau found in the medium was

released by Hela cells either through cell death or secretion. To

demonstrate that the presence of tau in the culture medium was

not caused by membrane leakage from dying cells but rather by

an active process of secretion, three approaches were used. First,

the presence of a cytosolic protein such as tubulin in the culture

medium from control and cells overexpressing tau was analyzed

(Figure 2A). No tubulin was noted in the culture medium before

and after overexpression of human tau consistent with the fact

that no cell lysis was induced by the overexpression of human

Figure 1. Overexpressed human tau in Hela cells is found in the
culture medium. (A) In the cell lysate (L) prepared from Hela cells
overexpressing human tau fused to the GFP tag, a tau- positive band
just above 75 kDa and a band at 75 kDa corresponding to full-length
and cleaved tau, respectively, were observed with the anti-tau
antibodies Tau12, HT7 and a polyclonal antibody (arrows). No signal
was detected with the anti-tau antibodies in L prepared from Hela cells
transfected with the empty GFP-vector except for three non-specific
bands detected with the polyclonal anti-tau antibody. Tau-positive
bands migrating between 37 and 50 kDa and 25 and 37 kDa were also
observed with the anti-tau antibodies. (B) The tau-positive band found
at 75 kDa in L was also detected in the culture medium (M) and it
increased with time as noted at 24, 41 and 51 hrs after transfection. No
tau-positive bands were noted in M collected from cells transfected
with the empty GFP vector except one non-specific band at ,50 kDa
detected with the polyclonal anti-tau antibody.
doi:10.1371/journal.pone.0036873.g001
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tau in Hela cells. In the cell lysate of tau transfected cells

prepared in 6 ml of lysis buffer for comparison with the 6 ml of

medium used to maintain Hela cells after transfection, tubulin

staining was detected (Figure 2A). To further confirm that the

presence of tau in the medium was caused by its secretion and

not cell lysis, Hela cells overexpressing tau were partially lysed

for few seconds in a solution of 0.01% Triton X-100 to induce

some damage at the plasma membrane. In this condition,

tubulin and full-length tau were detected in the medium

confirming that full-length tau and tubulin would be found in

the culture medium if Hela cells had been damaged by tau

overexpression (Figure 2A and B). Second, cell death was

evaluated by the trypan blue exclusion method and by the

lactate dehydrogenase (LDH) activity measurement in the

medium (Figure 2C) [33,34]. From the trypan blue staining, it

was possible to conclude that the presence of tau in the medium

was not caused by cell death since an important amount of tau

was found in the medium even when cell death was evaluated

to be less than 1%. The LDH activity in the culture medium

was measured for each set of experiments and allowed us to

determine that the cell death percentage of Hela cells

overexpressing tau varied from 0% to 5% in most experiments.

From the trypan blue staining and LDH activity, no correlation

could be established between the percentage of cell death and

the amount of tau in the medium confirming the secretion of

tau by Hela cells. Third, to demonstrate that tau was secreted

by an active process by Hela cells, the secretion of tau was

examined when the cells were incubated at low temperature, a

condition known to decrease secretion by exocytosis [34,35].

The amount of tau in the medium was significantly reduced at

low temperature although no difference was noted between

18uC and 4uC (Figure 3A). The percentage of cell death was

0.3560.35, 3.261.1 and 2.6461.87 at 37uC, 18uC and 4uC
respectively. To eliminate the possibility that the GFP tag which

can be secreted when misfolded could contribute to tau

secretion, the secretion of human tau fused to a Flag tag was

examined in Hela cells [36]. As noted for GFP-tau, Flag-tau

was found in the medium and its secretion was also impaired at

low temperature (Figure 3B). The percentage of cell death was

0, 3.6760.30 and 3.3260.54 at 37uC, 18uC and 4uC
respectively. For both GFP-tau and Flag-tau, an increase of

cell death was noted at low temperature whereas tau secretion

was decreased showing that the presence of tau in the culture

medium was not imputable to cell lysis.

We next examined whether tau was secreted through the

conventional pathway by treating the cells with brefeldin A (BFA),

a drug known to inhibit this secretory pathway [37]. BFA did not

prevent the secretion of GFP-tau and Flag-tau by Hela cells

indicating that their secretion occurs through a non-conventional

pathway (percentage of cell death: 0% for control and BFA treated

cells)(Figure 3C and D).

In previous studies, it was shown that secreted tau was found in

microvesicles and exosomes [11,30]. We examined whether tau

secreted by Hela cells was included in vesicles. Medium containing

tau was centrifuged to isolate microvesicles/exosomes as described

by Thery et al. [32]. The presence of tau in the supernatant and

pellet was examined by western blotting. The amount of tau

present in the supernatant was similar to that found in the medium

that has not been centrifuged indicating that the major portion of

tau secreted by Hela cells was not included in microvesicles/

exosomes (Figure 3E). However, tau could be detected in the pellet

when it was resuspended in a small volume revealing that a small

pool of secreted tau was found in microvesicles/exosomes (data

not shown).

Human Tau Secreted by Hela Cells is Cleaved at the C-
terminal

Tau secreted in the culture medium was consistently cleaved.

Two observations pointed out that tau was most likely cleaved

before being secreted by Hela cells. First, the tau-positive band at

75 kDa as well as lower tau-positive bands present in the culture

medium were often observed in the cell lysate. Second, when

recombinant human tau protein was added to the culture medium

of control cells for 48 hrs, full-length tau was detectable although

some degradation had occurred (Figure 4A). This indicated that if

full-length tau was secreted by Hela cells, it should not have been

completely degraded in the culture medium after 48 hrs of

transfection.

A panoply of antibodies directed against different regions of

tau were employed to analyze the cleavage pattern of tau in the

culture medium and cell lysate (Table 1). In the cell lysate, all

antibodies tested could detect full-length tau (Figure 4B, C, D

and E). The band found at 75 kDa in both the cell lysate and

culture medium was also detected by all the antibodies tested

except for the antibody Tau46 that recognizes the peptidic

sequence located between L428 and L441 [38]. This indicated

that tau found at 75 kDa was cleaved at the C-terminal as

reported for tau present in the CSF of both humans and tau

transgenic mice and for tau secreted by M1C and NB2a/d1

cells [9,14,27,28,29,30].

The band located at 75 kDa mainly present in the medium was

immunoreactive to the antibody Tau12 directed against an

epitope (9–18 a.a.) located at the N-terminal of tau (Figure 4B).

This band was also detected by an anti-GFP antibody confirming

that no cleavage had occurred at the N-terminal of tau where the

GFP tag was inserted (Figure 4C). The antibody Tau12 could also

detect bands found between 37 and 50 kDa and bands between 25

and 37 kDa revealing that the N-terminal was contained in these

tau truncated forms (Figure 4B).

The antibody K9JA directed against an epitope located in the

microtubule-binding domain (MTBD) of tau revealed the band

found at 75 kDa and bands between 37 and 50 kDa and bands

between 25 and 37 kDa (Figure 4D). At around 37 kDa, a

strong signal was detected with the anti-tau antibody Tau12 and

the anti-GFP antibody whereas a weak signal was noted with

the K9JA antibody indicating that the MBTD could be cleaved

in these tau fragments. Finally, no band lower than 75 kDa was

detected with the antibody Tau46 directed against an epitope

located at the C-terminal. This implies that the lower tau

fragments were generated from cleaved tau found at 75 kDa

lacking the C-terminal in both the cell lysate and culture

medium (Figure 4E).

Distinct Phosphorylation Pattern of Intracellular and
Extracellular Tau

In the cell lysate, full-length tau was phosphorylated at several

sites known to be hyperphosphorylated in Alzheimer brain

including early (T181, AT8 and S262), intermediate (AT100

and AT180) and late sites (PHF-1 and S422) (Figure 5).

Surprisingly, several sites phosphorylated in intracellular tau were

either not phosphorylated or less importantly phosphorylated in

extracellular tau. The phosphorylation of two of the three sites

(S199, S202 and T205) forming the epitope of the antibody AT8,

S202 and T205, was not detectable in the medium although a

strong signal was observed in the cell lysate (Figure 5C and D). A

similar observation was made for the PHF-1 antibody recognizing

tau phosphorylated at S396 and S404 as well as for the antibody

pS422 directed against tau phosphorylated at S422 (Figure 5J and
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L). Extracellular tau was phosphorylated at the sites contained in

the epitope of the antibodies AT100 (T212/S214/T217) and

AT180 (T231/S235) as well as T181, S199, S262 and S409

(Figure 5A, B, E, F, G, H, I and K). For most phospho-tau

antibodies, a band was detected in the medium only after a long

film exposure which resulted in the saturation of the signal

observed in the cell lysate. This indicated that tau found in the

medium was less phosphorylated than intracellular tau. To

confirm this, the amount of total tau in the medium and cell

lysate was examined using the phospho-independent antibody

Tau12. As illustrated in Figure 5, the amount of total tau and

phospho-tau was similar in the cell lysate whereas in the medium,

the amount of total tau was significantly higher than that of

phospho-tau. The above results led us to conclude that extracel-

lular tau was significantly less phosphorylated than intracellular

tau.

Phosphorylation Favors the Secretion of Tau by Hela
Cells

The decreased phosphorylation of tau found at 75 kDa in the

culture medium could indicate that either dephosphorylation

favored the secretion of tau or dephosphorylation of tau occurred

during the process of secretion in Hela cells. To verify whether

dephosphorylation enhanced tau secretion, a tau mutant present-

ing mutations in alanine at 12 sites (A12) known to be

phosphorylated in Hela cells was generated and overexpressed in

these cells. Secreted A12 mutant was cleaved and was not more

secreted than wild-type tau indicating that dephosphorylation

would not be a determinant factor in tau secretion (Figure 6A). To

further investigate how phosphorylation modulated tau secretion

by Hela cells, we produced a mutant where the 12 above sites were

mutated in glutamate (E12) to mimic phosphorylation. Interest-

ingly, this mutant was more secreted than wild-type tau and A12

Figure 2. Overexpressed human tau is secreted by Hela cells. (A) No tubulin was noted in M before and after overexpression of human tau
whereas tubulin staining was detected in the cell lysate (Total lysis) prepared in 6 ml of lysis buffer for comparison with the 6 ml of medium used to
maintain Hela cells after transfection (arrow). In M collected from Hela cells overexpressing tau that were partially lysed (Partial Lysis) for few seconds
in a solution of 0.01% Triton X-100 to induce some damage at the plasma membrane, tubulin staining became detectable (asterisk). (B) Cleaved tau
was detected in M and L (lower arrow) whereas full-length tau was only detected in L (upper arrow in Total lysis). Full-length tau became detectable
in M when Hela cells were partially lysed (Partial lysis) with a solution of 0.01% Triton X-100 (upper arrow). (C) Hela cells overexpressing human tau
were stained with Trypan blue before being fixed to evaluate the percentage of cell death. Blue cells (arrow) corresponded to dead cells that had
taken up Trypan blue.
doi:10.1371/journal.pone.0036873.g002
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Figure 3. Secretion of human tau is reduced at low temperature and is not prevented by BFA treatment. (A) The amount of GFP-tau in
M (lower arrow) was reduced at low temperature (18uC and 4uC) whereas the expression of tau was not affected (upper arrow). (B) Human tau fused
to a Flag tag was also secreted by Hela cells. Secreted Flag-tau was cleaved as noted for GFP-tau (upper and lower arrows). The secretion of Flag-tau
(lower arrow) but not its expression (upper arrow) was also impaired at low temperature. (C and D) The secretion of both GFP-tau and Flag-tau was
not affected by BFA. Control cells (Ctrl) were treated with DMSO, the vehicle of BFA. BFA treatment was tested at least in three sets of experiments. E)
The amount of wild-type tau in M was not decreased after ultracentrifugation to remove microvesicles/exosomes.
doi:10.1371/journal.pone.0036873.g003
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mutant (Figure 6A). E12 secreted by Hela cells was also cleaved as

observed for wild-type tau and A12 mutant. To measure the

secretion of wild-type tau, A12 and E12 mutants, the signal of the

tau-positive band found at 75 kDa in the medium was quantified

by densitometry as well as the signal of the band corresponding to

full-length tau and that at 75 kDa present in the cell lysate. The

secretion of tau was evaluated by calculating the ratio of the signal

obtained with the anti-tau antibody Tau12 in the culture medium

(M) and cell lysate (L) (Ratio M/L). The mean of the ratio M/L

was 0.1660.03, 0.3760.070 and 0.1960.03 for wild-type tau, E12

Figure 4. Secreted tau is cleaved at the C-terminal. (A) Full-length recombinant human tau protein (rTau4R) was still detectable in the culture
medium after being added to control Hela cells for 48 hrs (arrow, M+cells). rTau4R was less degraded when it was added to M without cells (M) (B)
Secreted tau is not cleaved at the N-terminal as revealed by the anti-tau antibody Tau12 directed against the 9–18 a.a. A Tau12-positive band was
detected in both L and M prepared from Hela cells overexpressing GFP-tau4R corresponding to full-length and cleaved tau (upper and lower arrows).
(C) GFP tag inserted at the N-terminal of tau was detected in tau present in both L and M (upper and lower arrows). (D) The microtubule-binding
domain of tau was not cleaved in tau secreted by Hela cells as revealed by the K9JA antibody (lower arrow). (E) The band found at 75 kDa in both L
and M was not detected by the antibody Tau46 that recognizes the peptidic sequence located between L428 and L441. Only full-length tau present
in L was detected with this antibody (arrow). A non-specific band at ,100 kDa was noted with the antibody Tau46 in M. The pattern of each antibody
was analyzed at least in 3 sets of experiments.
doi:10.1371/journal.pone.0036873.g004
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and A12 respectively (Figure 6B). The secretion of E12 was

significantly higher (,2 times) than that of wild-type tau and A12.

The percentage of cell death for wild-type tau, E12, A12 and was

4.961.59, 4.3361.95 and 2.5761.67 respectively. From the

above data, one could conclude that phosphorylation favored

the secretion of tau by Hela cells.

Tau Cleaved at D421 is Preferentially Secreted by Hela
Cells

Tau present in the culture medium was always cleaved. This

could signify that cleaved tau was preferentially targeted to the

secretory pathway. To verify this possibility, tau mutants cleaved

at the C-terminal were overexpressed in Hela cells. In the

previous section (Figure 5), the staining of secreted tau with

different phospho-dependent anti-tau antibodies indicated that

tau could be cleaved between the a.a. S409 and S422. Indeed,

truncated tau present in the medium was immunoreactive to the

antibody pS409 but not to the antibody pS422 indicating that

this latter site may be cleaved. Two mutants cleaved at either

S412 (D413–441) or D421 (D422–441), the cleavage site of

caspase-3, were produced and overexpressed in Hela cells [39].

Forty-eight hrs after transfection, the medium was collected and

cells were lysed to analyze the presence of cleaved tau in the

medium and cell lysate by western blotting. Both cleaved tau

mutants were secreted by Hela cells (Figure 6C). Interestingly,

tauD422–441 was significantly more secreted than wild-type tau

whereas tauD413–441 was secreted at levels similar to wild-type

tau. This was well illustrated by the fact that the tauD422–441

mutant was more abundant in the culture medium than in the

cell lysate, a distribution that was never observed with wild-type

tau. To measure the secretion of wild-type tau, tauD413–441

and tauD422–441, the signal of the tau-positive band found at

75 kDa in the medium and the signal of the band correspond-

ing to full-length tau and that at 75 kDa present in the cell

lysate were quantified by densitometry. The secretion of tau was

evaluated by calculating the ratio of the signal obtained with the

anti-tau antibody Tau12 in the culture medium and cell lysate

(Ratio M/L) as described in the previous section. The mean of

the ratio M/L was 0.3760.08, 0.4460.09 and 0.8260.09 for

wild-type tau, tauD413–441 and tauD422–441 respectively

(Figure 6D). For both tauD413–441 and tauD422–441, it

appeared that they were either not cleaved or only cleaved of

few a.a. at the C-terminal during the process of secretion since

the highest tau-positive band presented a similar molecular

weight in both the cell lysate and culture medium. All together,

these results revealed that cleavage of tau at the C-terminal was

a crucial step for its secretion and that the cleavage site was a

determinant factor regulating the amount of tau that was

secreted by Hela cells.

Since tau is preferentially cleaved at D421 by caspase-3, the

activity of caspase-3 was inhibited by Z-DEVD-FMK in Hela cells

overexpressing wild-type tau [39]. The secretion of tau was

evaluated by calculating the ratio of the signal obtained with the

anti-tau antibody Tau12 in the culture medium and cell lysate

(Ratio M/L) as described above. The mean of the ratio M/L

was.6460.076 and.4260.062 for control and treated cells

Figure 5. Secreted tau is dephosphorylated compared to intracellular tau. (A, B, E, F, G, H, I and K) Secreted tau was phosphorylated at
T181, S199, T212, S214, T217, S262, S409 and at the epitope of the AT180 antibody (T231/S235) but to a lesser extent than intracellular tau. (C, D, J
and L) No signal was detected in M with the phospho-tau antibodies directed against phosphorylated S202 (CP13), T205 (pT205), S422 (pS422) and
the S396/S404 (PHF-1) whereas a strong signal was observed in L with these antibodies. Tau12 antibody was used to reveal total tau in M and L. The
pattern of each antibody was analyzed at least in 3 sets of experiments.
doi:10.1371/journal.pone.0036873.g005
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respectively. The ratio M/L of control cells was significantly

higher than the ratio of cells treated with the caspase-3 inhibitor.

However, the fact that the difference of tau secretion between

control and treated cells was ,20% indicated that only a small

pool of secreted wild-type tau was cleaved by caspase-3. This is

consistent with the fact that wild-type tau was less secreted than

the form of tau truncated at D421.

Discussion

In the present study, we demonstrated that overexpressed

human tau was secreted by Hela cells through an unconventional

secretory pathway. The pool of secreted tau was cleaved at the C-

terminal and was less phosphorylated than intracellular tau. Both

hyperphosphorylation and cleavage at D421 enhanced tau

secretion by Hela cells.

Our results demonstrating that tau was secreted by an

unconventional secretory pathway is consistent with recent studies

reporting that tau was found in exosomes in culture medium from

MC1 cells overexpressing human tau and that secreted tau by

COS-7 and HEK-293 cells was present in microvesicles [11,30]. It

remains to be determined whether tau utilizes other non-

conventional pathways since a portion of tau in the culture

medium of MC1 cells was not associated with exosomes. In the

present study, tau secreted by Hela cells could be immunoprecip-

itated from the culture medium without using any detergent

indicating that it was not included in microvesicles/exosomes.

Consistent with this, no decrease of tau in the medium was

observed after the culture medium was deprived of microvesicles

by ultracentrifugation. All together the above results indicate that

tau is most likely secreted by more than one pathways as shown for

other proteins involved in neurodegenerative diseases such as

Figure 6. Phosphorylation and cleavage at the caspase-3 site enhance tau secretion by Hela cells. (A) Secreted A12 and E12 mutants
were cleaved in M as their migration was faster in M than in L. A12 was secreted in a manner similar to that of wild-type tau whereas E12 was more
secreted than wild-type tau and A12. In both M and L, E12 displayed a decrease in electrophoretic mobility compared to wild-type tau and A12. The
Tau12 antibody was used to reveal tau in L and M. No signal was detected in L prepared from Hela cells transfected with the empty GFP vector (GFP).
(B) Quantification of the secretion ratio M/L of wild-type tau (tau4R), A12 and E12. (C) Two tau mutants cleaved at either S412 (D413–441) or D421
(D422–441), the cleavage site of caspase-3, were secreted by Hela cells. TauD422–441 was significantly more secreted than wild-type tau whereas
tauD413–441 was secreted at similar levels as wild-type tau. No signal was noted with the anti-tau antibody, Tau12, when cells were transfected with
the empty GFP vector (GFP). (D) Quantification of the secretion ratio M/L of wild-type tau (tau4R), tauD413–441 and tauD422–441. The bars represent
the mean of 4 experiments + SEM. p, 0.05.
doi:10.1371/journal.pone.0036873.g006
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SOD1 associated with Amyotrophic lateral sclerosis and the prion

protein [40,41,42,43]. In our previous study, we showed that

hyperphosphorylated tau was preferentially associated with the

rough endoplasmic reticulum (RER) membranes in AD brain and

in the tau transgenic mice JNPL3 [44]. An increase of hyperpho-

sphorylated tau was also noted at the Golgi apparatus in the

JNPL3 mice [44]. RER and Golgi have been showed to be

involved in non-conventional secretory pathways [45]. For

example, COPII vesicles budding from the ER and containing

tau at their surface could directly fuse with the plasma membrane

for secretion [45]. This pathway is also used by the signal-peptide-

containing protein, cystic fibrosis transmembrane conductance

regulator (CFTR) [46]. Another possibility is that tau secretion

could occur through non-COPII-coated vesicles forming at the ER

or vesicles forming at the Golgi having tau attached at their surface

[47]. We reported that Tau was found at the surface of RER

membranes but this does not exclude the possibility that it could

end up on the extracellular surface of the plasma membrane

during the fusion process occurring between tau-containing

vesicles and the plasma membrane.

Our results demonstrated that cleavage of tau at D421 increased

its secretion. The fact that wild-type tau and tauD413–441 were

secreted in a similar way by Hela cells strongly suggests that the

major pool of secreted wild-type tau could be cleaved close to S412

in Hela cells. To further demonstrate this, Hela cells overexpress-

ing wild-type tau were treated with a caspase-3 inhibitor since tau

is preferentially cleaved at D421 by this caspase [39]. When Hela

cells were treated with a caspase-3 inhibitor, a small but significant

decrease of wild-type tau secretion was observed. This could

indicate that as mentioned above, the major pool of wild-type tau

secreted by Hela cells was not cleaved at D421. From our results, it

was not possible to conclude whether tauD413–441 and tauD422–

441 underwent further cleavage during the process of secretion.

The fact that they migrated in a similar way in the cell lysate and

Figure 7. A schematic representation of the vicious cycle leading to the amplification of tau secretion in AD. In AD, tau becomes
hyperphosphorylated (1). This hyperphosphorylation would enhance its secretion by either exosomes/microvesicles or another unconventional
secretory pathway (2). Extracellular hyperphosphorylated tau would be dephosphorylated by TNAP present at the plasma membrane (3) and this
would result in an increase of dephosphorylated tau in the extracellular space (4). Dephosphorylated extracellular tau would activate the muscarinic
receptors (5) and this would induce an increase of intracellular calcium (6), an event linked to the increase of tau hyperphosphorylation (7). This
further increase of hyperphosphorylated tau would initiate a vicious circle that would enhance tau secretion.
doi:10.1371/journal.pone.0036873.g007
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culture medium could signify that if they were cleaved it was only

by a few amino acids. The secretion of tau cleaved mutants

indicates that wild-type tau was most likely cleaved before its

trafficking in the secretory pathway. Based on a recent study

reporting that an increase of caspase activity is an early event in

AD and our results showing the enhanced secretion of tau cleaved

at the caspase-3 site, one can speculate that the secretion of tau

would be enhanced at the initial stage of the disease [48].

Mimicking of hyperphosphorylation significantly enhanced the

secretion of tau by Hela cells. However, tau found in the culture

medium was dephosphorylated compared to the pool of tau that

remained intracellular. This is consistent with a recent study

reporting that released tau in the culture medium upon cell lysis

was dephosphorylated compared to intracellular tau [26]. In this

study, extracellular tau was not phosphorylated at the epitopes

recognized by the phospho-tau antibodies, AT8 and PHF-1

whereas intracellular tau was. Tissue non-specific alkaline

phosphatases (TNAP) present in the plasma membrane were

shown to be responsible for the dephosphorylation of extracellular

tau [26]. Interestingly, TNAP were shown to be increased in AD

brain [26]. All together, the above data indicate that CSF-tau

might be less phosphorylated than intracellular tau. Several studies

have examined the phosphorylation of tau found in the CSF of

patients affected by a tauopathy. T181 and T231 are the sites that

have been extensively used as a diagnostic tool for AD [8].

Although in most studies, the phosphorylation of T231 was shown

to be increased in AD, some studies reported that its phosphor-

ylation was reduced at later stages of the disease [18]. However,

the phosphorylation of other sites such as the epitopes of AT8 and

PHF-1 remains controversial [8]. Our data revealed that these

epitopes are preferentially dephosphorylated in secreted tau. The

AT8 epitope seems to play a central role in the hyperpho-

sphorylation cascade of tau. Indeed, an increase in phosphoryla-

tion of the AT8 epitope is detected at an early stage of AD

[49,50,51]. In our previous study, we reported that the phosphor-

ylation of the AT8 epitope had the most significant effects on the

phosphorylation of other sites in primary hippocampal neurons

[52]. The results of the present study highlight the possibility that

the dephosphorylation of this epitope could be regulated in a

distinct manner.

In a previous study, it was shown that dephosphorylated tau in

the culture medium could act as an agonist of muscarinic M1 and

M3 receptors inducing a robust and sustained increase of

intracellular calcium that triggered cell death in SH-SY5Y cells

[26]. Most importantly, the increase in intracellular calcium

induced by dephosphorylated tau in the culture medium was

associated with an increase of TNAP expression [26]. Based on

these observations and our present data, one could speculate that

tau found in the extracellular space in AD brain would be

dephosphorylated and thereby would contribute to the aberrant

homeostasis of calcium noted in this tauopathy.

From our data and that of other groups, it appears that both

extracellular and intracellular tau could contribute to the process

of neurodegeneration linked to AD. Furthermore, our data

indicate that in AD, hyperphosphorylation of tau would induce

a vicious circle that would result in the amplification of its

secretion (Figure 7). Indeed, our data revealed that hyperpho-

sphorylation of tau would enhance its secretion and this would in

turn increase the amount of dephosphorylated tau in the

extracellular space. Dephosphorylated extracellular tau would

then induce an increase of intracellular calcium, an event linked to

the increase of tau hyperphosphorylation [26]. This increased

hyperphosphorylation of tau would further enhance its secretion

leading to the emergence of a vicious circle that would promote

the propagation of tau pathology in the brain and its accumulation

in the CSF. The accumulation of total and phospho-tau in the

CSF is used as a diagnostic biomarker for tauopathies [8]. Our

data highlight the possibility that the distinct phosphorylation and

cleavage pattern of tau could account for its differential

accumulation in the CSF among the tauopathies. The character-

ization of this pattern for each tauopathy could become a powerful

tool for their early detection and to distinguish them from one

another.
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