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Abstract

Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated
with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential
emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored
emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to
automatically classify the type. We asked 15 subjects to simulate four different types of falls–left and right lateral, forward
trips, and backward slips–while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects
also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine
learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic
regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work
demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research
as well as improve rapid response to potential injuries due to falls.

Citation: Albert MV, Kording K, Herrmann M, Jayaraman A (2012) Fall Classification by Machine Learning Using Mobile Phones. PLoS ONE 7(5): e36556.
doi:10.1371/journal.pone.0036556

Editor: Christian Lovis, University Hospitals of Geneva, Switzerland

Received January 31, 2012; Accepted April 10, 2012; Published May , 2012

Copyright: � 2012 Albert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by grants from the National Institutes of Health (P01NS044393, R01NS063399) and the Max Nader Center at the Rehabilitation
Institute of Chicago. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mark@mva.me

Introduction

Falls in the elderly are a relatively common occurrence that can

have dramatic health consequences. For people over 75 years old,

the estimated incidence of falls is over 30 percent per year [1].

Nearly half of nursing home residents fall each year, with 40%

falling more than once [2]. Falls can cause physical injury

including fractures, head injuries, or serious lacerations. In

community-dwelling patients who have fallen in a given year,

the rate of serious injury is 5–10% [3,4]. Falls can also elicit

psychological consequences such as decreased independence [5]

and increased fear of falling [6,7]. This can lead to an avoidance of

activity that can bring about a pattern of increasing isolation and

deterioration [8,9]. The impact of falls can be dramatic on certain

populations, motivating the search for improved methods to

minimize and respond to falls.

There are a number of strategies used to minimize falls [10].

There are physical training strategies such strength training [11]

and balance training [12]. Modifying the home or workplace

decreases the chance of falling [13]. The number of falls can be

decreased by optimizing medication [14] or even having patients

take nutritional supplements such as Vitamin D [15]. There are

many therapies, medications, and lifestyle changes that can

influence the probability of falling; however, at this time more

research needs to be conducted. Improving the ability to track falls

has the potential to streamline a wide range of fall-related

research.

One objective and convenient way of documenting patient falls

is through the use of mobile phones; most smart phones are

equipped with accelerometers that can be used to detect when

patients fall with exceptionally high accuracy. Falls are generally

high-impact events, making detection simpler than identifying

other daily activities. For example, some previous fall detection

algorithms used only thresholds for the low freefall accelerations

followed by high impact accelerations [16,17]. Unfortunately,

these studies either have very limited data sets (e.g. 3 young

volunteers in very limited control circumstances) [16] or lower

accuracy rates of nearly 80% for mobile phones [17]. Additional

studies have simply observed the variations in a number of features

[18]. Here we will apply a larger number of features, as has been

done in previous studies using linear regression to predict falls

[19], but use classifiers that have been successfully applied in

activity recognition for mobile phones [20].

We use these classifiers to not only detect falls, but also to

classify the particular type of fall. For example, in prosthetics

research, adjusting aspects of a knee joint is often a tradeoff

between which type of fall will occur. Different types of falls can

result in different types of injuries. In the elderly a slip may be

more or less likely to result in a serious injury than a trip simply

because of the ease of breaking a forward versus backward fall.

Also, because people tend to be more stable laterally, it is more

likely when given a lateral fall that it may be from a loss of

consciousness. Knowing the type of fall can be important for
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coordinating a more appropriate response to the fall, or adjusting

the treatment to prevent a similar type of fall in the future.

The main focus of our study is to not only identify falls, but also

classify their type. We can accomplish very high accuracy by using

a much larger feature set than previous methods and by using

current machine learning approaches to deal with the large

number of resulting features. We demonstrate classification by

having subjects simulate the different types of falls and record the

resulting accelerations. For analyzing the ability to detect falls,

these recordings are compared to fall-like events taken from a large

dataset of everyday movements. Importantly, we show that our

features and classifiers are capable of detecting and classifying the

type of fall with a much higher level of accuracy than current

techniques.

Results

To create and validate the machine learning approaches for fall

detection and classification, we collected two data sets. Fall data

was obtained by simulating four different types of falls, represent-

ing four different directions in which someone could fall (slip-

backward, trip-forward, left/right lateral – figure 1a) while subjects

wore accelerometers on a belt, as detailed in the methods. Subjects

also wore the accelerometers during everyday activities for a week,

which measured a range of accelerations that could potentially be

misclassified as false-positives. We applied five different machine

learning classifiers to perform both the detection and the fall-type

classification.

We collected the accelerometer data in a standardized way.

Both a mobile phone and a separate, dedicated accelerometer

were attached on belts and placed on the back of subjects. For

simplicity, analysis is only shown and discussed for the mobile

phone accelerometer. We found that the use of dedicated

accelerometers provided comparable results to those presented

for the mobile phone – although we note a possible ceiling effect as

other classification strategies have shown significant improvements

using dedicated accelerometers [17]. The orientation of the phone

determined the orientation of the accelerometer axes. Because of

the orientation of the phone on the belt, the x, y, and z-axes of the

accelerometer corresponded to the up, left, and backward

directions on the subjects (fig 1b and c). This setup was used to

record from subjects for the four classes of simulated falls, as well

as collecting recordings when the subjects wore the belts for a

week. The goal of recording the data in this standardized way was

to make interpretation clearer and analysis more accurate.

We expected the different falls to have characteristic signatures

in the recorded movements. For example, if someone falls forward,

the z-axis would be oriented in the same direction as gravity at

impact and likely after the fall. This regularity is evident in our

displayed fall samples (fig 2a). However, not all falls could be

classified that simplistically. Instead of searching for particular,

directly observable features (e.g. high-impact accelerations), we

chose to apply the standard, state-of-the-art machine learning

approach: we constructed a large feature set (see methods) and had

the algorithms select how to combine and weigh them appropri-

ately.

We then needed data to evaluate our ability to detect falls. For

this we selected samples of non-fall activities that were from

everyday experience. Previous studies had subjects reenact

activities of everyday living, such as sitting onto objects or walking

[16], however, we decided to obtain a more natural and

potentially more challenging control sample. By having the

subjects wear the phones for a week, we collected a number of

potential misclassification events. We selected the samples that

were most fall-like based on the overall change in acceleration over

a short, two-second interval. The selected average rate for these

events was one per hour of recording. Although some samples

appeared periodic in nature, many appeared similar to the

simulated falls (fig 2b). Based on observations of these fall-like

events, we believe these samples provided a better control group

for fall detection than simulated daily activities.

We first wanted to know how well the system could distinguish

between the four different types of falls. We used five different

classifiers: support vector machines (SVM), sparse multinomial

logistic regression (SMLR, also referred to as regularized logistic

regression), Naı̈ve Bayes, k-nearest neighbors, and decision trees.

We used the standard time series features as detailed in table 1.

Using 10-fold cross-validation, SVM and SMLR classifiers were

able to achieve 99% accuracy (SVM shown in figure 3a). To

consider how well these classifiers would generalize to subjects for

which there is no training data, we also performed subject-wise

crossvalidation which only decreased the accuracy for SVM

classification by 0.5% (figure 3b). In effect, both techniques had

near perfect classification of the type of fall based on mobile phone

accelerometer data.

We also wanted to know how well the system could distinguish

fall-like events in everyday life from actual, simulated falls.

Importantly, the fall-like events were selected based on the

highest-impact events from a set of eight week-long recordings.

Both the SVM and SMLR classifiers achieved accuracies near

98% for pooled subject data when using 10-fold crossvalidation,

while that accuracy decreased to only 97% when subject-wise

crossvalidation was used. (fig 3c,d). In other words, across an

average week of everyday movements there would be an estimated

2–3 non-falls that would be misclassified as falls. The combination

of standard time-series feature sets and modern classifiers was able

to detect falls with a high degree of accuracy.

We also wanted to demonstrate the efficacy of modern machine

learning classifiers compared to more standard classifiers. Both

SVM and SMLR are known to perform well with a large number

of features. We wanted to contrast these with three more

traditional classifiers (fig 4). Both decision trees and k-nearest

neighbors performed at 94–98% accuracy for fall detection and

98–99% for fall type classification. Naı̈ve Bayes performed poorly

in both fall detection (63%–66%) and fall classification (88–90%)

which can be expected because of the large number of potentially

irrelevant features in our approach. Although all classifiers except

Naı̈ve Bayes report relatively high accuracies, SVM and SMLR

classifiers are most accurate over all crossvalidation methods used,

providing 98% accuracy for fall detection and 99% accuracy for

fall classification.

Discussion

We sought to use mobile phones and standard state-of-the-art

machine learning to perform robust fall detection and classifica-

tion. Instead of hand-picking the most relevant features, we used a

large feature set, and had the relevant features selected by the

algorithms. By applying classifiers such as SVM and SMLR, we

showed that either popular technique performs well when large

feature sets can be used, with near perfect accuracies in all cases.

This was possible with the standard basic acceleration sensors

found in almost all modern smartphones and could thus be

implemented in phone apps.

Mobile phones are a convenient platform for recording

movements, particularly measuring falls. They have built-in

communication protocols that allow simple data logging to the

device and wireless transmission. This permits real-time response

Fall Classification Using Mobile Phones
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or, in an experimental setting, compliance verification. Because

mobile phones are widely adopted, compliance without verifica-

tion is already high, as people are used to carrying them. Also,

price is significantly reduced due to high production volume. Due

to these advantages, mobile phones have the promise to provide a

convenient, inexpensive, and objective means to track falls.

Previous work has shown how the accelerometers in mobile

phones can be used to classify activities, including falls. Activities

such as sitting, standing, walking, and running can be identified

from mobile phone accelerations [21,22,23,24,25]. Our use of

SVM’s is also supported by work showing activity recognition and

fall detection that can be over 95% accurate in both cases [20];

however, that work was done analyzing the movement of body

position based on radio tags. Our experimental design is most

similar to that of Lee and Carlisle [17] (e.g. simulated falls, phones

and dedicated accelerometers) although their accuracy was

approximately 80%. This was primarily a result of using a simple

threshold-based classification strategy relying primarily on the

maximum and minimum accelerations to detect a fall. By

comparison, we appear to be getting a lot of mileage out of using

these machine learning algorithms. Tolkiehn and colleagues [26]

used a chest mounted accelerometer with a small feature set to

obtain 84% detection accuracy. Uniquely, they also classified

direction of fall with 94% accuracy. All of these previous fall

detection and classification approaches either used smaller feature

sets or simpler classification methods. We believe our work shows

that the use of mobile phones for fall detection can be greatly

improved when using modern machine learning strategies.

Although this study presents high accuracies, there are a

number of issues that will still need to be addressed before such

techniques could be used in a more applied setting. First, the

mobile phones used here were placed in a standardized position.

This allowed highly stereotypical measurements that aided

accuracy ratings, but made the results less applicable to the way

people carry their mobile phones every day – e.g. a smartphone in

a pocket will certainly lead to lower accuracies due to the

inconsistent ways it can be carried. Also, the fall-like events from

the week-long recordings, though perhaps better than using

certain simulated daily activities, may not have provided an

adequate control data set. There is no guarantee that the fall-like

events selected are a representative sample of potential misclas-

sifications. This false-positive rate would have to be more directly

Figure 1. Types of falls measured, and axes of measurement. A) The four different types of simulated falls in this paper, positioned according
to direction of the fall. B) The G1 android mobile phone that was used for recording, and the placement of the phone on the back of subjects. C) The
axes of the tri-axis accelerometer relative to the images in B – xyz as red, green, blue, respectively. The phone was placed on the back of the subject
so that the three axes pointed up, left, and to the back of the subject.
doi:10.1371/journal.pone.0036556.g001

Figure 2. Example simulated falls and ‘‘fall-like’’ events. A) Falls of the four different types, arranged by direction of the fall as in fig 1a. B)
Events that had relatively large changes in acceleration, and were extracted for comparison to simulated falls in the detection task.
doi:10.1371/journal.pone.0036556.g002
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assessed to consider viability for application. Although this result

relies on standardized accelerometer positioning, and false positive

rates for daily living were not fully explored, this does demonstrate

a significant improvement in current fall detection and classifica-

tion techniques.

Fall detection promises to be important in the context of

healthcare. The impact on individuals has already been addressed

in the introduction, but the injuries, psychological damage, and

increased patterns of inactivity due to falls will also be an

increasing burden to health care services [27]. Over time this

burden is expected to increase dramatically; currently there are

approximately 40 million people over age 65, and this number is

expected to reach 86.7 million in 2050 [28]. Most dramatically,

the number of people aged 85 or older, the age most likely to suffer

health consequences from a fall, is expected to triple by 2050. For

this reason, there is an increasing incentive for the health care

industry to pursue methods to minimize the number of falls,

decrease the type of falls that are more likely to cause injury, and

improve emergency response when falls do occur. We believe that

any work that facilitates research addressing this issue can impact

populations prone to falls, but also the health care infrastructure

tasked to care for them.

This work is motivated by the possibility of using the fall

detection algorithms in real-world scenarios where patients only

Table 1. Features extracted from tri-axial accelerometer readings.

Values Description Total Features

moments mean, absolute value of the mean, standard deviation, skew,
kurtosis

15

moments of the difference between successive samples mean, standard deviation, skew, kurtosis 12

smoothed root mean squares no kernel, 5pt kernel, 10pt kernel 9

extremes min, max, absolute value of the min and max 12

histogram includes counts for +/2 4 z-score bins 27

Fourier components 32 samples from the Fourier spectrum 96

mean acceleration magnitude e.g. 9.8 m/s2 if at rest 1

mean of the cross products xy, xz, and yz 3

absolute value of the mean of the cross products xy, xz, and yz 3

doi:10.1371/journal.pone.0036556.t001

Figure 3. Crossvalidation results for detection and classification using Support Vector Machines (SVM’s) on features extracted from
the phone accelerometer recordings. Fall classification results when the task is to distinguish the type of simulated fall (A,B). Fall detection for
distinguishing falls vs. high-impact ‘‘fall-like’’ events extracted from week-long recordings (C,D). Crossvalidation results are with all subject data
pooled together (A,C) or subject-wise crossvalidated (B,D).
doi:10.1371/journal.pone.0036556.g003
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have to carry phones with the downloaded app installed. This

possibility depends on alleviating two critical, practical concerns –

maximizing battery life and minimizing the number of false

positives. On T-mobile G1’s running android version 1.6 we were

able to record directly to memory for approximately 10 hours

without recharging depending on the quality of the battery and

amount of movement. This is impractical for normal, daily use.

Systems such as iFall [29] and PerFallD [30] applied techniques

such as variable sampling rates, background services, simplified

processing, and minimizing power-intensive features like screen

use and access to storage. With these adjustments, and by using

newer phones, the apps were able to run in the background over

the course of a day. An additional practical concern is how the

application responds to a potential fall during the day. For

example, after a fall, a person may not be able to respond but may

still require medical attention. The previously mentioned applica-

tions [29,30] were able to detect when a fall occurs and respond

appropriately, however with those algorithms the rate of false-

positives may have been a significant issue. If a potential fall is

detected, you may want to ask the user to respond; if they don’t

respond you may send a message to personal emergency contacts;

and if no action is taken by anyone, emergency first responders

could be contacted. The number of times each of these

interventions occurs should be minimized; otherwise the applica-

tion may not only be impractical from the user’s perspective, but

also too costly. By applying the techniques used here, along with

improvements in battery management, we believe that fall

detection comes one step closer to improving the immediate

medical responsiveness after individuals with disabilities fall.

The methods we applied for fall detection and classification are

important tools for improving patient outcomes from fall-related

research. It is clear that mobile phones can be used for fall

detection based on the mobile phone accelerometer readings that

were used to acquire the data here. In one sense, the feature

selection is actually simpler in this paper because it is automated –

so a large feature set can be applied. This advances the application

of modern machine learning classifiers such as support vector

machines and regularized logistic regression. The rich features sets

and state of the art machine learning classifiers are simple and

straightforward to use in practice. Based on the high accuracies

reported here for both fall detection and classification, we believe

that these tools should be considered when addressing the ability

to automatically detect falls. Such improvements have the

possibility to impact not only fall-related research studies, but

may also someday enable practical emergency responsiveness for

fall related trauma.

Methods

15 Healthy subjects (8F/7M, ages 22–50) carried recording

devices as they performed a series of simulated falls in the lab.

Nine subjects also carried the devices for a week to record

everyday behavior for later fall detection. Subjects wore a belt that

held two accelerometers – one as part of an android mobile phone,

and the other a special USB accelerometer. The phones were T-

mobile G1 phones running the Android OS version 1.6. The

sampling rate was variable between 15 and 25 Hz depending

upon the amount of movement [31]. The dedicated USB

accelerometers (Gulf Coast Data Concepts X6-2 Mini) sampled

at a constant rate of 20 Hz. These accelerometers were attached

together on a belt and centered in the back. The phone was

positioned such that the accelerometer x, y, and z axes were

directed up, left, and behind the subject, respectively (see fig 1).

Written, informed consent was obtained for all subjects. The

Northwestern University institutional review board specifically

approved this study.

Simulated falls and fall-like events
The subjects that performed simulated falls were instructed to

perform four different classes of falls – slips, trips, left lateral, and

right lateral falls. In all cases, subjects were asked to approximate

the fall type and fell onto pads. The original design separated

lateral falls into two types, active falls and faints. These two

different types of falls were combined to simplify analysis. Each

subject was instructed to perform each fall type three times for a

total of 18 times per subject.

In order to record data for fall detection analysis, nine subjects

also carried the accelerometers for one week. From these

recordings, samples of ‘‘fall-like’’ events were extracted to compare

to the data from simulated falls. Fall-like events were times in

which the acceleration changed drastically in a short period of

time. Due to battery use, only portions of the week were recorded.

Specifically, the average squared change in acceleration was

smoothed using a two second running average. 10 seconds clips

were taken at the maximum values of this function. For every hour

of recording, one sample was extracted.

Data preprocessing and feature extraction
The accelerometer signals were preprocessed using the follow-

ing procedure. The phone accelerometer values were linearly

interpolated to match 20 Hz. All analysis was performed on

10 second clips of data centered on the falls, or fall-like events in

the case of week-long recordings. From these 10 second clips,

features were extracted, as summarized in table 1. This feature set

was used for both classification tasks: detecting falls vs. non-falls

and classifying the particular type of fall.

Classification algorithm
Five different classification algorithms were used for detection

and classification: support vector machines (SVM) [32], sparse

multinomial logistic regression (SMLR) [33], naı̈ve Bayes, decision

trees, and k-nearest neighbors. Many of these techniques have

been successfully applied in a large number of machine learning

classification problems with a great deal of practical success on

large feature sets. We normalized each feature to have mean 0 and

unit variance. The SVM classifier was from the LIBSVM package

Figure 4. Classification accuracy for fall detection and classi-
fication of fall type for both pooled data using 10-fold
crossvalidation and subject-wise crossvalidation. The most
accurate classifier is indicated in bold.
doi:10.1371/journal.pone.0036556.g004
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[32]. We applied radial basis functions, giving us two hyperpara-

meters – the soft slack variable, C, and the size of the Gaussian

kernel, c. The accuracy was highly robust to small changes in the

hyperparameters, so reasonable choices were obtained by a grid

search of 10x where x is an integer between -5 and 5. The values

which gave the highest 10-fold cross-validation accuracy are

reported (C = 10 and c= 0.1). The logistic regression classifier

(SMLR) used regularization (hence, ‘‘sparse’’) by including a

penalization term on coefficient weights. In effect, regularization is

an automatic way of performing feature selection, which helps

avoid overfitting, and greatly improves crossvalidation accuracy.

By changing the coefficient on the penalization term, l, the system

is biased to use more or fewer features. The parameter, l, was

found in the same way as the hyperparameters for SVM, giving

l= 0.0001). k-nearest neighbors only require a hyperparameter ‘k’

for the number of neighbors to average from. In this case, k = 3

was found to maximize the 10-fold crossvalidation accuracy. Naı̈ve

Bayes and decision trees had no hyperparameters. We used the

standard MATLAB implementation for the last three classifiers

(NaiveBayes, classregtree, knnclassify).
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