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Abstract

Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In
this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus.
Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality.
Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma
virus infection of human pDCs induces IFN-a and TNF production, whereas vaccinia infection does not. Co-infection of pDCs
with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by
incubating the virus at 55uC for 1 h) gains the ability to induce IFN-a and TNF in primary human pDCs. Induction of IFN-a in
pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9
signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we
demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor
MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i)
vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC
infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by
the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-
terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to
poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA
binding domain, which might contribute to the immunostimulating properties of myxoma virus.
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Introduction

Induction of antiviral effectors like type I interferon (IFN) in

a nonpermissive host underlies one mechanism that restricts

poxvirus host tropism [1]. The interactions of poxviruses with the

sentinel cells of the host immune system, particularly with

plasmacytoid dendritic cells (pDCs), are of significance because:

(i) pDCs are potent producers of type I IFN during virus infections

[2]; (ii) through the production of type I IFN, pDCs activate NK

cells, conventional DCs, Bcells, and T cells to augment antiviral

innate and adaptive immunity [3]; and (iii) type I IFN signaling is

crucial for protection of mice against infection by vaccinia virus [4]

or myxoma virus [5].

pDCs can sense virus infections through the recognition of viral

RNA by TLR7 and viral DNA by TLR9. TLR7 and TLR9

localize within endosomes and require endosomal acidification

and maturation to signal through their common adaptor MyD88

[6,7]. Following the engagement of TLR7/TLR9 and MyD88,
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a multi-protein complex is formed, leading to the phosphorylation,

activation, and nuclear translocation of transcription factor IRF7,

which induces type I IFN production [3,8–10]. Type I IFNs bind

to the IFN-a/b receptor and induce antiviral states in many cell

types through the expression and activation of effectors such as

protein kinase R, 29-59 oligoadenylate synthetase, and RNase L

[11].

Poxviruses are large cytoplasmic dsDNA viruses that can

manipulate many of the host immune pathways [12]. Vaccinia,

a prototypal Orthopoxvirus, has been extensively used to vaccinate

against human smallpox. Despite its successes as a vaccine, severe

complications of smallpox vaccination can occur, including

eczema vaccinatum in people with atopic dermatitis and pro-

gressive vaccinia in immunocompromised hosts. Myxoma virus

belongs to the Leporipoxvirus genus and causes lethal myxomatosis

in European rabbits. Myxoma virus infection is rabbit-specific and

the virus is nonpathogenic in mice and humans [13]. We

hypothesize that myxoma virus and vaccinia are sensed differently

and trigger different immune responses in infected innate sentinel

cells, such as pDCs, that might contribute to their recognition by

early immune response pathways, and thus affect their pathogen-

esis and immunogenicity in humans.

How poxviruses are sensed or evade sensing by innate immune

cells such as pDCs is not very well understood. Ectromelia virus,

the causative agent of mousepox, induces IFN-a production in

murine pDCs through a mechanism that at least partly depends on

TLR9, such that mice lacking TLR9 are more susceptible to

ectromelia infection [14]. We recently reported that myxoma virus

infection of murine pDCs induces type I IFN via a signaling

pathway involving TLR9/MyD88, IRF5/IRF7 and IFNAR [15].

Here, we show that myxoma infection of primary human pDCs

induces the production of IFN-a and TNF. Myxoma induction of

IFN-a and TNF can be blocked by chloroquine, which inhibits

endosomal acidification and maturation, and by inhibitors of

cellular protein kinases PI3K and Akt. These results indicate that

myxoma virus infection in human pDCs is sensed through an

endosomal TLR, PI3K/Akt-dependent signaling pathway. We

also show that vaccinia infection of human pDCs strongly inhibits

IFN-a and TNF induction by myxoma virus and by agonists of

TLR7/9.

To explore the mechanisms through which vaccinia might block

its sensing by human pDCs, we tested whether Heat-VAC

stimulates human pDCs. It had been reported previously that

incubating vaccinia at 55uC for 1 h renders the virus capable of

activating human monocyte-derived conventional DCs [16]. We

find that Heat-VAC enters pDCs through its classical entry-fusion

pathway and induces pDCs to produce IFN-a and TNF. Using

purified pDCs from Flt3L-cultured bone marrow-derived dendrit-

ic cells (Flt3L-BMDCs) from various knock-out (KO) mice, we

show that Heat-VAC-induced type I IFN production is dependent

on the endosomal RNA sensor TLR7 and its adaptor MyD88, the

transcription factor IRF7 and IFNAR1 which mediates the type I

IFN positive feedback loop.

Finally, we addressed whether vaccinia E3, a key immunomod-

ulatory protein [17] that binds Z-DNA/RNA via a specific

domain at its N-terminus, and dsRNA via a distinct C-terminal

domain, plays a role in mediating the inhibitory effects. We find

that whereas co-infection with wild-type (WT) vaccinia or

E3LD26C virus (in which the E3 C-terminal dsRNA binding

domain is deleted) significantly attenuated the induction of IFN-

a and TNF by myxoma virus or Heat-VAC, co-infection with

vaccinia mutant DE3L (E3 null) or E3LD83N (in which the E3 N-

terminal Z-DNA/RNA binding domain is deleted) only partially

reduced IFN-a and TNF induction. Our results reveal a new

aspect of the innate immune evasion strategy of vaccinia virus in

human pDCs, with implications for the exploitation of poxviruses

for therapeutic or vaccination purposes.

Results

Myxoma virus infection induces IFN-a and TNF
production in human pDCs
To test whether primary human pDCs respond differently to

vaccinia (an Orthopoxvirus that is potentially pathogenic in humans)

and myxoma virus (a Leporipoxvirus that is non-pathogenic in

humans), we purified pDCs from human peripheral blood

mononuclear cells using anti-BDCA-4 antibody-coated magnetic

beads. The resulting pDC-enriched preparations (CD123+/

BDCA2+ cells) had a purity of 60–80% as assessed by flow

cytometry (data not shown). Treatment of pDCs with either TLR9

agonist CpG or TLR7 agonist imiquimod co-induced the

production and secretion of IFN-a and TNF (Fig. 1A). Infection

of pDCs with myxoma virus also induced the production of

comparable levels of IFN-a and TNF (Fig. 1A). By contrast, pDCs

did not secrete IFN-a or TNF when infected with vaccinia virus

(Fig. 1A).

Vaccinia virus down-regulates cytokine induction by
either CpG or myxoma virus in human pDCs
We hypothesized that vaccinia virus produces inhibitor(s) of

type I IFN and TNF induction in pDCs. To test this idea, purified

pDCs were either: (i) treated with CpG or imiquimod; (ii) infected

with myxoma virus alone; (iii) infected with vaccinia followed by

addition of CpG or imiquimod; or (iv) co-infected with vaccinia

and myxoma virus. Supernatants were collected at 20 h post-

treatment and assayed for IFN-a and TNF production. We found

that vaccinia infection of pDCs completely blocked the induction

of IFN-a in response to myxoma virus, CpG or imiquimod

(Fig. 1B). Vaccinia also inhibited the induction of TNF by

myxoma virus, CpG, and imiquimod, but only by 86%, 75% and

78%, respectively (Fig. 1B). IFN-a production/secretion is

therefore more sensitive to inhibition by vaccinia than is TNF

production/secretion. These results in human pDCs are consistent

with that from highly purified murine pDCs. We found that WT

vaccinia infection had a stronger inhibitory effects on IFN-a/
b than TNF [15]. We suspect that could be due to differences in

the regulatory pathways leading to the induction of TNF and IFN

in pDCs.

Neither myxoma virus nor vaccinia infection of human pDCs

was productive, i.e., cells infected at a multiplicity of 5 supported

no increase in viral titers at 48 h post infection, but virus entry and

early viral gene expression occurred in each case, as judged by the

presence of green fluorescence in human pDCs infected with

recombinant myxoma virus or vaccinia virus expressing green

fluorescent protein (GFP) under the control of the vaccinia

synthetic early/late promoter (Fig. 1C). In GFP-Vaccinia infected

pDCs, 50% of cells were GFP-positive, whereas in GFP-Myxoma

infected pDCs, only 18% of cells were positive for GFP. WT

vaccinia virus was used as a negative control and no GFP signal

was detected as expected. This result is similar to what we

observed with purified murine pDCs [15]. The apparent

difference in infectivity could be due to differences in restricting

the life cycle of vaccinia and myxoma virus by infected pDCs.

Interestingly, co-infection of GFP-Myxoma and WT vaccinia leads

to an increased number of GFP-positive cells (from 18% in GFP-

Myxoma infection alone to 34% in co-infection), which is

consistent with the notion that type I IFN signaling restricts viral

Innate Immune Responses of Human pDCs to Poxvirus
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life cycle [5]. As shown in Fig. 1B, co-infection of myxoma and

vaccinia leads to the attenuation of type I IFN production.

Myxoma virus induction of IFN-a and TNF in human
pDCs is inhibited by chloroquine
pDCs utilize TLR7 and TLR9 to detect viral nucleic acids and

initiate an antiviral response. TLR9 has been implicated in

recognizing viral DNA, as demonstrated for herpes simplex virus

[18-20]. pDCs rely on TLR7 in sensing RNA virus infection

[21,22]. Myxoma virus is sensed by TLR9/MyD88 in murine

pDCs [15], whereas myxoma virus infection induces both type I

IFN and TNF in primary human macrophages by a RIG-I-

dependent sensing mechanism [23]. Here we tested whether

chloroquine, an inhibitor of endosomal acidification and matura-

tion [21], would affect the innate responses of human pDCs to

myxoma virus infection. Treatment of pDCs at 1 h post-

inoculation with 2 mM and 5 mM chloroquine blocked IFN-

aproduction, while reducing TNF production by 57% and 99%,

respectively (Fig. 2A). Induction of IFN-a secretion by TLR9

agonist CpG was also blocked by 2 mM and 5 mM chloroquine,

while CpG-induced TNF production was reduced by 33% and

96%, respectively (Fig. 2A). Imiquimod-induced IFN-a and TNF

Figure 1. Myxoma virus infection induces IFN-a and TNF production in human pDCs. (A) Freshly isolated pDCs (26105) were stimulated
with CpG2216 (10 mg/ml) or imiquimod (5 mg/ml), or infected with vaccinia or myxoma virus at a multiplicity of 10 (MOI = 10). The concentrations of
IFN-a and TNF in the culture supernatants collected at 20 h post treatment were determined by ELISA. The values shown are averages of triplicate
means (6 SEM) of three independent experiments using human pDCs isolated from three different donors. (B) pDCs were infected with vaccinia
followed by addition of CpG2216 (10 mg/ml) or imiquimod (5 mg/ml), or co-infected with vaccinia plus myxoma virus at a MOI of 10 for each virus.
Control cells that were treated with CpG or imiquimod, or infected singly with vaccinia or myxoma virus were included. The concentrations of IFN-
a and TNF in the culture supernatants collected at 20 h post treatment were determined by ELISA. The values shown are averages of triplicate means
(6 SEM) of three independent experiments using human pDCs isolated from three different donors (***, p,0.001). (C) Freshly isolated human pDCs
were infected with WT vaccinia, GFP-expressing vaccinia or myxoma (GFP-Vaccinia or GFP-Myxoma) alone at a MOI of 10, or co-infected with WT
vaccinia plus GFP-Myxoma. GFP expression in infected pDCs (CD123+BDCA2+ cells) was determined by FACS. The experiments were repeated twice.
The results of a representative are shown.
doi:10.1371/journal.pone.0036823.g001
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production was also similarly inhibited in the presence of

chloroquine (data not shown). The greater sensitivity of IFN-

a versus TNF induction to chloroquine inhibition could be related

to the spatial and temporal regulation of IFN-a and TNF in early

and late endosomes, respectively [24]. These data implicate that

endosomal acidification, such as that required for TLR9 signaling,

is important for myxoma virus sensing by human pDCs.

PI3K/Akt-dependent induction of IFN-a and TNF in
human pDCs by myxoma virus
Phosphoinositide 3-kinase (PI3K) has been implicated in diverse

biological processes, including immune regulation [25]. PI3K

catalyzes the conversion of PtdIns(4,5)P2 to PtdIns(3,4,5)P3, an

important second messenger. Recent studies have shown that

PI3K is involved in both positive and negative regulation of TLR

signaling [26]. In human pDCs, PI3K activation is essential for

type I IFN induction by CpG, herpes simplex virus, or influenza

virus [27]. To investigate if PI3K activity is required for the

induction of IFN-a and TNF by myoxma virus, we infected pDCs

for 1 h, then washed the cells and treated them with PI3K

inhibitor LY294002 (LY). We found that treatment of myxoma-

infected pDCs with 10 mM LY resulted in 97% inhibition of IFN-

a secretion (Fig. 2B) and a 75% decrement in TNF production

(Fig. 2B). Similar inhibitory effects were observed with CpG

treated pDCs (Fig. 2B).

Akt (protein kinase B), a serine/threonine kinase and a down-

stream target of PI3K, is a regulator of cell metabolism, survival,

and proliferation [28]. PI3K generates PtdIns(3,4,5)P3, which

recruits inactive Akt in the cytosol to the plasma membrane. The

binding of PtdIns(3,4,5)P3 to the N-terminal pleckstrin homology

(PH) domain of Akt allows phosphorylation of threonine-308 at

the activation loop of the AKT kinase domain by 3-phosphoinosi-

tide-dependent protein kinase-1 (PDK-1). The activity of PDK-1 is

also dependent on the binding of PtdIns(3,4,5)P3. Subsequent

phosphorylation occurs at serine-473 in the hydrophobic regula-

tory domain by the mTORC2 complex, which is required for the

activation of Akt [29]. Guiducci et al. [27] showed that CpG

treatment or infection with influenza virus induces Akt phosphor-

ylation at Ser473 in pDCs. This induction can be inhibited by

PI3K inhibitor LY. We observed that myxoma virus induction of

Akt phosphorylation (p-AKT) at Ser473 occurs at 8 h post

infection, as determined by intracellular staining with anti-p-AKT

antibody against phospho-Ser473 followed by FACS analysis

(Fig. 3A). LY inhibited both CpG- and myxoma-induced Akt

phosphorylation in human pDCs (Fig. 3A).

To test if Akt kinase activity was required for IFN-a and TNF

induction, we used two Akt inhibitors. Akt inhibitor VIII,

a quinoxaline compound, inhibits Akt activity in a PH domain-

Figure 2. Chloroquine and PI3K inhibitor block the induction of IFN-a and TNF in human pDCs by myxoma virus. pDCs (26105) were
stimulated with CpG2216 (10 mg/ml), or infected with myxoma virus (MOI = 10), and were then treated with or without inhibitors including
chloroquine (A), and LY294002 (B) at indicated concentrations. Supernatants were collected at 20 h post treatment and measured for IFN-a and TNF
concentrations by ELISA. The values shown are averages of triplicate means (6 SEM) of three independent experiments using human pDCs isolated
from three different donors (*, p,0.05; **, p,0.01; ***, p,0.001).
doi:10.1371/journal.pone.0036823.g002
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dependent manner. It locks the enzyme in an inactive conforma-

tion through binding to two different functional regions [30]. By

contrast, Akt inhibitor X action is PH domain-independent. A

phenoxazine derivative, Akt inhibitor X inhibits Akt phosphory-

lation and its kinase activity in vitro with minimum effect on PI3K

and PDK-1. The exact mechanism of action of Akt inhibitor X is

currently unknown [31]. To avoid potential effects of Akt

inhibitors on viral entry or uptake of TLR9 agonist CpG, we

infected human pDCs with myxoma virus or treated them with

CpG for 1 h prior to the addition of the inhibitors. We found that

Figure 3. Akt inhibitors VIII and X block the induction of IFN-a and TNF in human pDCs by myxoma virus. (A, B) Human pDCs were
cultured with CpG2216 (10 mg/ml), or infected with myxoma virus (MOI = 10), and were then treated with or without LY294002 (10 mm) or Akt
inhibitor X (10 mm) for 90 min (CpG) or 8 h (Myxoma). Cells were stained with Alexa Fluor 647 anti-human AKT antibody that recognizes phospho-
S473, and analyzed by flow cytometry. The results shown are representative of three separate experiments. (C, D) pDCs (26105)were stimulated with
CpG2216 (10 mg/ml), or infected with myxoma virus (MOI = 10), and were then treated with or without Akt inhibitors VIII (C), or X (D) at indicated
concentrations. Supernatants were collected at 20 h post treatment and measured for IFN-a and TNF concentrations by ELISA. The values shown are
averages of triplicate means (6 SEM) of three independent experiments using human pDCs isolated from three different donors (*, p,0.05; **,
p,0.01; ***, p,0.001).
doi:10.1371/journal.pone.0036823.g003
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Akt inhibitors VIII and X partially attenuated IFN-a and TNF

production by myxoma-infected pDCs in a dose-dependent

manner (Fig. 3C and D). 5 mM Akt inhibitor VIII reduced IFN-

a and TNF secretion by 78% and 77%, respectively (Fig. 3A).

10 mM Akt inhibitor X reduced IFN-a and TNF secretion by 98%

and 65%, respectively. Similar inhibition was observed for CpG-

induced production of IFN-a and TNF (Fig. 3C and D). In

addition, Akt phosphorylation induced by CpG treatment or

myxoma virus infection was inhibited in the presence of Akt

inhibitor X (Fig. 3B). These results indicate that the PI3K/Akt

pathway plays an important role in both the TLR9- and myxoma-

triggered immune responses in human pDCs.

Heat-VAC induces IFN-a and TNF production in human
pDCs
Drillien et al. [16] reported that incubation of vaccinia at 55uC

for 1 h rendered the virus essentially noninfectious but capable of

activating human monocyte-derived dendritic cells, as demon-

strated by upregulation of the co-stimulatory molecule CD86.

Here we tested whether Heat-VAC can induce an innate cytokine

response in human pDCs. Incubation of vaccinia at 55uC for 1 h

decreased infectivity by 1000-fold, as determined by titration of

plaque forming units on permissive BSC40 cell monolayers. We

infected human pDCs with vaccinia at a multiplicity of 10, or with

an equivalent amount of Heat-VAC. Myxoma virus infection and

CpG treatment provided positive controls. We found that whereas

untreated vaccinia failed to activate pDCs, Heat-VAC induced

IFN-a and TNF production to levels similar to those induced by

myxoma virus (Fig. 4A). Heating vaccinia at higher temperatures

(65uC for 1 h or 100uC for 5 min) abolished the induction of IFN-

a and TNF (data not shown). To understand the effects of heat-

inactivation on viral gene expression, we assessed GFP expression

at 6 h post infection using FACS analysis in human pDCs infected

by heat-inactivated (at 55uC for 1 h) recombinant vaccinia

expressing GFP under the vaccinia p7.5 promoter. We found

that GFP expression was significantly reduced with heat-

inactivated GFP-VAC (data not shown). This result indicates that

Heat-VAC fails to produce viral proteins during infection in

pDCs.

Entry of Heat-VAC through the poxvirus fusion complex
is essential for induction of IFN-a in human pDCs
We considered several possibilities to account for the inductive

effects of heat-inactivated vaccinia: (i) heat-treatment liberates an

inducing factor from the virion that triggers IFN-a and TNF

production, whether or not the heated particles are taken up by

the pDCs; (ii) heat-inactivated viral particles are taken up by pDCs

and generate inducing substances intracellularly that are not

normally present during vaccinia infection; or (iii) Heat-VAC

infection produces inducer(s) present during normal infection with

vaccinia, but fail to generate inhibitor(s) of innate immune

signaling in pDCs. We first addressed the issue of virion uptake

by pDCs.

Vaccinia virus enters the host cells through an entry-fusion

complex composed of multiple virus-encoded proteins, including

A28 [32]. To test whether Heat-VAC enters pDCs through this

entry-fusion complex in order to trigger an innate immune

response, we used a temperature-sensitive virus, Cts9. This mutant

has a 2-bp deletion in the A28 gene, resulting in a truncated

protein lacking 14 amino acids at the C-terminus [33]. Mature

virions of Cts9 produced at a permissive temperature (31uC) are
infectious, whereas Cts9 virions produced at a non-permissive

temperature (40uC) bind to cells but fail to enter [33]. In the

experiments shown in Fig. 4C, we infected pDCs with WT or Cts9

viruses that had been grown in BSC40 cells at 31uC or 40uC and

then purified by sedimentation through a sucrose gradient [33].

pDCs were inoculated with equivalent virion aliquots (determined

by A260) corresponding to a multiplicity of 10 for WT vaccinia or

Cts9 grown at permissive temperature, and in parallel with

aliquots of virions that were treated at 55uC for 1 h. We found that

heat-inactivated WT vaccinia grown at either 31uC or 40uC, and
heat-inactivated Cts9 grown at 31uC induced similar levels of IFN-

a and TNF secretion. On the other hand, heat-inactivated Cts9

produced at 40uC failed to induce IFN-a and induced TNF to

only 12% of the level induced by Cts9 produced at 31uC (Fig. 4B).

This result indicates that Heat-VAC enters pDCs through an A28-

dependent fusion mechanism to induce an innate cytokine-

mediated immune response in human pDCs.

Induction of IFN-a and TNF by Heat-VAC is inhibited by
chloroquine, PI3K inhibitor LY294002 and Akt inhibitors
VIII and X
We next asked if Heat-VAC induces an antiviral response in

pDCs via a similar pathway triggered by myxoma virus. We

addressed this issue with the battery of small molecule inhibitors

discussed above. First, we observed that chloroquine reduced IFN-

a and TNF production by pDCs infected with heat-inactivated

vaccinia in a dose-dependent fashion: 25 mM chloroquine

completely blocked the production of IFN-a and reduced TNF

level by 52% (Fig. 5A). By comparison, as little as 2 mM
chloroquine completely blocked IFN-a production and reduced

TNF secretion by 55% in myxoma-infected pDCs (Fig. 2A).

Therefore, the induction of IFN-a and TNF by Heat-VAC is at

least 10-fold less sensitive to chloroquine inhibition than is

induction by myxoma virus infection. 10 mM PI3K inhibitor

LY294002 inhibited IFN-a and TNF production by 93% and

33%, respectively in pDCs infected with Heat-VAC (Fig. 5B).

10 mM Akt inhibitor VIII inhibited IFN-a and TNF production

by 89% and 71%, respectively (Fig. 5C); and 10 mM of Akt X

reduced IFN-a and TNF production by 93% and 64%, re-

spectively (Fig. 5D). These results indicate that Heat-VAC is

sensed by pDCs through a pathway that is similar, but not

identical, to that for detecting myxoma virus.

TLR7 and MyD88 are required for the induction of type I

IFN in murine pDCs by Heat-VAC. We took advantage of the

murine genetic system to determine the mechanism of induction of

type I IFN in pDCs by Heat-VAC. We purified pDCs from Flt3L-

BMDCs from MyD882/2, TLR72/2, TLR92/2 or age-matched

WT control mice by FACS as described [15]. The isolated pDCs

are CD11c+B220+PDCA-1+, with a purity of greater than 98%.

They were treated with CpG, or infected with myxoma virus at

a MOI of 10, or with an equivalent amount of Heat-VAC.

Supernatants were collected at 22 h post infection. The level of

IFN-a/b was determined by ELISA. We found that Heat-VAC-

induced production of IFN-a/b was abolished in MyD882/2 or

TLR72/2 pDCs, but only modestly reduced in TLR92/2 pDCs

(Fig. 6A, B, and C). In contrast, myxoma-induced type I IFN

induction was abolished in MyD882/2, or TLR92/2 pDCs, but

modestly reduced in TLR72/2 pDCs as reported previously (Fig. ,

[15]). As a control, CpG induced type I IFN is abolished in

TLR92/2 or MyD882/2 pDCs, but not affected in TLR72/2

pDCs (Fig. 6). Taken together, these results indicate that Heat-

VAC infection of pDCs leads to the production of RNA species

that are detected by the endosomal RNA sensing pathway

mediated by TLR7/MyD88.

Heat-VAC induction of IFN-a/b requires IRF7 and

IFNAR1. Transcription factor IRF7 is critical for type I IFN

Innate Immune Responses of Human pDCs to Poxvirus
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induction in pDCs and it plays essential role for host antiviral

immunity [34]. We have previously reported that IRF7 is

important for type I IFN induction by myxoma virus in pDCs

[15]. Here we show that Heat-VAC-induced IFN-a/b production

also requires IRF7 (Fig. 7A). Similar to what we observed for

myxoma virus, Heat-VAC induction of type I IFN in pDCs

requires IFNAR1, which mediates the type I IFN positive feedback

loop (Fig. 7B).

The N-terminal domain of E3 contributes to the vaccinia
inhibition of IFN-a and TNF induction in human pDCs
To test whether the failure of untreated vaccinia to induce

a response is due to the production of inhibitors, we performed

a mixing experiment. When human pDCs were co-infected with

live vaccinia plus an equivalent amount of Heat-VAC, the

production of IFN-a was blocked and TNF secretion was reduced

by 98% compared to the level induced by Heat-VAC alone

(Fig. 8B). This result indicates that live vaccinia infection of pDCs

introduces inhibitor(s) of poxvirus sensing pathway(s) in pDCs that

are not generated during infection with Heat-VAC.

To better understand vaccinia inhibition of poxvirus sensing in

pDCs, we focused our attention on the vaccinia E3 protein, a 190-

aa polypeptide composed of two distinct domains: an N-terminal

Z-DNA/RNA binding domain (ZBD) and a C-terminal dsRNA

binding domain (dsRBD), both of which are required for full viral

pathogenesis in mice [17]. E3 antagonizes key signaling pathways

leading to antiviral innate immunity and apoptosis [35–38]. To

test if E3 plays a role in inhibiting poxvirus sensing in pDCs, we

exploited four vaccinia mutants: DE3L, in which the entire E3L

gene is deleted; E3LD83N, in which the N-terminal ZBD is

deleted but the C-terminal dsRBD is still produced; E3LY48A, in

which the tyrosine residue of the E3 ZBD domain was changed to

alanine, resulting in decreased Z-DNA binding affinity and

reduced pathogenicity of the virus in murine intranasal infection

model [39]; and E3LD26C, in which a portion of the C-terminal

dsRBD was deleted thus eliminating dsRNA binding but the N-

terminal ZBD is retained. Infection of human pDCs with each of

the four E3 mutants alone failed to induce IFN-a and TNF

secretion (data not shown).

In the experiments shown in Fig. 8, we either: (i) infected human

pDCs singly with myxoma virus or Heat-VAC; (ii) co-infected with

myxoma virus plus WT vaccinia, DE3L, E3LD83N, E3LY48A, or

E3LD26C; (iii) co-infected with Heat-VAC plus WT vaccinia,

DE3L, E3L83N, E3LY48A, or E3LD26C; (iv) treated with CpG

alone; or (v) infected with WT vaccinia, DE3L, E3LD83N,

E3LY48A or E3LD26C, followed by addition of CpG. Whereas

co-infection with WT vaccinia significantly attenuated the in-

duction of IFN-a and TNF by myxoma virus, Heat-VAC or CpG,

co-infection with DE3L or E3LD83N virus only partially reduced

Figure 4. Heat-inactivated vaccinia infection induces IFN-a and TNF production in human pDCs. (A) Human pDCs (26105) were left
untreated, or treated with CpG, or infected with myxoma virus, live vaccinia, or heat-inactivated vaccinia (55uC, 1 h). Supernatants were collected at
20 h post treatment and measured for IFN-a and TNF concentrations by ELISA. The values shown are averages of triplicate means (6 SEM) of four
independent experiments using human pDCs isolated from four different donors. (B) pDCs were infected as indicated with WT vaccinia grown in
BSC40 cells at 31uC or 40uC (WT 31uC; WT 40uC; MOI = 10), or an equivalent amount of WT vaccinia heated at 55uC for 1 h (Heat-WT 31uC; Heat-WT
40uC), vaccinia mutant Cts9 grown in BSC40 cells at 31uC or 40uC (Cts9 31uC; Cts9 40uC; MOI = 10), or an equivalent amount of Cts9 heated at 55uC for
1 h (Heat-Cts9 31uC; Heat-Cts9 40uC). Supernatants were collected at 20 h post infection and measured for IFN-a and TNF concentrations by ELISA.
The values shown are averages of triplicate means (6 SEM) of three independent experiments using human pDCs isolated from three different
donors.
doi:10.1371/journal.pone.0036823.g004
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IFN-a and TNF secretion (Fig. 8A, B and C). These results

indicate that the N-terminal domain of vaccinia E3 plays an

inhibitory role in poxvirus sensing by human pDCs. It is

noteworthy that the myxoma E3 ortholog (M029) is truncated at

the N-terminus so that it lacks the ZBD and contains only the C-

terminal dsRBD [40]. Co-infection with E3LY48A virus inhibited

the production of IFN-a and TNF by CpG, myxoma virus, or

Heat-VAC in pDCs, to a similar extent as co-infection with WT

vaccinia (Fig. 8A, B and C). The result suggests that the E3 ZBD,

but not necessarily its DNA-binding activity, is needed to achieve

full inhibition. Co-infection with E3LD26C virus blocked the

induction of IFN-a and TNF by CpG, myxoma virus, or Heat-

VAC (Fig. 8A, B and C), indicating that the dsRBD at the C-

terminus of E3 is not required for this inhibition in human pDCs.

Figure 5. Chloroquine, PI3K and Akt inhibitors block the induction of IFN-a and TNF in human pDCs by heat-inactivated vaccinia
virus. Human pDCs (26105) were infected as indicated with heat-inactivated vaccinia for 1 h. Cells were washed and incubated in fresh medium in
the presence or absence of increasing concentrations of chloroquine (A), LY294002 (B), Akt inhibitor VIII (C), or Akt inhibitor X (D). Supernatants were
collected at 20 h post treatment and assayed for IFN-a and TNF concentrations. The values shown are averages of triplicate means (6 SEM) of three
independent experiments using human pDCs isolated from three different donors (*, p,0.05; **, p,0.01; ***, p,0.001).
doi:10.1371/journal.pone.0036823.g005
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We have performed similar co-infection experiments in murine

pDCs [15]. In murine pDCs, co-infection with E3LD83N (but not

DE3L) caused dramatic inhibition of IFN-a but less inhibition of

IFN-b in response to CpG or myxoma. However, in human pDCs,

co-infection with E3LD83N or DE3L exerted similarly reduced

inhibitory effect on IFN-a induction in response to CpG

treatment, myxoma or Heat-VAC infection. This discrepancy

might be due to the intrinsic differences between primary freshly

isolated human pDCs from PBMC and purified Flt3L-cultured

murine pDCs.

Discussion

Poxvirus host tropism is linked to the ability of the host to mount

an early and vigorous innate immune response, including the

induction of antiviral effectors TNF and type I IFN that can

restrict the replication of poxviruses like myxoma virus in

a nonpermissive host [1,5,23]. Accordingly, successful virus

infection and dissemination in a permissive host would rely on

either a compromised viral sensing mechanism or a viral strategy

to antagonize the host’s innate responses. pDCs are potent

producers of type I IFN and other early response cytokines like

TNF, and play an important role in mediating the antiviral

immune responses. The present study shows that human pDCs

respond differently to infections by a potentially pathogenic

poxvirus (vaccinia) compared to a non-pathogenic poxvirus

(myxoma). We report that myxoma virus infection of human

pDCs induced IFN-a and TNF production, whereas live vaccinia

did not. It has been reported that myxoma virus infection also

induces type I IFN and TNF in primary human macrophages

[23]. Strikingly, WT vaccinia infection blocks type I IFN/TNF

induction in response to myxoma, TLR9 agonist CpG, or TLR7

agonist imiquimod. Heat-VAC, however, gained an ability to

induce IFN-a and TNF secretion by pDCs, underscoring the

conclusion that untreated live vaccinia introduces inhibitor(s) of

poxvirus sensing in human pDCs. Furthermore, genetic studies

revealed that Heat-VAC-induced type I IFN induction requires

TLR7/MyD88, IRF7 and IFNAR1 in murine pDCs, implying

Figure 6. TLR7 and MyD88 are required for the induction of type I IFN by Heat-VAC in murine pDCs. Purified murine pDCs were
obtained using FACS from Flt3L-BMDCs generated from MyD882/2 (A), TLR72/2 (B), TLR92/2 (C) mice and age-matched WT controls. pDCs (26105)
were stimulated with CpG, or infected with myxoma virus at a MOI of 10, or with an equivalent amount of Heat-VAC. Supernatants were collected at
22 h post infection. The concentrations of IFN-a/b were determined by ELISA. Data are means 6 SEM. The combined results of three independently
performed experiments are shown
doi:10.1371/journal.pone.0036823.g006

Figure 7. Heat-VAC induced production of type I IFN is
dependent on IRF7 and IFNAR1. Purified murine pDCs were
obtained using FACS from Flt3L-BMDCs generated from IRF72/2 (A),
IFNAR12/2 (B) mice and age-matched WT controls. pDCs (26105) were
stimulated with CpG, or infected with myxoma virus at a MOI of 10, or
with an equivalent amount of Heat-VAC. Supernatants were collected at
22 h post infection. The concentrations of IFN-a/b were determined by
ELISA. Data are means 6 SEM. The combined results of three
independently performed experiments are shown.
doi:10.1371/journal.pone.0036823.g007
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that Heat-VAC infection produces novel RNA species detected by

the endosomal RNA sensor TLR7.

Human pDCs express a variety of innate immune sensors,

including TLR7 and TLR9. TLR7 is required for the recognition

of ssRNA viruses, such as vesicular stomatitis virus and influenza

virus [21,41]. TLR9 is required for detecting herpes simplex,

a dsDNA virus [18,19]. TLR7 and TLR9 play overlapping roles in

immunity to herpes virus infection in vivo [42]. We observed that

chloroquine, which blocks endosomal acidification, inhibits IFN-

a and TNF induction by myxoma virus or Heat-VAC, which is

consistent with our findings that type I IFN induction in murine

pDCs by myxoma virus or Heat-VAC is dependent on TLR9/

MyD88 or TLR7/MyD88, respectively [15]. A similar genetic

analysis is not feasible in human pDCs, because MyD88-deficient

human pDCs are not available and transient knockdowns are

difficult to achieve in primary pDCs. We suspect that poxvirus

nucleic acids, either RNA or DNA, might be sensed by an

endosome-localized pathway component. Lee et al. [43] reported

that ssRNA virus infection triggers type I IFN production in pDCs

via TLR7, which requires the transport of cytosolic viral

replication intermediates into the endosome/lysome compartment

through autophagy [43]. It is possible that myxoma virus and

Heat-VAC can also trigger autophagy upon entry into pDCs,

which would make poxvirus nucleic acids more accessible to

TLR7 and/or TLR9.

Harper et al. [44] examined the effects of heat-treatment (55uC
for 1 h) on vaccinia virion transcription. They found that (i)

vaccinia capping enzyme, which is also required for transcription

termination, was more sensitive to heat-inactivation than RNA

polymerase; (ii) RNA transcripts made by the heat-treated virion

cores were longer, suggesting a defect in transcription termination.

It is likely that Heat-VAC infection of pDCs produces long,

uncapped and partially double-stranded viral RNA transcripts that

are sensed by the endosomal RNA sensor TLR7, which utilizes its

adaptor MyD88 to activate transcription factor IRF7, resulting in

the induction of type I IFN. Such uncapped, partially double-

stranded, aberrant RNA transcripts are unlikely to be translated as

evidenced by the lack of GFP signal in pDCs infected with Heat-

VAC. We have observed that infection of murine primary

keratinocytes (KCs) with Heat-VAC induced the production of

IFN-b and CCL5 that is dependent on the cytosolic dsRNA

sensing pathway mediated by MDA5/MAVS and transcription

factor IRF3 (Dai and Deng, unpublished), supporting the viral

RNA transcripts might be partially double-stranded.

Using PI3K inhibitor LY294002 and two Akt inhibitors, we also

show that PI3K/Akt activation is important for IFN-a and TNF

induction in human pDCs by CpG, myxoma virus, and Heat-

VAC. This result is consistent with a recent report that PI3K is

required for type I IFN production by pDCs in response to TLR

stimulation by CpG [27]. Their study did not test whether Akt

kinase activity was required, however. We hypothesize that viral

RNA or DNA binding by endosomal TLRs leads to activation of

PI3K, which subsequently activates Akt through PIP3. How Akt

activation leads to IFN-a production is still unclear. It was

reported recently that mTOR (a downstream target of Akt) is also

involved in the induction of type I IFN by TLR ligands in pDCs

[45].

Poxviruses employ multiple mechanisms to evade the host

antiviral immune systems, including antagonizing the actions of

IFN [12]; however, these inhibitory mechanisms can be species-

specific, depending on the poxvirus-host pairing. For example,

vaccinia produces soluble secreted IFN-binding proteins that

Figure 8. N-terminal domain of vaccinia E3L mediates partial inhibition of IFN-a and TNF induction by myxoma virus and heat-
inactivated vaccinia virus in human pDCs. (A) Human pDCs (26105) were infected with myxoma virus alone, or co-infected with myxoma virus
plus WT vaccinia, DE3L, E3LD83N, E3LY48A or E3LD26C. (B) pDCs were infected with Heat-VAC alone, or co-infected with Heat-VAC plus WT vaccinia,
DE3L, E3LD83N, E3LY48A or E3LD26C; (C) pDCs were treated with CpG alone, or infected with WT vaccinia, DE3L, E3LD83N, E3LY48A or E3LD26C
followed by addition of CpG. Supernatants were collected at 20 h post treatment. The IFN-a and TNF concentration values shown are averages of
triplicate means (6 SEM) of three independent experiments using human pDCs isolated from three different donors (*, p,0.05; **, p,0.01; ***,
p,0.001).
doi:10.1371/journal.pone.0036823.g008
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prevent type I IFNs from engaging their receptors on target cells

[46]. Vaccinia E3 blocks multiple intracellular pathways to

attenuate IFN production by immune cells and its effect on target

cells [35,37,38,47]. The myxoma M029 protein, a truncated

ortholog of E3, possesses the C-terminal dsRBD but lacks the N-

terminal ZBD [40,48]. We observed that the induction of IFN-

a and TNF by myxoma virus or Heat-VAC is inhibited by co-

infection with untreated WT vaccinia, but only partially attenu-

ated when E3 is absent, or only the E3 dsRBD is produced, thus

implicating the N-terminal ZBD of E3 in masking poxvirus

infection from sensing by human pDCs.

This cellular response scenario in primary pDCs is different

from what we observed in primary keratinocytes. Infection with

DE3L, but not WT vaccinia or E3LD83N, induced a vigorous

antiviral innate immune response in murine keratinocytes via

MAVS (mitochondrial antiviral signaling protein, an adaptor for

cytosolic RNA sensors RIG-I and MDA-5) and transcription

factor IRF3 [37]. These results indicated that murine keratinocytes

sense dsRNAs produced during DE3L virus infection via a MAVS/

IRF3-dependent signaling pathway that is normally inhibited by

the E3 C-terminal dsRBD.

By contrast, this E3 C-terminal dsRBD does not suffice to

inhibit poxvirus sensing in human pDCs, whereas the E3 N-

terminal ZBD is required. Similar ZBD domains are present in

various cellular members of the Za family of Z-DNA and Z-RNA

binding proteins [49], including dsRNA adenosine deaminase

(ADAR1) and mammalian ZBP1, recently re-identified as

a cytosolic DNA sensor called DNA-dependent activator of IFN-

regulatory factor (DAI) [50]. Both ADAR1 and ZBP1/DAI are

interferon-inducible. The crystal structures of the Za domains of

ADAR1, ZBP1/DAI, and Yatapox E3 bound to Z-DNA or Z-

RNA revealed similar folds and Z-nucleic acid-binding modes

[51–53]. Indeed, mutant vaccinia viruses in which the E3 ZBD

was swapped for the Za domains of ADAR1 or ZBP1/DAI were

as pathogenic as wild-type vaccinia, indicating that the cellular and

poxvirus ZBDs are functionally interchangeable [39]. We propose

that the N-terminal ZBD domain of E3 might interfere with

endosomal TLR sensing of viral nucleic acids possibly through

interactions with components of that pathway or through in-

hibition of the induction of autophagy that allows the transport of

viral nucleic acids to the endosomes.

We observed that infection of pDCs with DE3L vaccinia virus

fails to induce IFN-a and TNF secretion, however, implying that

additional inhibitors are produced by the DE3L vaccinia virus in

human pDCs. For example, vaccinia A46 is a Toll/interleukin-1

receptor (TIR) domain-containing protein that modulates host

immune responses. Over-expression of A46 partially blocks IL-1

induced NF-kB activation [54]. A46 interacts with MyD88 and

blocks MyD88 signaling [55]. Vaccinia A52 interacts with

interleukin-1 receptor-associated kinase 2 (IRAK2) and TNF

receptor-associated factor 6 (TRAF6) [56]. Over-expression of

A52 inhibits NF-kB activation by IL-1, IL-18, TLR3 and TLR4

[54,56]. We observed that infection with DA46R, DA52R or

DA46R DA52R alone did not induce the production of IFN-a or

TNF (data not shown). Co-infection with these deletion mutants

blocked IFN-a or TNF induction in pDCs infected with Heat-

VAC to the same extent as co-infection with WT vaccinia (data

not shown). We conclude that neither A46 nor A52 is involved in

masking the innate cytokine response of human pDCs to vaccinia

infection. Other potential inhibitors include vaccinia K7, N1, and

B14. Vaccinia K7 is a viral immune modulator that has significant

homology to A52 [57]. K7 inhibits TLR-mediated NF-kB
activation via its interactions with IRAK2 and TRAF6. In

addition, it blocks IRF3 and IRF7 activation and IFN-b promoter

induction through targeting DEAD box protein 3 (DDX3), an

RNA helicase [57,58]. Vaccinia N1 is another intracellular

immunomodulatory protein. N1 inhibits apoptosis, NF-kB and

IRF3 activation [59,60]. Deletion of N1L gene from vaccinia or

N1L ortholog from ectromelia virus causes attenuation of the virus

[61,62]. Vaccinia B14 is another virulence factor that targets NF-

kB activation through targeting IKKb [63,64]. Interestingly,

recent structural studies have shown that A52, K7, N1 and B14

have Bcl-2-like folds that might underscore their biological

functions [60,65,66].

In summary, we report a striking difference between myxoma

virus and vaccinia in their induction of type I IFN and TNF

responses in virus-infected human pDCs, which is likely pertinent

to their permissive and restrictive behavior in human hosts. This

distinction between the two viruses merits consideration in

ongoing efforts to optimize myxoma virus and vaccinia as

oncolytic agents for the treatment of human cancer [67,68]. The

novel finding that non-replicating Heat-VAC or live myxoma

virus are both potent inducers of an innate immune response in

human pDCs has implications for their potential use as immune

adjuvants as part of vaccination strategies.

Materials and Methods

Viruses and cell lines
The WR strain of vaccinia virus was propagated in BSC40 cells

(African green monkey kidney cells). Virus titers were determined

on BSC40 monolayers. BSC40 cells were grown in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 5% fetal

bovine serum (FBS). The DE3L, E3LD83N, E3LY48A and

E3LD26C viruses were kindly provided by B. L. Jacobs (Arizona

State University). DE3L and E3LD26C viruses were propagated in

BHK-21 cells, and virus titers were determined on RK13 cells.

E3LD83N and E3LY48A viruses were propagated and tittered on

BSC40 cells. The mutation status of E3LY48A was verified by

direct sequencing of PCR fragment amplified from E3LY48A

infected cells. Vaccinia temperature sensitive (ts) mutant Cts9 was

grown in BSC40 cells at either 31uC (permissive temperature) or

40uC (non-permissive temperature). Recombinant myxoma virus

(Lausanne strain) with a cassette expressing green fluorescent

protein (GFP) under the control of a vaccinia synthetic early/late

promoter inserted between myxoma genes M135R and M136R

was propagated and titred in RK13 cells. Recombinant vaccinia

virus expressing a nucleus-localized enhanced GFP reported under

the vaccinia p7.5 promoter was a gift of Jonathan Yewdell as

described before [35]. RK13 cells were cultured in DMEM

containing 10% FBS, 0.1 mM nonessential amino acids and

50 mg/ml gentamycin. Heat-inactivation of vaccinia virus was

performed by incubating the virus suspensions at concentrations of

5–206108 particles of virus (PFU) per ml at 55uC for 1 h with

shaking the suspensions at a 15-min interval [44].

Reagents
The commercial sources for reagents were as follows: CpG

oligodeoxynucleotide ODN2216 (CpG2216) and imiquimod

(Invivogen); chloroquine and PI3K inhibitor LY294002 (Sigma-

Aldrich); Akt inhibitors VIII and X (Calbiochem); human IFN-

a and murine IFN-a/b enzyme-linked immunosorbent assay

(ELISA) kits (PBL Biomedical Laboratories); TNF ELISA kit

(R&D Systems); anti-BDCA-4 conjugated magnetic beads, anti-

BDCA-2 PE and anti-CD123 APC (Miltenyi Biotec); Flt3L, R &

D systems; anti-CD11c-APC and anti-B220-APC-Cy7 antibodies,

BD Pharmingen; anti-mPDCA-1-PE antibody, Miltenyi Biotec.
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Cell preparation and isolation of human pDCs
Healthy donors provided peripheral blood after signing in-

formed consent for research specimen collection using protocols

approved by the Institutional Review and Privacy Board of

Memorial Hospital, Memorial Sloan-Kettering Cancer Center.

Buffy coats were also purchased from the Greater New York Blood

Center (New York, NY) as an additional source of cells from

healthy donors. Peripheral blood mononuclear cells (PBMCs) were

separated from granulocytes, erythrocytes and platelets by density

gradient centrifugation over Ficoll-Paque PLUS (endotoxin-free;

Amersham Pharmacia Biotech). pDCs were isolated by adsorption

to anti-BDCA-4 conjugated magnetic beads according to the

manufacturer’s instructions. The resulting pDC-enriched prepara-

tions had a purity of 60–80% as assessed by flow cytometry,

whereby pDCs were CD123+ and BDCA2+. The viability of

enriched pDCs was $95% as determined by trypan blue

exclusion. The pDCs were adjusted to 16106 cells/ml in complete

RPMI-1640 with 10 mM HEPES (N-2-hydroxyethylpiperazine-

N’-2-ethanesulfonic acid) and 1% penicillin/streptomycin supple-

mented with 4 mM L-glutamine (Gibco BRL Life Technologies),

55 mM 2-mercaptoethanol (Gibco BRL Life Technologies), and

10% heat-inactivated pooled human serum.

Assays of IFN-a and TNF production by human pDCs
Aliquots (26105 cells/0.2 ml) of freshly isolated pDCs were

dispensed into 96-well round bottom plates. pDCs were stimulated

with CpG2216 (10 mg/ml), or imiquimod (5 mg/ml), or infected

with vaccinia or myxoma virus (MOI= 10) in the presence or

absence of different concentrations of chloroquine, LY294002, Akt

inhibitor VIII or X. The pDCs were then maintained for 20 h at

37uC in a 5% CO2 incubator. Cell-free supernatants were

collected after centrifugation and assayed for IFN-a and TNF by

ELISA. For any given experiment, the infections or treatments

were performed in triplicate using pDCs isolated from blood from

a single human donor. The results shown in the figures are the

average of triplicate means of IFN-a and TNF concentrations (6

SEM) of three or four separate experiments conducted with pDCs

isolated from different human donors.

Flow cytometry
Purified human pDCs were stimulated with CpG for 90 min or

infected with myxoma virus for 8 h, and cells were then fixed with

Fix Buffer I (BD Biosciences) for 15 min at 37uC. Cells were

washed, permeabilized with PermBuffer (BD Biosciences) for

30 min on ice, and stained with Alexa Fluor 647 anti-human

phospho-Akt antibody (pS473; BD Biosciences) for 30 min. Cells

were analyzed on a FACSCalibur flow cytometer (BD Bios-

ciences). Data were analyzed with FlowJo software (Tree Star).

Mice
Female C57B/6 mice between 6 and 10 weeks of age were

purchased from the Jackson Laboratory. The mice were main-

tained in the animal facility at the Sloan-Kettering Cancer

Institute. All procedures were performed according to the

guidelines of the Institutional Animal Care and Use Committee.

TLR72/2, TLR92/2, MyD882/2 and IRF72/2 mice were

generated in the laboratories of Shizuro Akira (Osaka University)

and Tadatsugu Taniguchi (University of Tokyo). IFNAR1-/- mice

were provided by Eric Pamer (Sloan-Kettering Cancer Institute);

the mice were purchased from B & K Universal and were

backcrossed with C57B/6 for more than five generations.

Generation and purification of Flt3L-cultured bone
marrow-derived murine plasmacytoid dendritic cells
The bone marrow cells were collected from the tibia and femurs

of mice as described [15]. For the generation of fms-like tyrosine

kinase-3 ligand-cultured murine bone marrow-derived dendritic

cells (Flt3L-BMDCs), the bone marrow cells (56106 cells in each

well of a 6-well plate) were cultured in the presence of Flt3L

(100 ng/ml, R & D Systems) for 7 to 9 days. Cells were fed every 2

to 3 days by replacing 50% of the old medium with fresh medium.

We isolate murine pDCs (CD11c+B220+PDCA-1+) from Flt3L-

BMDCs to a purity of greater than 98% using FACS. Briefly, cells

were incubated with anti-CD11c-APC, anti-B220-APC-Cy7 (BD

Pharmingen) and anti-mPDCA-1-PE antibodies (Miltenyi Biotec)

for 10 min in the dark at 4–8uC. Cells were then washed with

buffer, centrifuged, and resuspended for FACS purification at the

Flow Cytometry Core Facility at Sloan-Kettering Cancer Institute.

Statistics
Student’s two-tailed t-test was used for each pairwise compar-

ison. The p values deemed significant are indicated in the figures

as follows: *, p,0.05; **, p,0.01; ***, p,0.001.
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