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Abstract

The outcome of a functional genomics pipeline is usually a partial list of genomic features, ranked by their relevance in
modelling biological phenotype in terms of a classification or regression model. Due to resampling protocols or to a meta-
analysis comparison, it is often the case that sets of alternative feature lists (possibly of different lengths) are obtained,
instead of just one list. Here we introduce a method, based on permutations, for studying the variability between lists (‘‘list
stability’’) in the case of lists of unequal length. We provide algorithms evaluating stability for lists embedded in the full
feature set or just limited to the features occurring in the partial lists. The method is demonstrated by finding and
comparing gene profiles on a large prostate cancer dataset, consisting of two cohorts of patients from different countries,
for a total of 455 samples.
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Introduction

Defining indicators for assessing ranked lists’ variability has

become a key research issue in functional genomics [1–6],

particularly when trying to warrant study reproducibility [7]. In

[8], a method is introduced to detect the stability (homogeneity) of

a set of ranked lists of biomarkers selected by feature selection

algorithms during a molecular profiling task. This method has

been used in several studies, and it is available in the Bioconductor

package GeneSelector [9]. The stability indicator relies on the

application of metric methods for ordered data viewed as elements

of a suitable permutation group. A foundation of such theory can

be found in [10,11]. It is based on the concept of distance between

two lists; in particular, the employed metric is the Canberra

distance [12,13]. The mathematical details of the stability

procedure on lists of equal length are described in [14,15]: given

a set of ordered lists, the basic mechanism is to evaluate the degree

of self-homogeneity of a set of ordered lists through the

computation of all the mutual distances between the elements of

the original set.

In practice, a reduced representation can be used by computing

the Canberra distance between upper partial lists of the original

complete lists, the so called top-k lists [16], formed by their k best

ranked elements. However, the requirement that all lists have the

same length as in [8] is a main drawback in many applications.

Complete lists all share the same elements, with only their ordering

being different; when considering partial top-k lists, the same k

initial elements must be chosen for all sublists [17,18].

This is usually not the case when investigating the outcomes of

profiling experiments, where the employed feature ranking

method often does not produce a rank for every available feature.

Instead it scores only the best performing ones, thus leading to the

construction of lists with different lengths. In the top-k list setting

ranked lists are truncated in a selection procedure and their length

k is not the same for all lists. Furthermore, rank positions are not

available for all the input features. In the rank aggregation

literature this phenomenon is discussed under the notion of space

differences [18–20]. Some work towards partial lists comparison

has appeared in the literature, both for general contexts [21] and

more focussed on the gene ranking case [22–24], but they all

consist of set-theoretical measures.

In the present work we propose an extension of the method

introduced in [8], by computing a distance for two lists of different

lengths, defined within the framework of the metric methods for

permutation groups. The Canberra distance is chosen for

compatibility with [8] and for further technical reasons detailed

in the method description. The problem of how to select the list

length is not addressed here: for a data-driven stochastic approach

see [17,25,26] and subsequent works. The extension is again

developed in the framework of permutation groups, where subsets

of permutations with constraints are considered. The key formula

can be split into two main components: one that addresses the

elements occurring in the selected lists, and the second one

considering the remaining elements of the full set of features the

experiment started from. In particular, this second component is

independent from the positions of the selected elements in the lists:

neglecting this part, a different stability measure (called the core

component of the complete formula) is obtained.

Applications and discussions of the described methods for either

the complete or the partial list case can be found in [27–34]. Meta-

analysis studies can particularly benefit from this novel tool:

although it is common to have a rather small number of replicates

[20], nowadays the available computing power is making studies

with large numbers of replicates more and more feasible. In these

settings, the quantitative assessment of list differences is crucial.

Examples include MAQC-II initiative, where more than 30,000

models were built [35] for dealing with 13 tasks on 6 datasets, or
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the comparative study [36] where effects of 100 bootstrap

replicates were assessed for 6 combinations of classifiers and

feature selection algorithms on synthetic and breast cancer

datasets.

After having detailed the algorithm, we discuss applications to

synthetic and genomics datasets and different machine learning

tasks. The described algorithm is publicly available within the

Python package mlpy [37] (http://mlpy.fbk.eu) for statistical

machine learning.

Materials and Methods

Introduction
The procedure described in [8] is composed of two separate

parts, the former concerning the computation of all the mutual

distances between the (complete or partial) lists, and the latter the

construction of the matrix starting from those distances and the

indicator coming from the defined matrix. This second phase is

independent from the length of the considered lists: the extension

shown hereafter only affects the previous step, i.e. the definition of

the dissimilarity measure.

The original algorithm and its extension rely on application of

metric methods for ordered data viewed as elements of a suitable

permutation group: foundations of such theory can be found in

[10,11,38,39] and it is based on the concept of distance between two

lists. In particular, the employed metric in the previous work is the

Canberra distance [12,13] and the same choice is also adopted in the

present work for consistency and to ensure that the original method

and the introduced novel procedure coincide on complete lists.

Full mathematical details of the original procedure are available

in [14,15].

Notations
As in the original paper, we adopt as a working framework the

formalism and notation of symmetric group theory. No theoretical

result from group theory will be needed, as combinatorics will be

mostly used throughout the present section.

Let F~fFjgj~1,...,p be a set of p features, and let L be a ranked

list consisting of l elements extracted (without replacement) from

F . If L~ FL1
,FL2

, . . . ,FLl
ð Þ, let t(j) be the rank of Fj in L (with

t(Fz)~0 if Fz=[L) and define t~ t(j)ð Þj~1,...,p the dual list of L.

Consider the set SL of all elements of the symmetric group

SF%Sp on F whose top-l sublist is L : then SL has (p{l)!
elements, corresponding to all the (p{l) possibilities to assign the

p{l elements not in the top-l list to the bottom p{l positions.

Finally, let St be the set of all the dual lists of the elements in SL:

if a[St, then a(i)~t(i) for all indexes i[L: Thus St consists of the

(p{DLD)! (dual) permutations of Sp coinciding with t on the

elements belonging to L. Furthermore, note that

t(L)~f1, . . . ,DLDg, so that the relabeling FLi
.Fi shows the

isomorphism between St and Sp{l :

Shorthands
If Hs is used to denote the s-th harmonic number defined as

Hs~
Ps

j~1

1

j
, then we can define some useful shorthands:

D(a,b,c) ~
P

aƒiƒb

Dc{iD
czi

~

b{az1{2c(Hbzc{Hazc{1) if cva

2c(2H2c{Hazc{1{Hbzc{1)zbza{1 if aƒcƒb

2c(Hbzc{Hazc{1){bza{1 if cwb ,

0
B@

and

ek(s)~
Xs

j~1

jHjzk

~
(s{k)(szkz1)

2
Hszkz1z

k(kz1)

2
Hkz1z

s(2k{s{1)

4

j(s)~
Xs

j~1

(2j)H2j

~ sz
1

2

� �2

H2sz1{
1

8
Hs{

2s2zsz1

4

� �
:

Finally,

H(a,b,c)~
X

aƒuƒc

X
bƒvƒc

Du{vD
uzv

~
X

aƒuƒc

D(b,c,u) ,

with H(a,b,c)~H(b,a,c): Details on harmonic numbers can be

found in [40], while some new techniques for dealing with sums

and products of harmonic numbers are shown in [41–49].

Canberra Distance on Permutation Groups
Originally introduced in [12] and later redefined by the same

authors in [13], the Canberra distance as a metric on a real line is

defined as.

Ca(x,y)~
Dx{yD
DxDzDyD

:

Its extension to real-valued vectors x,y[Rn is again included in

[13] and reads as follows:

Ca(x,y)~
Xn

i~1

Dxi{yi D
Dxi DzDyi D

:

This metric can be naturally extended to a distance on

permutation groups: for t,s[Sp, we have.

Ca(t,s)~
Xp

i~1

Dt(i){s(i)D
t(i)zs(i)

:

The key property for the bioinformatics applications motivating

the choice of the Canberra distance is that this metric attaches

more importance to changes near the beginning of a list than to

later differences. Clearly, the same property belongs to other

functions (e.g., the difference of the logarithm of the ranks), and

probably similar results as those we are discussing here can be

achieved by employing different choices. We choose the Canberra

distance because it has been already published in literature, it has a

simple definition, satisfactory behaviour on synthetic data was

Comparison of Partial Lists
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shown in [8], and exact computations are available for important

indicators (average variance, maximum value and argument).

Finally, we chose to linearly sum terms instead of using different

norms such as L2 as in the original version proposed by the

authors of the Canberra distance [12,13].

The expected (average) value of the Canberra metric on the

whole group Sp can be computed as follows, where IdSp
is the

identity element of the permutation group Sp (the identical

permutation):

EfCa(Sp)g~ 1

jSpj2
X

s,t[Sp

Ca(s,t)

~
1

jSpj2
X

s,t[Sp

Ca(st{1,tt{1)

~
1

jSpj
X
r[Sp

Ca(r,IdSp )

~
1

p!

X
r[Sp

Xp

i~1

jr(i){ij
r(i)zi

~
1

p!
(p{1)!

Xp

i,j~1

jj{ij
jzi

~
1

p

Xp

j~1

D(1,p,j)

~
1

p

Xp

j~1

2j(2H2j{Hj{Hpzj{1)zp

~
2

p
j(p){

2

p
e0(p){

2

p
ep(p){

2

p

Xp

j~1

jzp

~ 2pz2z
1

2p

� �
H2p{ 2pz2z

1

4p

� �
Hp{ pz

3

2

� �
:

ð1Þ

In Eq. (1), the identity.

Ca(s,t)~Cast{1,tt{1)~Ca(st{1,IdSp )

follows straightforwardly from the right-invariance of the Canberra

distance as a metric on permutation groups, while the identity

X
r[Sp

Xp

i~1

Dr(i){iD
r(i)zi

~(p{1)!
Xp

i,j~1

Dj{iD
jzi

is motivated by the combinatorial observation that, for each

j[f1, . . . ,pg, there are exactly (p{1)! permutations r[Sp with

r(i)~j:
By Euler’s approximation Hp~ log (p)zcz

1

2p
zo(

1

p
), where

c&0:57721 is the Euler-Mascheroni constant, the exact formula in

Eq. (1) can be approximated up to terms decreasing to zero with p

by the expression.

EfCa(Sp)g~ log (4)(pz1){(pz2)zo(1) :

In his paper [50], Hoeffding proved four Theorems where he

stated a sufficient condition for the distribution of a metric on the

whole permutation group to be asymptotically normal. As shown

in Result R5 of [14], this condition is satisfied by the Canberra

distance, thus asymptotical normality on Sn follows and therefore

it is meaningful to define a stability indicator on a set of lists as the

average of all mutual Canberra distances between each pair of lists

in the set.

Canberra Dissimilarity Measure on Partial Lists
As originally introduced in [8], given two complete lists CL1,

CL2, we define the Canberra distance between them as.

Ca(CL1,CL2)~Ca(tCL1
,tCL2

) , ð2Þ

where tCL1
,tCL2

are the corresponding permutations, which are

unique.

Uniqueness of matching permutations does not hold anymore

when dealing with partial lists, where many permutations share the

same top sublist L. A suitable function f has to be used to convey

the information coming from all possible mutual distances between

corresponding permutations into a single figure.

If L1 and L2 are two (partial) lists of length respectively l1ƒl2
whose elements belong to F , and d is a distance on permutation

groups, we define a dissimilarity measure between L1 and L2 as

d(L1,L2)~f d(a,b) : a[St1
,b[St2

n o� �

~f (d(St1
,St2

)) ,

for f a function of the (p{l1)!(p{l2)! distances d(a,b) such that on

a singleton t, f (ftg)~t: The map d is symmetric but, if L is not

complete, d(L,L)=0 for a generic function f, since the contribu-

tions coming from the unselected features are taken into account,

and thus d is not a metric. On the other hand, if L1 and L2 are

complete lists, the above definition coincides with the usual

definition of distance between complete lists given in [8].

Moreover, d being a dissimilarity measure, the smaller the value

the more similar the compared lists.

Motivated by the fact that many distances for permutation

groups are asymptotically normal [50], proven for the Canberra

distance in [14,15], a natural choice for the function f is the mean:

d(L1,L2)~
1

DSt1
D:DSt2

D

X
a[St1

X
b[St2

d(a,b) : ð3Þ

We point out again that this definition differs from Eq. (2), first

introduced in [8], because the relation between the size of actually

used features and the size of the original feature set is now taken

into account here. In Fig. 1 we present a complete worked out

example of the operational pipeline needed to compute Ca(L1,L2)
on two partial lists.

Consider the decomposition of the set F into the three disjoint

sets, ignoring the rank of the features: F12~L1\L2,
F

12
~F \ L1|L2ð Þ and F1=2~ L1|L2ð Þ\ L1\L2ð Þ: Then, if

d~Ca is the Canberra distance and L~
1

(p{l1)!(p{l2)!
, the

Eq. (3) can be split as follows into three terms:

Comparison of Partial Lists
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Ca(L1,L2)~
1

jSt1
j

1

jSt2
j
X

a[St1

X
b[St2

Ca(a,b)

~L
X

a[Sp,b[Sp

a(i)~t1(i) if i[L1

b(i)~t2(i) if i[L2

Xp

i~1

ja(i){b(i)j
a(i)zb(i)

~L
X

(a,b)[St1
|St2

X
Fi[F

ja(i){b(i)j
a(i)zb(i)

~L
X
Fi[F

X
(a,b)[St1

|St2

ja(i){b(i)j
a(i)zb(i)

~L
X

Fi[F12|F1=2|F
12

X
(a,b)[St1

|St2

ja(i){b(i)j
a(i)zb(i)

,

and thus

Ca(L1,L2)~L
X

Fi[F12

X
(a,b)[St1

|St2

ja(i){b(i)j
a(i)zb(i)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T1

0
BBBB@

z
X

Fi[F1=2

X
(a,b)[St1

|St2

ja(i){b(i)j
a(i)zb(i)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T2

z
X

Fi[F
12

X
(a,b)[St1

|St2

ja(i){b(i)j
a(i)zb(i)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T3

1
CCCCCA

~L T1zT2zT3ð Þ :

ð4Þ

We call Eq. 4 the Complete Canberra Measure between L1 and

L2: The three terms in brackets can be interpreted respectively as:

T1 is the component computed over the features appearing in

both lists L1, L2;
T2 takes care of the elements occurring only in one of the two

lists;

T3 is the component concerning the elements of the original

feature set appearing neither in L1 nor in L2:
Expanding the three terms T1, T2, T3 a closed form can be

obtained, so that the Complete Canberra Measure between partial

lists is defined as.

Ca(L1,L2)~
X

i[L1\L2

Dt1(i){t2(i)D
t1(i)zt2(i)

�

{
D(l2z1,p,t1(i))

p{l2
ð5Þ

{
D(l1z1,p,t2(i))

p{l1

�

z
1

p{l2
l1(p{l2){2ep(l1)z2el2

(l1)
� �

z
1

p{l1
l1(p{l1)z4el1

(l1)z2j(l2)
�

{ 2j(l1){2el1
(l2){2ep(l2)

z (pzl1)(l2{l1)zl1(l1z1)

{ l2(l2z1)Þ

z A: 2j(p){2j(l2){2el1
(p)z2el1

(l2)
�

{ 2ep(p)z2ep(l2)z(pzl1)(p{l2)

z l2(l2z1){p(pz1)Þ ,

where A~
DF \(L1|L2)D
(p{l1)(p{l2)

.

The availability of a closed form (5) for Eq. (4) allows calculating

the dissimilarity measure between L1 and L2 without looping

through all possible pairs of complete lists with L1 or L2 as top-k

lists, with a consistent benefit in terms of computing time.

The sum generating the term T3 in Eq. (4) runs over the subset

F
12

collecting all elements of the original feature set which do not

occur in any of the two lists. Thus this part of the formula is

independent from the positions of the elements occurring in the

partial lists L1, L2: By neglecting this term, we obtain the Core

Canberra Measure, defined in the above notations as.

Core(L1,L2)~L(T1zT2) ,

Figure 1. Operational steps in computing the Complete Canberra Dissimilarity Measure between two partial lists. Example on two
lists of length 3 and 4 on an alphabet of 6 features, by the closed form Eq. (5) and through the open formula Eq. (3).
doi:10.1371/journal.pone.0036540.g001
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that is, the sum of the components of the Complete Canberra

Measure depending on the positions of the elements in the

considered partial lists. In terms of closed form, this corresponds to

setting A~0 in Eq. (5) in the definition of Complete Canberra

Measure.

Throughout the paper, the values of both instances of the

Canberra Measure are normalized by dividing them by the

expected value EfCa(Sp)g on the whole permutation group Sp

reported in Eq. (1).

A set of random (complete) lists have a Complete Canberra

Measure very close to one, even for very small sets, as evidenced in

Table 1 where we collect mean and variance over 10 replicated

experiments of the normalized Canberra stability indicator for

different sized sets of complete lists of various lengths. Note that,

since the expected value is not the highest one, dissimilarity values

greater than one can occur.

When the number of features in F not occurring in L1, L2

becomes larger (for instance, DF
12

D§
ffiffiffi
p
p

), the non-core component

gets numerically highly preeminent: in fact, the term T3 considers

all the possible (p{l1)!(p{l2)! lists in Sp having L1 and L2

respectively as top lists; as an example, for p~10000 and L1, L2

two partial lists with 100 elements, this corresponds to evaluate the

distance among 9900!2^2:2:1070519 lists of elements not occurring

in L1, L2: When the number of lists of unselected elements grows

larger, the average distance among them would get closer to the

expected value of the Canberra distance on Sp because of the

Hoeffding’s Theorem.

This is quite often the case for biological ranked lists: for

instance, selecting a panel of biomarkers from a set of probes

usually means choosing fewer than a hundred features out of an

original set of several thousands. Thus, considering the Core

component instead of the Complete takes care of this dimension-

ality reduction of the considered problem.

As an example, in Table 2 we show the values of the normalized

distances of two partial lists of length 10 extracted from an original

set F with p~10c features (c~2,3,4,5), in the three cases of

identical partial lists, randomly permuted partial lists (which yields

average distance) and maximally distant partial lists. For the

identification of the permutation maximizing the Canberra

distance between lists see [14,15]. In Fig. 2 and Fig. 3 the ratio

between Core and Canberra measures are plotted versus the ratio

between the length of partial lists and the size of the full feature set,

for about 7000 instances of couples of randomly permuted partial

lists of the same length. When the number of elements of the

partial lists is a small portion of the total feature, the Complete and

the Core distance are almost linearly dependent. In contrast, when

such ratio approaches one the ratio between the two measures

follows a different function.

In summary, the Core measure is more convenient to better

focus on differences occurring among lists of relatively small

length. On the other hand, the Complete version is the elective

choice when the original feature set is large and the partial list

lengths are of comparable order of magnitude of DF D:

Expansion of Eq. (4)
The three terms occurring in Eq. (4) can be expanded through a

few algebraic steps in a more closed form, reducing the use of sums

wherever possible.

T1: common features. The first term is the component of

the distance computed over the features appearing in both lists L1,
L2, thus no complete closed form can be written. The expansion

reads as follows:

X
Fi[F12

X
(a,b)[St1

|St2

Da(i){b(i)D
a(i)zb(i)

~
X

i[L1\L2

X
(a,b)[St1

|St2

Da(i){b(i)D
a(i)zb(i)

~
X

i[L1\L2

DSt1
D:DSt2

D
Dt1(i){t2(i)D
t1(i)zt2(i)

~(p{l1)!(p{l2)!
X

i[L1\L2

Dt1(i){t2(i)D
t1(i)zt2(i)

Table 1. Mean and variance of the Canberra stability
indicator over 10 replicates for sets with n~5,10,25,50,100
random lists with p~10,100,1000,1000 features.

n p Mean Variance

5 10 0.962656 0.0047628

5 100 1.000541 0.0000557

5 1000 0.997902 0.0000141

5 10000 0.999631 0.0000031

10 10 1.012907 0.0003280

10 100 1.000535 0.0000432

10 1000 0.999643 0.0000081

10 10000 1.000165 0.0000003

25 10 0.997118 0.0003237

25 100 1.000279 0.0000108

25 1000 1.000063 0.0000020

25 10000 1.000107 0.0000001

50 10 0.998381 0.0000583

50 100 1.000145 0.0000014

50 1000 1.000122 0.0000001

50 10000 0.999999 0.0000000

100 10 0.998931 0.0000178

100 100 1.000476 0.0000004

100 1000 0.999885 0.0000002

100 10000 0.999989 0.0000000

doi:10.1371/journal.pone.0036540.t001

Table 2. Core and Complete normalized Canberra
dissimilarity measure for two partial lists of 10 features
extracted from a set of DF D~10c features.

Lists Dist. c = 2 c = 3 c = 4 c = 5

Identical Comp. 0.692830 0.960499 0.995858 0.999583

Random Core 0.078038 0.006368 0.000950 0.000109

Random Comp. 0.770868 0.966867 0.996809 0.999692

Max.Dist. Core 0.128448 0.012665 0.001265 0.000126

Max.Dist. Comp. 0.821278 0.973164 0.997123 0.999709

The partial lists are either identical, randomly permuted (average distance) or
maximally distant. The Core Measure for Identical partial lists is zero.
doi:10.1371/journal.pone.0036540.t002
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~L{1
X

i[L1\L2

Dt1(i){t2(i)D
t1(i)zt2(i)

:

T2: features occurring only in one list. The second term

regards the elements occurring only in one of the two lists. By

defining l1~(p{l1)!(p{l2{1)! and l2~(p{l2)!(p{l1{1)!, the

term can be rearranged as:
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T3: unselected features. The last term represents the

component of the distance computed on the elements of the

original feature set not appearing in L1 or L2: Here a complete

closed form can be reached:
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Figure 2. Ratio between Core and Complete measures vs. ratio
between the length of partial lists and the size of the full
feature set for about 7000 instances of couples of partial lists.
Lists pairs have the same length and they are randomly permuted, with
partial lists length ranging between 1 and 5000 and full set size ranging
between 10 and 100000.
doi:10.1371/journal.pone.0036540.g002

Figure 3. Zoom of the bottom left corner of Figure 2. Core and
Complete measures are proportional when the ratio between the
length of partial lists and the size of the full feature set is less than 0.15.
doi:10.1371/journal.pone.0036540.g003
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The Borda List
To summarize the information coming from a set of lists L into

a single optimal list, we adopt the same strategy of [8], i.e. an

extension of the classical voting theory methods known as the

Borda count [51,52]. This method derives a single list from a set of

B lists on p candidates F1, . . . ,Fp by ranking them according to a

score s(Fi) defined by the total number of candidates ranked

higher than Fi over all lists. Our extension consists in first

computing, for each feature Fj , its number of extractions (the

number of lists where Fj appears) ej~Dfi[f1 . . . Bg : Fj[LigD and

its average position number ak(j)~
1

ej

X
fi[f1...Bg:Fj[Lig

ti(j) and

then ranking the features by decreasing extraction number and by

increasing average position number when ties occur. The resulting

list will be called optimal list or Borda list. The equivalence of this

ranking with the original Borda count is proved in [8].

Implementation
Computing stability indicator for a set of B partial lists in a

original set of p features has a computational cost of O(B2p): The

computation of the stability indicator for partial lists is publicly

Figure 4. Analysis pipeline for the classifier/feature ranking methods: a 10065-fold CV is applied separately on the two cohorts,
and a set of models is build on increasing number of important features, ranked by discriminant power for the employed classifier.
At the same time, the stability level of the set if derived lists is computed, and all models are evaluated on a accuracy-stability plot.
doi:10.1371/journal.pone.0036540.g004

Table 3. Confusion matrix for a binary problem T/F: true/
false; TP+FN: all positive samples, TN+FP: all negative samples.

Actual value

Positive Negative

Predicted Positive TP FP

value Negative FN TN

doi:10.1371/journal.pone.0036540.t003

Table 4. MCC and Core Canberra values for the two Setlur
datasets for lSVM classifiers.

step US Sweden

MCC CI 95% Core MCC CI 95% Core

1 0.00 (0.00;0.00) 0.00 0.00 (0.00;0.00) 0.00

5 0.00 (0.00;0.00) 0.00 0.00 (0.00;0.00) 0.00

10 0.00 (0.00;0.00) 0.01 0.00 (0.00;0.00) 0.01

15 0.00 (0.00;0.00) 0.01 0.00 (0.00;0.00) 0.01

20 0.00 (0.00;0.00) 0.02 0.00 (0.00;0.00) 0.02

25 0.00 (0.00;0.00) 0.02 0.00 (0.00;0.00) 0.02

50 0.00 (0.00;0.00) 0.04 0.00 (0.00;0.00) 0.04

100 0.00 (0.00;0.00) 0.08 0.00 (0.00;0.00) 0.08

1000 0.51 (0.47;0.56) 0.52 0.08 (0.05;0.12) 0.52

5000 0.53 (0.49;0.58) 0.88 0.23 (0.20;0.27) 0.91

6144 0.53 (0.49;0.58) 0.59 0.24 (0.20;0.27) 0.62

doi:10.1371/journal.pone.0036540.t004
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available in the Open Source Python package for statistical

machine learning mlpy (http://mlpy.fbk.eu) [37], since version

1.1.2. Formula (5) is used for computing both the Complete and

the Core Canberra Measures. The algorithm implementation is in

ANSI C to enhance efficiency, and linking to the Python

framework is realized by means of the Cython interface.

Results

We demonstrate an application of the partial list approach in

functional genomics. We consider a profiling experiment on a

publicly available prostate cancer dataset: the task is to select a list

of predictive biomarkers and a classifier to predictively discrim-

inate prostate cancer patients carrying the TMPRSS2-ER gene

fusion. We apply the approach to compare different configurations

of the learning scheme (e.g., the classifier, or the ranking

algorithm). In particular, the quantitative analysis of the stability

of the ranked partial lists produced by replicated cross-validations

is used to select the desired panel and to detect differences between

the two cohorts in the dataset.

Data Description
The Setlur Prostate Cancer Dataset was described in [53] and it

is publicly available from GEO (website http://www.ncbi.nlm.nih.

gov/geo, accession number GSE8402); gene expression is

measured by a custom Illumina DASL Assay of 6144 probes

known from literature to be prostate cancer related. Setlur and

colleagues identified a subtype of prostate cancer characterized by

the fusion of the 59-untranslated region of the androgen-regulated

transmembrane protease serine 2 (TMPRSS2) promoter with

erythroblast transformation-specific transcription factor family

members (TMPRSS2-ER). A major result of the original paper

is that this common fusion is associated with a more aggressive

clinical phenotype, and thus a distinct subclass of prostate cancer

exists, defined by this fusion. The profiling task consists in

separating positive TMPRSS2-ERG gene fusion cases from

negative ones from transcriptomics signals, thus identifying a

subset of probes associated to the fusion. The database includes

two different cohorts of patients: the US Physician Health Study

Prostatectomy Confirmation Cohort, with 41 positive and 60

negative samples, and the Swedish Watchful Waiting Cohort,

consisting of 62 positive and 292 negative samples. In what

follows, we will indicate the whole dataset as Setlur, and its two

cohorts by the shorthands US and Sweden. The investigated

problem is a relatively hard task, as confirmed also by the similar

study conducted on a recently updated cohort [54].

Predictive Biomarker Profiling Setup
Following the guidelines of the MAQC-II study [35], a basic

Data Analysis Protocol (DAP for short) is applied to both cohorts

of the Setlur dataset, namely a stratified 1065-CV, using three

different classifiers: Diagonal Linear Discriminant Analysis

(DLDA), linear Support Vector Machines (lSVM), and Spectral

Regression Discriminant Analysis (SRDA). A workflow represen-

Table 5. MCC and Core Canberra values for the two Setlur
datasets for SRDA classifiers.

step US Sweden

MCC CI 95% Core MCC CI 95% Core

1 0.67 (0.61;0.72) 0.00 0.40 (0.36;0.43) 0.00

5 0.55 (0.51;0.60) 0.00 0.30 (0.26;0.34) 0.00

10 0.57 (0.53;0.62) 0.01 0.33 (0.29;0.36) 0.01

15 0.57 (0.53;0.62) 0.01 0.36 (0.32;0.39) 0.01

20 0.57 (0.53;0.62) 0.02 0.39 (0.34;0.43) 0.02

25 0.57 (0.52;0.61) 0.02 0.43 (0.39;0.47) 0.02

50 0.61 (0.57;0.65) 0.04 0.44 (0.41;0.47) 0.04

100 0.59 (0.54;0.64) 0.08 0.44 (0.40;0.48) 0.08

1000 0.50 (0.9;0.55) 0.52 0.47 (0.43;0.50) 0.51

5000 0.51 (0.46;0.56) 0.89 0.46 (0.43;0.50) 0.84

6144 0.51 (0.46;0.56) 0.60 0.46 (0.42;0.49) 0.52

doi:10.1371/journal.pone.0036540.t005

Table 6. AUC values for the two Setlur datasets for SRDA and lSVM classifiers.

step SRDA lSVM

US Sweden US Sweden

AUC CI 95% AUC CI 95% AUC CI 95% AUC CI 95%

1 0.87 (0.84;0.89) 0.79 (0.77;0.80) 0.87 (0.84;0.89) 0.51 (0.44;0.58)

5 0.83 (0.81;0.85) 0.79 (0.77;0.80) 0.84 (0.82;0.86) 0.78 (0.76;0.81)

10 0.86 (0.84;0.88) 0.80 (0.79;0.82) 0.86 (0.84;0.88) 0.79 (0.78;0.81)

15 0.88 (0.86;0.89) 0.82 (0.81;0.83) 0.87 (0.85;0.89) 0.80 (0.79;0.82)

20 0.88 (0.86;0.90) 0.83 (0.81;0.84) 0.88 (0.86;0.90) 0.81 (0.80;0.82)

25 0.89 (0.87;0.91) 0.84 (0.82;0.85) 0.89 (0.87;0.91) 0.81 (0.79;0.82)

50 0.90 (0.89;0.92) 0.84 (0.83;0.86) 0.90 (0.88;0.92) 0.82 (0.80;0.83)

100 0.90 (0.88;0.92) 0.85 (0.84;0.86) 0.90 (0.88;0.91) 0.82 (0.81;0.84)

1000 0.86 (0.85;0.88) 0.83 (0.81;0.84) 0.86 (0.84;0.88) 0.83 (0.82;0.85))

5000 0.86 (0.84;0.88) 0.82 (0.81;0.84) 0.85 (0.83;0.87) 0.83 (0.81;0.84))

6144 0.86 (0.84;0.88) 0.82 (0.81;0.84) 0.85 (0.83;0.87) 0.83 (0.81;0.84))

doi:10.1371/journal.pone.0036540.t006
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tation of this pipeline is shown in Fig. 4. We describe here the

main characteristics of the cited algorithms.

DLDA [55] implements the maximum likelihood discriminant

rule, for multivariate normal class densities, when the class

densities have the same diagonal variance-covariance matrix; in

this model variables are uncorrelated, and for each variable, the

variance is the same for all classes. The algorithm employs a

simple linear rule, where a sample is assigned to the class k

minimizing the function
Xp

j~1

xj{xkj

ŝs2
j

, for p the number of

variables, xj the value of the test sample x on gene j, xkj the sample

mean of class k and gene j, and ŝs2
j the pooled estimate of the

variance of gene j. Although concise and based on strong

assumptions (independent multivariate normal class densities),

DLDA is known to perform quite well, even when the number of

cases is smaller than the number of variables, and it has been

successfully employed for microarray analysis in extensive studies

[35]. Furthermore, a score is assigned to each feature which can be

interpreted as a feature weight, allowing direct feature ranking and

selection. Details can be found in [56–58].

lSVM [59] is an algorithm aimed at finding an optimal

separating hyperplane between the classes. When the classes are

linearly separable, the hyperplane is located so that it has maximal

margin (i.e., so that there is maximal distance between the

hyperplane and the nearest point of any of the classes). When the

data are not separable and thus no separating hyperplane exists,

the algorithm tries to maximize the margin allowing some

classification errors subject to the constraint that the total error

is bounded. The coefficients of the detected hyperplane are then

used as weights for feature ranking.

SRDA [60] is a member of the Discriminant Analysis

algorithms family, that exploits the regression framework to

improve computational efficiency. Spectral graph analysis is used

for solving a set of regularized least squares problems thus avoiding

the eigenvector computation. A regularization value a is the only

parameter needed to be tuned. For SRDA, too, a score is assigned

to each feature from which a feature weight is derived for feature

ranking purposes. Details on both classification and weighting are

discussed in [60,61].

A tuning phase through landscaping (i.e., testing a set of

parameter values on a grid) identified 10{3 as the optimal value

for the lSVM regularizer C on both dataset, and 103 and 104 as the

two values for the SRDA parameter a respectively on the US and

the Sweden cohort (no tuning is needed for the DLDA classifier).

Furthermore, in the lSVM case the dataset is standardized to

mean zero and variance one.

As the generic feature ranking algorithm we adopt a variant of

the basic RFE algorithm, described in [62]: the classifier is run on

Figure 5. MCC and Canberra Core values on the two Setlur datasets computed by using the SRDA, lSVM, and DLDA models. Each
point indicates a model with a fixed number of features, marked above the corresponding 95% Student bootstrap CI line.
doi:10.1371/journal.pone.0036540.g005
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the training set and the features ranked according to their

contribution to the classification. At each step, the less contributing

feature is discarded and the classifier retrained, until only the top

feature remains. Since RFE is computationally very costly, many

alternative lighter versions appeared in literature: most of them

consisting in discarding more than one feature at each step. The

number of features to be discarded at each step being discarded is

either fixed of determined by a function of the n remaining

features. These alternative methods have a major drawback in the

fact that they are parametric, so they ignore the structure of the

resulting feature weights. The Entropy based variant E–RFE

instead takes into account such weight distribution, and adaptively

discards a suitable number of features after the evaluation of a

entropy function: in [63] the authors show that, with respect to the

original algorithm, the computational cost is considerably lower,

but the resulting accuracy is comparable. Moreover, when the

number of features is reduced to less than a shortlist length z, E-

RFE reverts back to RFE: in this case, z~100: Here the E–RFE

ranking algorithm is run on the training portion of the cross-

validation split and classification models with increasing number of

best ranked features are computed on the test part.

Measuring Classifier Performance
Classifier performance evaluation is assessed by the Matthew

Correlation Coefficient (MCC) [64] defined in Eq. (6)) and the

Area Under the ROC Curve (AUC), as in Eq. (7). Measures are

averaged over the cross-validation replicates, and reported for

Figure 6. Zoom of MCC and Canberra Core values computed by
using the SRDA, lSVM, and DLDA models on the two Setlur
datasets. Each point indicates a model with a fixed number of features,
marked above the corresponding 95% Student bootstrap CI line.
doi:10.1371/journal.pone.0036540.g006

Table 7. Borda optimal lists for SRDA models on the two
Setlur datasets.

Sweden Ranking in US US
Ranking in
Sweden

DAP2_5229 1 DAP2_5229 1

DAP1_2857 5 DAP1_5091 18

DAP4_2051 3 DAP4_2051 3

DAP1_1759 13 DAP2_1680 51

DAP1_2222 19 DAP1_2857 2

DAP4_0822 44 DAP3_0905 8

DAP2_0361 403 DAP2_5769 77

DAP3_0905 6 DAP4_2271 36

DAP2_5076 24 DAP4_3958 44

DAP3_2016 16 DAP4_2442 2734

DAP4_4217 497

DAP2_0721 421

DAP4_1360 18

DAP3_1617 15

DAP1_5829 529

DAP3_6085 12

DAP4_2180 26

DAP1_5091 2

DAP1_2043 1989

DAP4_2027 2227

DAP4_1375 145

DAP4_5930 3455

DAP4_4205 25

DAP1_4950 166

DAP4_1577 283

In boldface, probes common to the two optimal lists. In italics, probes included
in the 87-gene signature of the original paper [53]. 17 probes out of 30 are
common to the 87-gene signature in [53].
doi:10.1371/journal.pone.0036540.t007

Table 8. MCC values for SRDA and DLDA optimal models on
the Setlur dataset.

Borda Training Test SRDA DLDA

US US Sweden 0.39 0.44

Sweden Sweden US 0.42 0.48

US Sweden US 0.48 0.63

Sweden US Sweden 0.51 0.9

US Sweden Sweden 0.39 0.9

Sweden US US 0.69 0.71

US US US 0.71 0.78

Sweden Sweden Sweden 0.55 0.52

doi:10.1371/journal.pone.0036540.t008
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different feature set sizes. AUC is computed by Wilcoxon-Mann-

Whitney formula Eq. (7) to extend the measure to binary

classifiers. In [65–67] the equivalence with other formulations is

shown: in particular, it is proved that the Wilcoxon-Mann-

Whitney formula is an unbiased estimator of the classical AUC.

The two performance metrics adopted have been chosen because

they are generally regarded as being two of the best measures in

describing the confusion matrix (see Table 3) of true and false

positives and negatives by a single number. MCC’s range is

½{1,1�, where MCC = 0 corresponds to the no-information error

rate, which is, for a dataset with P positive samples and N negative

samples, equivalent to
minfP,Ng

PzN
: MCC = 1 is the perfect

classification (FP = FN = 0), while MCC = 21 denotes the worst

possible performance TN = TP = 0.

MCC~
TP:TN{FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p , ð6Þ

.

with TN,FP,FN,TP as in Tab: 3 :

AUC~

Pnz
i~1

Pn{
j~1 I(f (xz

i )wf (x{
j )

nzn{

, ð7Þ

.

where f classifier,fxz
i g

nz
1 positive,fx{

j g
n{
1 negative:

Profiling Accuracy and Stability
In Tabless 4 and 5 we report the performances on lSVM and

SRDA on discrete steps of top ranked features ranging from 5 to

6144, with 95% bootstrap confidence intervals; for comparison

purposes we also report AUC values in Table 6. For the same

values k of the feature set sizes, the Canberra Core Measure is also

computed on the top-k ranked lists as produced by the E–RFE

algorithm: the stability is also shown in the same tables. DLDA

automatically chooses the optimal number of features to use in

order to maximize MCC by tuning the internal parameter nf ,
starting from the default value nf ~0, thus it is meaningless to

evaluate this classifier on a different feature set size. In particular,

DLDA reaches maximal performances with one feature. This is

the same for all replicates, DAP2_5229, leading to a zero stability

value: the resulting MCC is 0.26 (CI: (0.18, 0.34)) and 0.16 (CI:

0.12, 0.19) respectively for the US and the Sweden cohort. As a

reference, 5-CV with 9-NN, which has higher performance than

k~f5,7,11g, has MCC 0.36 on both cohorts with all features.

All results are displayed in the performance/stability plots of

Fig. 5 and 6. These plots can be used as a diagnostic for model

selection to detect a possible choice for the optimal model as a

reasonable compromise between good performances (towards the

Figure 7. Boxplot of the DAP2_5229 expression value separately for the two Setlur datasets and the two class labels.
doi:10.1371/journal.pone.0036540.g007

Table 9. MCC values for SRDA and DLDA models with the
only feature DAP2_5229 and with the global optimal list.

SRDA DLDA

Training Test
DAP2
5229

global
optimal

DAP2
5229

global
optimal

US Sweden 0.47 0.47 0.49 0.48

Sweden US 0.56 0.39 0.52 0.66

Sweden Sweden 0.50 0.55 0.39 0.56

US US 0.68 0.73 0.68 0.76

doi:10.1371/journal.pone.0036540.t009
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rightmost part of the graph) and good stability (towards the bottom

of the graph). For instance, in the case shown we decide to use

SRDA as the better classifier, using 25 features on the Sweden

cohort and 10 on the US cohort: looking at the zoomed graph in

Fig. 6, if we suppose that the points are describing an ideal Pareto

front, the two chosen models are the closest to the bottom right

corner of the plots. The corresponding Borda optimal lists for

SRDA models on the two Setlur datasets are detailed in Table 7:5

probes are common to the two lists, and, in particular, the top

ranked probe is the same. In Table 8 we list the MCC obtained by

applying the SRDA and DLDA models on the two Setlur cohorts

(exchanging their role as training and test set) by using the two

optimal Borda lists.

The probe DAP2_5229 is confirmed to have a relevant

discriminative and predictive importance, by the classwise boxplots

on the two cohorts of Fig. 7. As detailed in GEO and in NCBI

Nucleotide DB (http://www.ncbi.nlm.nih.gov/nuccore/), its Re-

fSeq ID is NM_004449, whose functional description is reported as

‘‘v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG),

transcript variant 2, mRNA’’ (information updated on 28 June

2009). In Table 9 we analyse the performances obtained by a SRDA

and a DLDA model with the sole feature DAP2_5229 on all

combinations of US and Sweden cohort as training and test set. The

high performance reached by these single feature models are

supporting the claim in [68] of the global effectiveness of single-gene

models in microarray studies. Finally, if we consider as the global

optimal list O the list of all 30 distinct features given as the union of

Figure 8. MCC for SRDA and DLDA models on increasing number of features extracted from the global list from 1 to 30 on the
Setlur data.
doi:10.1371/journal.pone.0036540.g008

Figure 9. Analysis pipeline for the filtering methods: a 90%/10% split is repeated 100 times, and the selected filter method applied
on the training portion. The stability indicator is then computed for the corresponding set of lists.
doi:10.1371/journal.pone.0036540.g009
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the Borda list in Table 7, obtaining for SRDA and DLDA models

the performances listed in Table 9.

To check the consistency of the global list O, we run a

permutation test: we randomly extract 30 features out of the

original 6144 features, and we use as the p-value the number of

times the obtained performances (DLDA models) are better than

those obtained with O, divided by the total number 104 of

experiments. The resulting p-values are less than 10{3 for all four

combinations of using the two cohorts as training and test set, thus

obtaining a reasonable significance of the global optimal list O.

Nevertheless, if the same permutation test is run with the feature

DAP2_5229 always occurring in the chosen random feature sets,

the results are very different: namely, the p-value results about 0.1,

thus indicating a small statistical significance of the obtained global

list. These tests seem to indicate that the occurrence of

DAP2_5229 plays a key role in finding a correct predictive

signature.

We then performed a further experiment to detect the

predictive power of O as a function of its length. We order the

global list keeping DAP2_5229, DAP4_2051, DAP1_2857,

DAP3_0905, and DAP1_5091 as the first five probes and compute

the performances of a DLDA model by increasing the number of

features extracted from the global list from 1 to 30. The result is

shown in Fig. 8: for many of the displayed models a reduced

optimal list of about 10–12 features is sufficient to get almost

optimal predictive performances. A permutation test on 12

features (with DAP2_5229 kept as the top probe) gives a p-value

of 10{2:
A final note: our results show a slightly better (not statistically

significant) AUC in training than the one found by the authors of

the original paper [53], both in the Sweden and in the US cohort.

Moreover, as many as 17 out of 30 genes included in the global

optimal list are member of the 87-gene signature shown in the

original paper.

Comparison with Filter Methods
The multivariate machine learning methods are usually seen as

alternatives to the families of statistical univariate algorithms

aimed at identifying the genes which are differentially expressed

between two groups of samples. When the sample size is small

univariate methods may be quite tricky, since the chances of

selecting false positives are higher. Many algorithms have been

Figure 10. Canberra core evaluated on the Setlur dataset on B = 100 repeated filtering experiments on 90% of the data.
doi:10.1371/journal.pone.0036540.g010
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devised to deal with the detection of differentially expressed genes:

an important family is represented by the filter methods, which

essentially consist in applying a suitable statistic to the dataset to

rank the genes in term of a degree of differential expression, and

then deciding a threshold (cutoff) on such degree to discriminate

the differentially expressed genes.

The seven statistics considered in this experiment are Fold

Change (FC) [69], Significance Analysis of Microarray (SAM)

[69], B statistics [70], F statistics [71], t statistics [72], and mod-F

and mod-t statistics [73], which are the moderated version of F and

t statistics. The FC of a given gene is defined here as the ratio of

the average expression value computed over the two groups of

samples. All filtering statistics are computed by using the package

DEDS [74] in the BioConductor extension [75] of the statistical

environment R [76].

Reliability of a method over another is a debated issue in

literature: while some authors believe that the lists coming from

using FC ratio are more reproducible than those emerging by

ranking genes according to the P-value of t-test [77,78], others [79]

point out that t-test and F-test better address some FC deficiencies

(e.g., ignoring variation within the same class) and they are

recommended for small sample size datasets. Most researchers also

agree on the fact that SAM [69,80–83] outperforms all other three

methods because of its ability to control the false discovery rate.

Moreover, in [84] the authors show that motivation for the use of

either FC or mod-t is essentially biological while ordinary t statistic

is shown to be inferior to the mod-t statistic and therefore should

be avoided for microarray analysis. In the extensive study [72],

alternative methods such as Empirical Bayes Statistics, Between

Group Analysis and Rank Product have been taken into account,

applying them to 9 publicly available microarray datasets. The

resulting gene lists are compared only in terms of number of

Figure 11. Zoom of Fig. 10 on the 80%–100% threshold zone. K~105.
doi:10.1371/journal.pone.0036540.g011

Table 10. Length of the Borda lists for different filtering
methods at 75% threshold on the Setlur dataset.

F FC mod-F mod-t t B SAM

Sweden 1 17 25 759 326 28 366

US 1 3 6 208 367 7 149

doi:10.1371/journal.pone.0036540.t010
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overlapping genes and predictive performance when used as

features to train four different classifiers.

The seven filtering algorithms of the previous subsection are

applied to the Setlur dataset by using 100 resamples on 90% of the

data on both the US and Sweden cohorts separately, as shown in

Fig. 9. The Canberra Core values of the lists at different values of

the filtering thresholds are shown in Fig. 10, together with a zoom

(Fig. 11) on the stricter constraints area: the plots highlight the

different behaviours of the groups ft,mod{t,SAMg and

fF ,mod{F ,Bg and of the singleton FC in both cases.

By considering a cutoff threshold of the 75% of the maximal

value, we retrieve 14 sets of ranked partial lists, from which 14

Borda optimal lists are computed. In Table 10 we list the lengths

of the Borda lists for each filtering method and cohort. As a rough

set-theoretical comparison, we list in Table 11 the probes common

to more than three filtering methods. We note that only three

probes also appear in the corresponding SRDA Borda list.

In order to get a more refined evaluation of dissimilarity, we also

compute the Core Canberra Measures between all Borda optimal

lists and between all 75%-threshold partial lists for filtering

methods, together with the corresponding partial and Borda lists

for the SRDA models: all results are reported in Table 12. By

using the Core measures, we draw two levelplots (for both

distances on Borda lists and on the whole partial lists sets),

computing also a hierarchical cluster with average linkage and

representing also the corresponding dendrograms in Fig. 12 and

Fig. 13.

A structure emerging from the partial list dissimilarity measures

has been highlighted by using a Multidimensional Scaling (MDS)

on two components, as shown in Fig. 14 and Fig. 15. A few facts

emerge: in both cohorts, the results on the Borda lists and on the

whole sets of lists are similar, indicating that the Borda method is a

good way to incorporate information into a single list. This result

confirms the grouping detected by machine learning in the

previous subsection. The differences between lists in the two

cohorts are quite large, while the lists coming from the profiling

experiments are not deeply different from those emerging by the

filtering methods.

Table 11. List of probes common to more than three filtering
methods.

Sweden US

gene extractions gene extractions

DAP2_1768 6 DAP2_4092 5

DAP1_1949 5 DAP2_5047 5

DAP1_4198 5 DAP2_5229 5

DAP1_5095 5 DAP4_2442 5

DAP2_1037 5 DAP4_2051 4

DAP2_1151 5

DAP2_3790 5

DAP2_3896 5

DAP2_5650 5

DAP3_2164 5

DAP3_4283 5

DAP3_5834 5

DAP4_1974 5

DAP4_2316 5

DAP4_4178 5

(13 genes) 4

In boldface, the three probes appearing in the corresponding SRDA Borda list.
For the Swedish cohort, 13 genes are extracted four times.
doi:10.1371/journal.pone.0036540.t011

Table 12. Core Canberra Dissimilarity Measure between Borda optimal lists (upper triangular matrix) and between all partial lists
(lower triangular matrix, |105) for filtering methods (75% threshold) and SRDA models.

F FC modF modt t B SAM SRDA F FC modF modt t B SAM SRDA

F & 0.007 0.011 0.230 0.115 0.012 0.127 0.010 0.000 0.001 0.003 0.077 0.127 0.003 0.057 0.004

FC 122 & 0.016 0.231 0.116 0.018 0.128 0.017 0.007 0.008 0.009 0.084 0.134 0.009 0.064 0.010

modF 69 129 & 0.228 0.114 0.002 0.126 0.021 0.011 0.012 0.013 0.087 0.136 0.013 0.067 0.014

modt 7324 7337 7307 & 0.165 0.228 0.163 0.239 0.230 0.231 0.232 0.303 0.352 0.232 0.283 0.234

t 2418 2441 2401 7379 & 0.115 0.108 0.125 0.115 0.116 0.117 0.192 0.244 0.118 0.173 0.119

B 73 132 75 7308 2402 & 0.127 0.022 0.012 0.013 0.014 0.088 0.138 0.014 0.068 0.016

SAM 3925 3924 3912 7287 4084 3914 & 0.136 0.127 0.128 0.129 0.201 0.250 0.130 0.181 0.131

SRDA 998 1116 1067 8326 3423 1071 4916 & 0.010 0.009 0.012 0.084 0.133 0.012 0.062 0.011

F 19 115 63 7317 2412 66 3919 1004 & 0.001 0.003 0.077 0.127 0.003 0.057 0.004

FC 51 159 106 7360 2455 110 3962 976 55 & 0.004 0.077 0.127 0.004 0.057 0.003

modF 52 111 59 7313 2408 63 3915 1049 45 88 & 0.077 0.127 0.001 0.057 0.005

modt 1124 1216 1162 8393 3478 1165 4990 2032 1124 1123 1126 & 0.066 0.078 0.052 0.078

t 2194 2284 2229 9449 4535 2233 6048 3070 2194 2195 2195 2081 & 0.128 0.094 0.128

B 60 120 67 7321 2416 71 3923 1057 53 97 29 1126 2196 & 0.058 0.006

SAM 1002 1095 1041 8283 3371 1045 4879 1843 1003 997 1004 1188 2190 1004 & 0.057

SRDA 385 504 455 7711 2806 459 4311 1015 392 370 436 1406 2470 445 1241 &

Rows and columns 1–8 (Italic): Sweden cohort; rows and columns 9–16: US cohort.
doi:10.1371/journal.pone.0036540.t012
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Figure 12. Levelplot of the values computed on the lists produced by filtering methods (75% threshold) and SRDA models with
Complete Canberra Measure computed on their Borda lists.
doi:10.1371/journal.pone.0036540.g012

Figure 13. Levelplot of the values computed on the lists produced by filtering methods (75% threshold) and SRDA models, with
Complete Canberra Measure computed on their whole list sets.
doi:10.1371/journal.pone.0036540.g013
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Figure 14. Multidimensional Scaling (MDS) on two components computed on the lists produced by filtering methods (75%
threshold) and SRDA models, with Complete Canberra Measure computed on their Borda lists.
doi:10.1371/journal.pone.0036540.g014

Figure 15. Multidimensional Scaling (MDS) on two components computed on the lists produced by filtering methods (75%
threshold) and SRDA models, with Complete Canberra Measure computed on their whole lists.
doi:10.1371/journal.pone.0036540.g015
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Discussion

The research community in bioinformatics requires solutions

that accommodate the problem of reproducibility as more and

more complex high-throughput technologies are developed. Large

scale projects such as the FDA’s MAQC-II analyzed the impact of

different sources of variability on the identification of predictive

biomarkers [5]. This paper has introduced a partial list analysis

procedure that quantitatively assesses the level of stability of a set

of ranked lists of features with different lengths. We have shown

how to use the Canberra distance in a microarray data analysis

study, with application both to multivariate machine learning

methods as well as to standard univariate statistical filters. We

argue that this is a case of quite large applicability, in which the

new method can help select models that have both fair predictivity

and stability of the resulting list of biomarkers. Indeed, MAQC-II

found an association between predictive performance of classifiers

on unseen validation data sets and stability of gene lists produced

by very different methods [5].

For bioinformatics, the Canberra distance on partial lists can

have a large variety of applications, whenever it is important to

manage information from ranked lists in practical cases [1–4]. The

range of possible applications is clearly wider. At least two

additional applications are worth mentioning: first, the approach

can be used in the analysis of lists produced by gene list

enrichment, as shown in [8] in the complete list case. Second,

the most interesting aspect is its extension to more complex data

structures, i.e., molecular networks.

As a final consideration, we note that the stability indicator may

be used for theoretical research towards a stability theory for

feature selection. For classifiers, sound approaches have been

developed based on leave-one-out stability [85,86]. Similarly, our

list comparison method could be adopted to build quantitative

indicators that can be combined with existing approaches [87–91],

in a more general framework for feature selection.
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