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Abstract

The Brazilian Amazon is a hypo-endemic malaria region with nearly 300,000 cases each year. A variety of genetic
polymorphisms, particularly in erythrocyte receptors and immune response related genes, have been described to be
associated with susceptibility and resistance to malaria. In order to identify polymorphisms that might be associated with
malaria clinical outcomes in a Brazilian Amazonian population, sixty-four human single nucleotide polymorphisms in 37
genes were analyzed using a Sequenom massARRAY iPLEX platform. A total of 648 individuals from two malaria endemic
areas were studied, including 535 malaria cases (113 individuals with clinical mild malaria, 122 individuals with
asymptomatic infection and 300 individuals with history of previous mild malaria) and 113 health controls with no history of
malaria. The data revealed significant associations (p,0.003) between one SNP in the IL10 gene (rs1800896) and one SNP in
the TLR4 gene (rs4986790) with reduced risk for clinical malaria, one SNP in the IRF1 gene (rs2706384) with increased risk for
clinical malaria, one SNP in the LTA gene (rs909253) with protection from clinical malaria and one SNP in the TNF gene
(RS1800750) associated with susceptibility to clinical malaria. Also, a new association was found between a SNP in the CTL4
gene (rs2242665), located at the major histocompatibility complex III region, and reduced risk for clinical malaria. This study
represents the first association study from an Amazonian population involving a large number of host genetic
polymorphisms with susceptibility or resistance to Plasmodium infection and malaria outcomes. Further studies should
include a larger number of individuals, refined parameters and a fine-scale map obtained through DNA sequencing to
increase the knowledge of the Amazonian population genetic diversity.
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Introduction

Malaria is a life-threatening parasitic disease transmitted by

mosquitoes. Despite major efforts aimed at controlling the spread

and impact of the disease, it still persists as a major health burden,

being responsible for over a million deaths each year, mainly

children in Sub-Saharan Africa. In Brazil, there were over 300,000

recorded cases of malaria in 2010, almost exclusively (99.8% of the

cases) restricted to the Amazon Basin region [1].

Malaria is a complex disease with many genetic and environ-

mental determinants influencing the observed variation in

response to infection, progression and severity. Several factors

important for these different phenotypes include the parasite

genetic make-up and host age, state of immunity and genetic

background [2]. Resistance involves genetically-based and cell-

mediated immunological mechanisms, including the production of

specific antibodies that are main actors in the acquired immune

response [3], thereby reducing the severity of symptoms and

mortality. Resistance mechanisms have been described for both

the liver and blood stages of the parasite in the host [4].

Significant associations have been described between malaria

and a variety of host genetic polymorphisms that occur in

erythrocytes and cells of the immune system. The different

geographic distributions of sickle-cell disease, a-thalassemia,

glucose-6-phosphate dehydrogenase (G6PD), southeast asian

ovalocytosis and the Duffy-negative blood group are examples of

the general principle that different populations have selected

different genetic variants to protect against Plasmodium infection

(see [5,6,7] for reviews). The sickle-cell trait (HbS) [8], G6PD

(reviewed in [9]), and ABO blood group [10], are amongst a

number of host genes with polymorphisms found to reduce the risk

of severe malaria. Some genes relevant to immunity and

inflammation, such as the tumor necrosis factor (TNF) within

the MHC class III region, (reviewed in [11]), Toll-like receptors

(TLR-4, TLR-9) [12,13], CD40 ligand (CD40L) [14], interferon

gamma (IFN-c) (reviewed in [15]), and the nitric oxide synthase
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type 2 (NOS2A) genes (reviewed in [16]) have also been associated

with severe malaria.

Previous genetic studies in Brazilian Amazonian populations

have demonstrated different malaria protective effects from blood-

related polymorphisms (e.g. Duffy, ABO, Rh, MNSs and Kell

systems [17,18,19,20]), erythrocyte enzymes (G6PD [18]), recep-

tors (CR-1, complement receptor 1) [20,21], and polymorphisms

which play a critical role in the early innate immune response to

invading pathogens (e.g. TLRs [20,22]). Association of Duffy

blood group gene polymorphisms and susceptibility to P. vivax

malaria has been observed in five endemic states of the Brazilian

Amazon [17,18,19]. Variants in the TLRs associated with clinical

outcomes of malaria have been reported [20,22]. In particular, a

study across three areas of the Amazon basin found significant

associations between TLR-1 and TLR-6 variants with mild

malaria, whereas TLR-9 variants were associated with high

parasitemia [22]. No association was found between TLR-4

polymorphisms and mild malaria [22]. These results are in

agreement with previous studies that found no association between

TRL-4 and protection to mild malaria in a community in the

Baixo Amazonas region in the state of Pará [20]. Recent studies

have also shown a possible association between CR1-polymor-

phisms and susceptibility to P. falciparum infection in individuals

from an endemic area in the state of Amazonas [21]. However, in

the state of Pará, no correlation was observed between CR-1 with

resistance to P. falciparum infections [20]. It has been reported that

the regulation of IL-10 levels, an anti- inflammatory cytokine, in

P. vivax infected patients may be unaltered by polymorphism in the

promoter region of IL-10 gene [23].

Here, we investigated the association of a larger number of host

candidate genes polymorphisms with susceptibility/resistance to

Plasmodium infection with clinical (mild) malaria in a population of

the Brazilian Amazon. We genotyped 64 single nucleotide

polymorphisms (SNPs) in 37 human host genes, including loci

related with erythrocytes receptors and immune response. Our

study is the first to comprehensively survey important malaria

candidate polymorphisms (including HbS and ABO) in a Brazilian

population from the Medium Negro River Basin in the Amazon.

This setting provided an excellent field to test hypotheses on the

generalization of established malaria-genetic associations, partic-

ularly for low endemic areas. It also provided a mean to find other

associations related to either different mechanisms or by linkage

disequilibrium with putative markers associated with susceptibil-

ity/resistance to Plasmodium infection [18].

Materials and Methods

Ethics Statement
Approval for the recruitment of participants, collection of blood

samples, DNA preparation and DNA genotyping was provided by

the relevant research ethics committee (Oswaldo Cruz Foundation

- protocol number 360/06) and an informed consent was obtained

from each participant.

Study Participants
Potential participants were engaged between January 2002 and

October 2006 from an ongoing epidemiological study of malaria

in the cities of Barcelos (n = 596) and Santa Isabel do Rio Negro

(n = 52), which are 350 km apart. The municipalities are located

within the Negro river micro region in the state of Amazonas and

display similar demographics. In 2006, the Annual Parasite Index

(API) was 264.4 cases per 1000 inhabitants in Barcelos [24] and

127.2 cases per in Santa Isabel do Rio Negro [25]. The mean

number of previous malaria episodes was 5.54610.52 in Barcelos

and 2.3261.33 in Santa Isabel. These differences were not

statistically significant (p = 0.053). Greater details of social,

demographic and malaria data for the populations studied can

be found elsewhere [25,26].

The individuals included in this study had lived in the study area

for at least five year with similar social and genetic backgrounds.

The population of both municipalities is predominantly of

Amerindian descent from Tukano-Oriental speaking societies

[25,27,28]. Individuals were recruited during consultations for

malaria symptoms at the health service centers in both cities. For

each malaria case identified, a field team was dispatched to

perform an active search of the patient’s house and neighboring

houses. Healthy controls, asymptomatic infected individuals and

individuals with a previous malaria history, but not infected at the

moment of the study, were recruited during these active searches.

A previous history of malaria in uninfected individuals and healthy

controls was verified using reviews of health service charts from

each municipality. Persons who had used anti-malarial drugs

30 days before the recruitment day were excluded. The partici-

pants had a median age of ,19 years (malaria cases: median 18.0,

range 1.0–88.0; controls 19.0, 3.0–72.0), and 48.5% were males

(malaria cases: 283, 53.7%, controls: 31, 28.4%) (see Table 1).

Cases Definitions and Parasite Identification
Three definitions of malaria cases were used for the association

analysis: clinical malaria (mild, n = 113), asymptomatic infected

individuals (n = 122) and individuals with a previous history of

mild malaria (non-asymptomatic infection), but not infected at the

moment of blood collection (n = 300). Clinical malaria was defined

in accordance to the guidelines of the World Health Organization

(WHO) for the American region and the Brazilian National

Malaria Control Programme (PNCM) including symptoms asso-

ciated to malaria (i.e., fever, chills or diaphoresis) and a positive

thick smear or rapid diagnostic test (RDT). Asymptomatic

Plasmodium-infected cases were defined as an individual without

symptoms for malaria within 30 days before or after the blood

collection, but with a positive thick smear and/or PCR, following

the recommendations of the Brazilian consensus group for studies

of asymptomatic individuals.

For each sample collected, a thick smear was prepared and

stained with Giemsa using the National Guidelines that was

examined by a certified expert using 200 microscope fields under

immersion oil. All positive samples were confirmed by another

individual blinded to the previous results and the infecting

Plasmodium species was identified by PCR according to published

protocols [17]. There was an even balance between P. falciparum

and P.vivax (Table 1).

Sample Preparation and Genotyping
The sample collection consisted of 535 cases (Barcelos n = 494,

Santa Isabel n = 41) and 113 healthy controls with no previous

history of malaria (Barcelos n = 102, Santa Isabel n = 11). DNA

samples were prepared by extraction from 300 ml of total blood

using a commercial kit following the manufacturer’s protocol

(PromegaH). Genomic DNA samples underwent whole genome

amplification by Primer Extension Pre-amplification (PEP) before

genotyping on a SequenomH MassArray genotyping platform

(http://www.sequenom.com) [29,30]. All samples underwent

genotyping on the same instrument resulting in low rates of

missing genotyping data. Sixty-four malaria candidate SNPs were

genotyped, including: Haemoglobin variant S (HbS) (rs334), and

an ABO blood group SNP that defines groups B and non-B

(rs8176746). The full list can be found in Table S1.

Candidate Malaria SNPs in a Brazilian Population

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36692



Statistical Methods
Association studies were performed comparing different groups:

a) any_malaria group (clinical malaria patients, asymptomatic

infected individuals, and individuals with a previous history of

malaria) with the never_malaria group (control); b) clinical_malaria

group (current or previous mild malaria) with the never_malaria

group; c) asymptomatic infection group with the never_malaria group

and d) clinical_malaria group (current or previous mild malaria) with

asymptomatic infection group.

Genotypic deviations from the Hardy-Weinberg equilibrium

(HWE) were assessed using a chi-square statistical test. SNPs were

excluded from the analysis if there was at least 10% of the

genotype calls missing or a significant deviation from the HWE

(p,0.0001). A case-control association analysis using SNP alleles

and genotypes was undertaken by logistic regression and included

site (Barcelos or Santa Isabel do Rio Negro) and gender as

covariates. In this approach, the SNP of interest was modeled

assuming several related genotypic mechanisms (additive, domi-

nant, recessive, heterozygous advantage and general models) and

the minimum P-values from these correlated tests are reported.

Haplotypes were estimated using an expectation-maximization

algorithm [31], and score tests [32] were applied to assess the level

of evidence for both global and individual haplotype associations

with malaria. Linkage disequilibrium was estimated using the

pairwise-SNP r2 and D-prime metrics.

Population structure or differences in allele frequencies between

sub-populations can lead to false positive associations. Differences

in allele frequencies were estimated between Barcelos and Santa

Isabel do Rio Negro using an Fst metric [33], where values close to

zero imply no difference, and values close to one imply complete

differentiation between locations.

Statistical analysis of SNPs on the X chromosome was

performed for each gender separately and, where applicable, the

results were pooled using meta-analytic techniques. All analyses

were performed using the R statistical package (http://www.r-

project.org). Performing multiple statistical tests lead to an

inflation in the occurrence of false positives and, by using a

permutation approach that accounted for correlation between

markers and tests, the estimated p-value cut-off of 0.003 was

considered statistically significant.

Results

Overall, nine SNPs were excluded from the analysis because

there was either a minor allele frequency of less than 1%

(rs33950507, rs2227507, rs12720463, rs9282799, rs8386,

rs5743809, hCD36_G1439C) or due to a high rate of missing

genotype calls (rs7935564, rs20541). Figure 1 shows the minimum

p-values from the genotypic tests applied to the autosomal SNPs.

There were five significant results for those with any_malaria

versus never_malaria group: rs1800896– IL10-1082 (OR: 0.528, CI:

0.360–0.774; P = 0.0014), rs2706384 - IRF1 (OR: 1.881, 95% CI:

1.298–2.724; P = 0.0005), rs2242665 - CTL4 (OR: 0.595, 95%

CI: 0.434–0.816; P = 0.0012), rs4986790 - TLR4 (OR: 0.274,

95% CI: 0.124–0.604; P = 0.0014) and rs909253 - LTA+252 (OR:

0.343, 95% CI: 0.182–0.647; P = 0.0009) (see Table 2). Four of

these SNPs were also significant when analyzing clinical_malaria

versus never_malaria group: rs2706384 - IRF1 (OR: 2.023, 95% CI:

1.371–2.987; P = 0.0002), rs2242665 - CTL4 (OR: 0.564, 95%

CI: 0.406–0.784; P = 0.0006), rs4986790 - TLR4 (OR: 0.271,

95% CI: 0.116–0.633; P = 0.002) and rs909253 - LTA+252 (OR:

0.366, 95% CI: 0.192–0.699; P = 0.001). When analyzing

clinical_malaria versus asymptomatic infection group, associations

were observed with the TNF-376 promoter SNP (rs1800750,

OR:0.086, 95% CI: 0.016–0.473; P = 0.0026), previously associ-

ated in a number of other malaria studies. (see [11] for a review).

The LTA and IL10 SNPs were also significant when analyzing the

asymptomatic infection versus never_malaria groups: rs909253 -

LTA+252 (OR: 3.508, 95% CI: 1.641–7.502; P = 0.0007),

rs1800896 - IL10-1082 (OR: 0.280, 95% CI: 0.142–0.552;

P = 0.0001), rs3024500 (OR: 0.418, 95% CI:0.236–0.739;

P = 0.0017) and rs1800890 - IL10-3533 (OR: 0.280, 95% CI:

Table 1. Baseline and clinical characteristics of the studied population.

Controls (n = 113) malaria cases (n = 535)

n (median) % (range) n (median) % (range)

Age (years) (19.0) (3.0–72.0) (18.0) (1.0–88.0)

Gender (male) 31 28.4 283 53.7

Number of individuals

Barcelos 102 90.3 494 92.3

Santa Izabel do Rio Negro 11 9.7 41 7.7

Clinical phenotype of malaria cases

Previous history of mild malaria* 300 56,1

Clinical Malaria 2 2 113 21,1

Asymptomatic infection 2 2 122 22,8

Parasites in clinical malaria or

asymptomatic infection

P. falciparum 2 2 106 45.7

P. vivax 2 2 110 47.5

both 2 2 16 6.9

*these individuals were not infected at the moment of blood collection but recorded as having previously mild malaria; Controls were healthy individuals with no
history of previous malaria; For some statistical analysis we have grouped clinical malaria patients, asymptomatic infected individuals and individuals with previous
history of malaria (any_malaria group) and clinical malaria patients previous history of mild malaria (clinical_malaria group).
doi:10.1371/journal.pone.0036692.t001

Candidate Malaria SNPs in a Brazilian Population
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0.194–0.713; P = 0.0001). There was a high linkage disequilbrium

(LD) between the three IL10 polymorphisms (minimum pairwise

D’ = 0.85). A haplotype analysis of these three polymorphisms

(rs3024500, rs1800896, rs1800890) revealed that those with the

GCT allelic combination (,10% frequency in population) were at

a lower risk of any form of malaria (OR: 0.40–0.63, 95% CI: 0.2–

0.9) when compared to the common ATA combination (.83%

frequency in population; see Table 3).

Analysis of the four polymorphisms on the X-chromosome

revealed no significant associations (Table S2). These included the

G6PD+202A allele, also referred to as A2, which is a deficiency

surrogate that occurs at a low frequency in our population (,3%).

Two other candidate polymorphisms with a strong presence in the

malaria literature, type HbS and B blood groups, were present at

low frequencies in our population (,4%) and, therefore, lacked

the power to detect an association (P.0.03; see Table 4) in this

study. It was interesting to note that in our population the null

allele of the Duffy antigen was present at a frequency of ,10%

(Table 4).

There was no evidence of population structure effects from the

two locations on the association analysis. First, the Fst values across

all markers were close to zero (median 0.0009, range 0 to 0.0063;

see Supplementary Table S3 for values). Second, by removing the

data of Santa Isabel do Rio Negro from the analysis, the

association hits were identical, but with a lower precision on the

odds ratio estimates. Supplementary Tables S4, S5, S6, S7 display

data on allele frequencies and tests of association between groups

studied in this work.

Discussion

This genetic association study was designed to correlate the

presence of various host gene polymorphisms within a Brazilian

Amazonian population with the clinical presentation of malaria for

the purpose of identifying candidate genes whose functions could

impact disease progression. The results showed, for the first time,

an association between alleles of CTL4 gene with malaria. Within

the MHC class III region, the SNP (rs2242665) located in the

CTL4 gene, displayed a significant association with reduced risk

for clinical (mild) malaria. This gene encodes for a possible

sodium-dependent transmembrane transport protein involved in

the uptake of choline by cholinergic neurons. As the MHC class III

region has a complex haplotype structure with long-range LD

patterns, this finding could arise from a functional variant in high

linkage with this SNP.

Polymorphic variability in the innate immune response gene

IL-10 also showed a strong haplotype risk association (OR ,0.7

for the GCT haplotype, see Table 3) on both asymptomatic

infection and clinical (mild) malaria. When analysed at the level

of individual SNPs, an association was discovered for those

individuals displaying IL10 - 1082 with a reduced risk for

malaria symptoms. Previous studies in a Kenyan population

Figure 1. Minimum p-values from tests of association for the autosomal SNPs.* any malaria: Any_malaria group (clinical malaria,
asymptomatic infection and previous history of malaria); asym: Asymptomatic group (individuals with asymptomatic infection); malaria:
Clinical_Malaria group (current or previous history of mild malaria); never: never_malaria group (no history of previous malaria); genotypic tests
of dominant, recessive, general, heterozygous advantage, and additive models, adjusted for gender; the dashed line represents a p-value of 0.003.
doi:10.1371/journal.pone.0036692.g001
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reported similar relationships between common African IL10

promoter variants (21082A/G (this study), 2819T/C, and

2592A/C), and protection against severe malarial anaemia and

an increased production of IL10 [34]. The absence of

immunoassay data within this study and severe malaria

phenotypes observed in the participants was a limitation to

demonstrating the role of IL10 in mitigating Plasmodium

infections.

Two other associations with cytokines were identified, both

within MHC class III region, that included TNF and the

lymphotoxin alpha (LT-a/LTA) and beta (LT-ß/LTB) genes,

which are closely related. The TNF and LTA genes are implicated

in the host defense and pathogeneses of severe malaria [5,35]. An

intronic SNP in LTA (rs909253) was associated with protection

from clinical (mild) malaria. Previous studies showed no significant

risk associated with LTA in a Sri Lankan population [36] or cohorts

in Kenya and Malawi [11]. These disparities of association could be

due to differences in the genetic background between the Brazilian

population with those of the Sri Lankan and African populations.

In addition, the TNF-376 promoter SNP (rs1800750) was

identified to have an association with clinical malaria (Table 2). An

association was previously found for this SNP with an increased

risk for cerebral malaria in Kenya and Gambia, conferring an

allele-specific binding of the transcription factor OCT-1([37,38];

see [11] for a review). This observation adds support to the current

dogma that the TNF locus is important for malaria pathogenesis.

However, it is necessary to corroborate these findings with a large

scale epidemiological and immunological functional study.

Other cytokine-related findings include one SNP (rs2706384) in

the Interferon Regulatory Factor 1 gene (IRF1), which was

associated with an increased risk for clinical malaria. IRF1 is a

critical mediator of IFN-c activity and is crucial in both innate and

adaptative immune responses against P. falciparum [39]. Our

finding are consistent with a previously reported association

between polymorphisms in the IRF1 and the control of P.

falciparum infection both in healthy adults and children displaying

severe and uncomplicated malaria [40]. Moreover, this gene is

located in the 5q31 region, which has been shown to be associated

with P. falciparum infection levels [32,33].

Finally, a polymorphism was seen in the TLR4 gene

(rs4986790) that was associated with reduced risk for clinical

malaria. Previous studies in an Amazonian population reported no

association between TLR4 and mild malaria [20,22]. However,

the absence of an apparent association may be due to the lower

minor allele frequencies and smaller samples sizes of those studies.

Unlike the results reported here, two studies in Ghana have

revealed frequent polymorphisms at TLR4 that conferred an

increased risk of severe malaria [12] and clinical manifestations of

malaria during pregnancy [13]. The absence of severe malaria in

Brazil could explain the differences in association results.

Together, the genetic data support a role for TLR4 in modulating

the presentation of malaria symptoms.

Overall, this study represents the first association study from an

Amazonian population involving a large number of host genetic

polymorphisms with susceptibility or resistance to Plasmodium

infection and malaria outcomes. To understand which are the real

causal variants, re-sequencing of LTA, TNF and CTL4 genes and

the surrounding MHC class III in a range of populations will be

necessary to assist the design of large scale epidemiological studies.

Previous candidate polymorphisms have arisen mostly from studies

Table 3. Haplotype analysis of IL10 gene.

Comparison Haplotype Hap-score p-value Controls Cases OR LCL UCL

groups Freq. Freq.

Any_malaria Never_malaria GCT 22.697 0.007 0.162 0.097 0.573 0.385 0.852

GCA 21.582 0.114 0.041 0.022 0.457 0.202 1.032

GTA 1.299 0.194 0.005 0.017 3.337 0.449 24.80

ATA 2.363 0.018 0.784 0.849 1.000 2 2

global-stat = 12.459, df = 4, P = 0.0142

Asymptomatic Never_malaria GCT 22.894 0.004 0.162 0.069 0.406 0.221 0.744

GCA 21.468 0.142 0.041 0.017 0.342 0.101 1.158

ATA 2.846 0.004 0.784 0.887 1.000 2 2

global-stat = 12.127, df = 3, P = 0.0070

Clinical_Malaria Never_malaria GCT 22.225 0.026 0.162 0.105 0.625 0.416 0.938

GCA 21.380 0.168 0.041 0.024 0.492 0.212 1.138

GTA 1.428 0.153 0.005 0.018 3.887 0.502 30.11

ATA 1.903 0.057 0.784 0.839 1.000 2 2

global-stat = 9.7201, df = 4, P = 0.0454

Clinical_Malaria Asymptomatic GCT 1.599 0.110 0.069 0.105 1.579 0.914 2.728

GCA 0.578 0.562 0.017 0.024 1.465 0.481 4.457

GTA 0.394 0.694 0.014 0.018 1.306 0.391 4.356

ATA 21.728 0.084 0.887 0.839 1.000 2 2

global-stat = 3.2488, df = 4, P = 0.5171

Any_malaria group consisted of: clinical malaria, asymptomatic infection and previous history of malaria; Asymptomatic group: asymptomatic infection; Clinical_Malaria
group: clinical mild malaria (current or previous mild malaria); Never_malaria group: no history of malaria: Haplotypes are for rs3024500, rs1800896,and rs1800890; Freq:
frequency; OR: odds ratio; 95% Confidence interval (LCL- UCL); df : degrees of freedom.
doi:10.1371/journal.pone.0036692.t003
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in an African setting, where the linkage disequilibrium or

correlation structure between SNPs, the absence of Plasmodium

vivax, endemicity, and disease severity complicate their relevancy

to Amazonian populations. For example, the data analysis from

our study revealed no significant associations for gene polymor-

phisms of the sickle-cell trait, blood-related polymorphisms and

G6PD A- surrogate, which display inherited innate resistance to

malaria. These results were not unexpected, given that the low

frequencies of these alleles in the Brazilian population together

with the current sample size that restricted the resolving power of

the analysis to detect associations.

The issue of malaria disease association mapping and its

implications for disease management in multiple geographic

locations remains a major challenge confronting the field. The

differences highlighted here and the association of specific SNP

polymorphisms with clinical malaria in the Amazon basin support

the need for additional studies. The results suggest a need for

associations studies with more dense mapping of candidate genes,

especially CTL4 and IL-10, along with other genes from the major

histocompatibility complex region to identify additional functional

variants most relevant for malaria in Amazonian populations.
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