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Abstract

The Human Microbiome Project (HMP) aims to characterize the microbial communities of 18 body sites from healthy
individuals. To accomplish this, the HMP generated two types of shotgun data: reference shotgun sequences isolated from
different anatomical sites on the human body and shotgun metagenomic sequences from the microbial communities of
each site. The alignment strategy for characterizing these metagenomic communities using available reference sequence is
important to the success of HMP data analysis. Six next-generation aligners were used to align a community of known
composition against a database comprising reference organisms known to be present in that community. All aligners report
nearly complete genome coverage (.97%) for strains with over 6X depth of coverage, however they differ in speed,
memory requirement and ease of use issues such as database size limitations and supported mapping strategies. The
selected aligner was tested across a range of parameters to maximize sensitivity while maintaining a low false positive rate.
We found that constraining alignment length had more impact on sensitivity than does constraining similarity in all cases
tested. However, when reference species were replaced with phylogenetic neighbors, similarity begins to play a larger role
in detection. We also show that choosing the top hit randomly when multiple, equally strong mappings are available
increases overall sensitivity at the expense of taxonomic resolution. The results of this study identified a strategy that was
used to map over 3 tera-bases of microbial sequence against a database of more than 5,000 reference genomes in just over
a month.
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Introduction

A key goal of the Human Microbiome Project (HMP) is the

characterization of the microbial communities present in different

body habitats [1]. An important part of this characterization is

determining the presence and abundance of organisms within each

habitat. The HMP generated three types of sequence data,

sequences of the genes coding 16S rRNA and two types of shotgun

data: reference sequences isolated from different anatomical sites

on the human body and shotgun metagenomic sequences from the

microbial communities of each site. The most widely used

approach to report on species abundance in metagenomic

collections is by surveying the bacterial 16S rRNA genes (e.g. see

[2–3]). For metagenomic samples where there has been deep

sequencing of 16S RNA, alignments are generated using a number

of tools (such as ARB [4] and the NAST [5]), and profiles of

species presence and abundance from different sources are

displayed individually or together in a plot. The 16S rRNA

sequences are explored in phylogenetic or phylogeny-independent

space [6]. However, while well defined and frequently used, 16S

rRNA based community profiling has its limitations, such as the

use of degenerate primers for 16S amplification that do not

capture all community members, variable copy numbers of 16S

rRNA genes in different species, the fact that PCR amplification is

involved, the use of incomplete 16S rRNA databases and the

inability to capture viruses and eukaryotes.

An alternative method to characterize the structure of microbial

communities is to generate shotgun metagenomic sequence, which

provides advantages such as the exclusion of biases introduced by

using 16S marker gene for community profiling. Shotgun

sequencing bias is introduced mainly from the sequencing

platform used and thus provides a better absolute measurement

of species abundances than do 16S rRNA measurements assuming

adequate coverage is generated. Hence, aligning the shotgun

metagenomic sequences generated from samples originating from

the different body habitats against microbial reference genomes

can generate abundance tables that contain information for
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comparative metagenomics that are free of typical 16s biases. The

best method for generating comprehensive abundance tables is to

align the metagenomic shotgun reads against a collection of

reference genomes comprising the whole genome sequences of all

available microorganisms (including the four major superking-

doms, Archaea, Bacteria, Eukaryota and Viruses). To accomplish

this in a timely and robust manner for the HMP, which generated

over 7 tera-bases of sequence data, effort was invested in the

exploration of available tools and methods.

A wide variety of short read alignment software has been

developed in recent years [7], presenting the HMP with many

potential tools capable of performing the analysis. We chose to

limit this comparison to aligners with which members of the HMP

Data Processing Group had experience. Since many short read

aligners were designed for human re-sequencing which has limited

sequence diversity, we relied on a prior knowledge of the variables

each parameter represents in reaching our goal of choosing and

optimizing an aligner for mapping shotgun metagenomic

sequences to a database of reference genomes. We evaluated the

performance of six aligners with regards to the identification of

microbial sequences in shotgun metagenomic samples, and their

correctness in taxonomic assignment and estimation of prevalence

with the goal of ensuring that this analysis be both robust and

timely. The aligners were evaluated on i) Accuracy, ii) Sensitivity,

iii) Speed & Scalability and iv) Convenience of use. The selected

aligner was further evaluated, optimized alignment parameters

were identified and the effect of mapping strategy on the ability to

resolve hits at different taxonomic levels was investigated. Finally,

taking into consideration that in many cases metagenomic reads

originate from unculturable organisms or organisms not having

a reference genome, we investigated the behavior of the aligner

when the species known to be present in a community were

removed, leaving only neighboring species from the same genus to

be mapped against. This paper discusses these aligner optimiza-

tions in detail, describes the creation of the reference database and

outlines the HMP’s read mapping Standard Operating Procedure.

Results

Reference Database Creation
The final Reference Genome Database (RGD)(Figure 1) that

was used in the ‘Mapping resolution’ analysis contained 1,751

bacterial genomes spread over 1,253 species. The other compo-

nents of the database covered: i) Archaea: 131 genomes over 97

species, ii) Lower eukaryotes: 326 genomes over 326 species and

iii) Viruses: 3,683 genomes over 1,420 species. The process of

removing highly redundant bacterial strains (see Methods) resulted

in the elimination of 2,265 complete and draft bacterial genomes

and corresponding plasmid sequences, resulting in 5891 remaining

genomes across the four superkingdoms.

The Mock Metagenomic Database (MMD) that was used for

aligner comparisons and parameter optimization comprised 20

bacterial genomes from 17 genera and one archaeal strain (see

Methods). These 21 organisms are represented by 51 sequences in

a fasta database about 82 Mb in size (Text S1).

Aligner Comparison
The percentage of the 22,735,802 mock community reads that

mapped to the Mock Metagenomic Database (MMD) ranged from

63% to 92%, with the two extremes being from SMALT and

SOAP (Table 1). All the aligners correctly show near-complete

coverage of most genomes in the MMD with relatively similar

abundances (Table 2). Differences observed for the MAP and

SMALT aligners may result from their inability to report

Figure 1. Reference Genome Database creation. An overview of
the process of creating our Reference Genome Database (RGD).
Complete and WGS genomes were downloaded from GenBank, plasmid
sequences were removed to simplify redundancy screening, and then
the Mauve genome assembly tool was used to identify redundant
strains that were subsequently removed (except for HMP stains which
were always kept). For strains remaining after redundancy removal,
their corresponding plasmids were restored into the database. This
database was periodically updated as new strains became available
over the course of the project.
doi:10.1371/journal.pone.0036427.g001
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alignments in which the query maps equally well to multiple

locations. The MAP aligner was set to report hits using its topN

setting of 5, and for SMALT, only the reads mapped uniquely

were reported. The SOAP aligner showed uniformly less coverage

across all genomes (Table 3), and a statistically significant

difference in depth of coverage was detected (at p = 0.05, Chi-

square test). On average across all aligners, 82% of mock reads

were mapped back to the MMD. When the detected strain

abundances was compared to the actual mock community

concentrations using Spearman’s rank test the correlation coeffi-

cients were between 0.7-0.8 (Table 4).

A detection cutoff of 1% breadth and 0.01x depth of coverage

was used allowing the detection of low abundance species (such as

Escherichia coli in the gut, e.g. [8]) while reducing the incidence of

only spurious alignments being reported. All programs identified

the most abundant species present in the proper order of

prevalence, and in fact were able to detect all 21 bacterial species

present in the mock community mixture. Some key aberrations

include the observation that the SOAP aligner found a notably

smaller depth of coverage for the most abundant organism

(Deinococcus radiodurans R1) and also found a noticeably lower

breadth of coverage for one of the less abundant species

(Pseudomonas aeruginosa PAO1). The alignment softwares were also

benchmarked for their performance and other limitations such as

the maximum size of the database that can be searched against.

The database size for BWA and SOAP is limited to 4 Gb (Table 1),

and while SMALT claims to allow larger database sizes as the

default search window size is increased, we had difficulties getting

anything larger than a 6 Gb database to work reliably on available

hardware. Novoalign supports searches against databases of up to

4 Gb x the ‘step size limit’ of the aligner, which has a maximum

value of 5, resulting in a limit of 20 Gb. Using default settings for

Novoalign we were able to handle the 7.3 Gb RGD, however it

was the slowest aligner tested (Table 1). Both MAP and CLC are

limited only by how much memory can be made available on the

machine running the alignment software although it appears that

the CLC aligner is somewhat more memory efficient in

comparison to MAP. CLC also proved to be the only aligner

capable of mapping both paired end reads and fragment reads

from a sample in a single execution while taking advantage of

pairing information. In summary, the CLC aligner displayed the

best speed and a small memory footprint, is able to handle the

7.3 Gb RGD in a single alignment on our current hardware and it

has the ability to map both paired end reads and fragment reads in

a single execution while taking advantage of pairing information

(Table 1). Therefore, the CLC aligner was chosen for further

analyses reported in this paper.

Parameter Optimization
We looked first at the total number of reads mapped at each

parameter combination. The Illumina GAIIx reads from the mock

community (22,735,802 reads) were aligned to the MMD, which

contained genome sequences for all organisms in the mock

community. We found that the minimum length of alignment

required (in terms of query length) has more of an effect on

mapping sensitivity than does varying the percent identity required

within the length of the alignment (Figure 2, Mock vs. Mock data).

The two less-stringent length settings perform similarly well, while

the 100% length requirement results in a significant decrease in

hits detected. In all cases, decreasing the percent identity

requirement causes a minor increase in the number of hits

detected, but this change is trivial compared to reducing the length

constraint below 100%.
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The different parameter combinations were also evaluated in

regards to their ability to identify each genus independently by

looking at the effects on the breadth and depth of coverage for all

the genomes present in the mock community. Figure S2A shows

the parameter effects on breadth of coverage, and Figure S2B

shows the effect on depth of coverage at the genus level. In both

breadth and depth of coverage, only the 100% length requirement

seems to have an impact on the ability to detect organisms at the

genus level. That most stringent length criteria fails to identify

almost 15% of the P. aeruginosa PAO1 reference sequence that can

be picked up by the less conservative cutoffs (Figure S2A). Looking

at the detected depth of coverage also shows a significant loss of

sensitivity when using the 100% length cutoff. In this case the most

obvious effect can be seen in the most abundant genus Deinococcus,

reducing the depth of coverage by 100 fold when subjected to the

more stringent length requirement. Similar but smaller effects can

be seen in most of the other genera (Figure S2B).

Often the genome of the exact strain present in a microbial

community is not represented in the RGD. Therefore, we tested

the parameters under low identity conditions, when the exact

query strain is not present in the reference, but a taxonomically

related organism from the same genus is (Table 5). The same set of

alignment parameters was used, but the MMD was amended by

replacing several of the strains present with other organisms of the

same genus (Table 5 describes the amended MMD strains and

their similarity to the original strain that they replaced and Figure 3

Table 2. Sensitivity and specificity comparison.

Aligner and coverage

BWA MAP CLC SMALT SOAP NOVOALIGN

Species Breadth Depth Breadth Depth Breadth Depth Breadth Depth Breadth Depth Breadth Depth

Deinococcus radiodurans
R1

99.98 237.75 98.79 252.83 99.99 295.15 99.46 292.42 99.87 165.49 99.97 245.59

Acinetobacter baumannii
ATCC 17978

99.98 73.02 99.99 76.73 99.99 76.25 99.52 76.06 99.90 68.53 99.98 73.62

Staphylococcus
epidermidis ATCC 12228

99.99 40.39 99.55 37.28 99.99 42.22 98.66 41.99 99.97 38.94 99.99 40.70

Helicobacter pylori 26695 99.96 38.76 99.98 41.64 99.97 40.43 98.10 39.45 99.97 36.66 99.95 39.04

Bacteroides vulgatus
ATCC 8482

100.00 36.95 99.51 39.47 100.00 38.75 96.98 37.53 100.00 34.62 100.00 37.24

Propionibacterium acnes
KPA171202

99.98 34.96 99.99 37.75 99.98 39.28 99.52 39.41 99.98 28.20 99.98 35.53

Streptococcus
pneumoniae TI GR4

100.00 34.48 99.38 36.70 100.00 35.88 97.85 34.97 99.99 32.79 100.00 34.74

Streptococcus mutans
UA159

100.00 22.15 99.85 23.74 100.00 23.02 98.24 22.78 100.00 21.11 100.00 22.29

Neisseria meningitidis
MC58

99.99 21.60 99.85 24.94 100.00 23.97 95.00 22.62 99.89 18.25 99.99 21.85

Staphylococcus aureus
USA300_TCH1516

91.46 20.90 92.03 22.64 92.56 22.91 92.09 22.75 88.25 20.73 91.57 21.52

Actinomyces
odontolyticus ATCC 17982

99.90 18.88 99.94 21.15 99.94 22.58 99.37 22.87 99.51 13.91 99.91 19.44

Listeria monocytogenes
EGD-e

100.00 15.52 99.32 15.85 100.00 16.12 99.07 16.15 99.99 14.79 99.99 15.62

Rhodobacter sphaeroides
2.4.1

99.05 12.87 99.23 15.12 99.60 16.99 99.41 17.50 95.12 8.74 98.92 13.39

Enterococcus faecalis
OG1RF

99.96 11.09 99.97 11.55 99.97 11.55 99.26 11.61 99.92 10.55 99.95 11.16

Clostridium beijerinckii
NCIMB 8052

99.90 10.25 98.99 10.44 99.91 10.64 98.65 10.64 99.88 9.92 99.90 10.32

Escherichia coli K12 99.48 7.40 98.95 7.76 99.62 7.96 98.49 8.02 98.72 6.63 99.40 7.46

Methanobrevibacter
smithii ATCC 35061

97.91 6.54 97.35 6.72 98.19 6.79 97.01 6.87 97.70 6.46 97.90 6.59

Bacillus cereus ATCC
10987

89.60 3.18 89.28 3.26 90.17 3.30 89.72 3.38 88.70 3.44 89.58 3.21

Pseudomonas aeruginosa
PAO1

80.50 2.24 82.50 2.59 86.18 2.84 89.41 3.16 65.73 2.31 79.80 2.32

Streptococcus agalactiae
2603V/R

47.94 0.91 47.76 0.92 49.00 0.96 51.63 1.03 46.94 1.88 48.02 0.92

Lactobacillus gasseri
ATCC 33323

20.05 0.31 20.98 0.33 20.73 0.32 25.98 0.42 19.64 1.53 20.11 0.31

doi:10.1371/journal.pone.0036427.t002
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displays a 16S rRNA tree showing the phylogeny of the original 21

organisms and the 4 new amended ones). When recording the

total numbers of reads mapped at each cutoff combination, the

major effect was still the same, i.e., varying the length constraint

has the largest effect on alignment sensitivity. But this time we

observed that the less stringent 80% identity cutoff can map ,5%

more reads than the more stringent 90% cutoff (Figure 2). These

additional identifications are likely due to conservation between

phylogenetically related species (Figure 2, Mock vs. Amended

data). The number of reads hitting the modified MMD drops from

,80% down to ,45% overall because one of the species swapped

out was the most abundant organism in the mock community,

D. radiodurans R1. A large number of possible mappings for the

mock query set were lost when Deinococcus geothermalis, a species

only ,46% similar at the genome level, was swapped in for

D. radiodurans R1.

Looking into the coverage of the amended MMD (Figure S3),

we observed that the strains that were replaced all suffer a loss of

both depth and breadth of coverage, but this time a more

pronounced effect was seen from the percent similarity re-

quirement on these alignments. Also, while the depth and breadth

covered across all 5 amended genera did drop, they did not drop

to zero, suggesting retained coverage of the conserved regions

among the original and replaced genomes. Figure 4 gives an

overview of these effects, showing that the 4 genera with amended

strains fall off the diagonal when plotting log transformed depth

values between mappings to the original MMD and mappings to

the amended MMD. The genus Streptococcus was also amended, but

this genus was one of two genera in the mock community

represented by more than a single species (the other being

Staphylococcus). Rather than replacing all 3 Streptococcus species, in

this case 2 of the 3 original species were removed, leaving only

Streptococcus mutans UA159. Depth values for these multi-species

genera were calculated as the mean of the member species and the

depth of coverage for S. mutans UA159 alone is very close to the

mean depth of all 3 Streptococcus species. Thus it falls on the

diagonal along with the other, un-amended genera.

Basing the decision on these observations, the suggested cutoff

for community profiling using shotgun metagenomic sequences is

80% identity over 75% of the length of the query. This setting

represents a good balance between sensitivity and accuracy, even

in an environment where not all strains in the community will be

represented in the reference database.

Mapping Resolution Analysis
We next mapped the reads from the mock community against

the RGD. When using the ‘top random’ mapping strategy (when

the aligner randomly reports one hit in the case of multiple equally

high scoring top hits) with 80% identity and a 75% fraction of

length cutoff, 67% of all mappings are to the correct strains

present in the mock community, 21% map to non-mock

community strains but within the correct genus, 12% of reads

don’t map at all and close to 0% of reads (63,321 out of

22,735,802) map to an organism of the wrong genus (Figure 5A).

When using the same alignments re-parsed under ‘unique

placement only’ rules (query aligning equally well to more than

a single location in the reference is not reported as a hit), only 58%

of the reads are mapping to the correct strain, with the majority of

the remainder not able to map uniquely (Figure 5B).

Considering these results at the species rather than the genus

level, we find that under the top random mapping strategy, about

4% of the reads that had previously been classified to the correct

genus were not able to be assigned to the correct species

(Figure 5C). This 4% false positive rate is not seen when using

the unique only alignment strategy. Under unique only rules, reads

that do map can be annotated at the species level with almost the

same confidence as they can be at the genus level.

We also plotted the detected coverage of mock strains when the

22,735,802 mock query sequences were aligned against both the

MMD and RGD under both top random and unique placement

only mapping strategies. When mapped against the MMD, both

strategies displayed very similar coverage for all strains (Figure 6A).

However, results against the RGD show that the number of strains

represented in the database within each genus has a significant

effect on the coverage of the specific organism in the mock

community (Figure 6B). Mock community organisms with many

similar strains available within the reference database show good

breadth of coverage under top random rules, but poor coverage

under unique placement only rules (e.g. Bacteroides vulgatus ATCC

8482, the Streptococcus strains and the Staphylococcus strains). While

organisms with very few related genomes show similar detected

coverage under both rule sets (e.g. D. radiodurans R1, Rhodobacter

sphaeroides 2.4.1 and Methanobrevibacter smithii ATCC 35061).

We found two cases for which this observation did not hold true.

The mock strains Bacillus cereus ATCC 10987 and Clostridium

beijerinckii NCIMB 8052 have 104 and 63 strains available within

their genera respectively, yet demonstrated similar coverage results

under both top random and unique only strategies. To investigate

this effect we examined the coverage of all Bacillus strains and all

Clostridium strains available in the RGD independently under both

mapping strategies. Figures 7A and 7B show the top 20 most

covered strains in each case under both alignment strategies. In

both experiments it can be seen that the only strain with significant

coverage under either strategy is the strain represented in the

mock community. Conversely, we performed a similar experiment

using two strains that behaved more as expected, B. vulgatus ATCC

8482 and E. coli K-12 MG1655. Figures 7C and 7D show that in

Table 3. Chi-square comparison of detected abundances*.

SOAP MAP SMALT BWA CLC NOVOALIGN

SOAP 0.28385 0.0217 0.49387 0.01281 0.37475

MAP 0.99972 1 0.99992 1

SMALT 0.9992 1 0.99991

BWA 0.99989 1

CLC 0.99997

NOVOALIGN

*Based on depth of coverage per genome. Values .=0.05 are considered
significantly similar.
doi:10.1371/journal.pone.0036427.t003

Table 4. Spearman’s rank correlation with true MMD
concentration.

Aligner Correlation coefficient

SOAP 0.6960784

MAP 0.7720588

SMALT 0.7941176

BWA 0.7573529

CLC 0.7916667

NOVOALIGN 0.7720588

doi:10.1371/journal.pone.0036427.t004
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both cases there is significant bleed over coverage into neighbor-

ing, non-mock community strains that prevents the unique only

mapping strategy from detecting significant coverage (since few

reads are uniquely mappable in these strains), while top random

coverage is divided amongst a number of conserved strains.

Discussion

The accuracy was similar for most of the tested aligners,

therefore primarily convenience issues, such as which tool has the

smallest memory footprint and which tool benchmarks the fastest,

drove the choice of aligner. Additional major determining factors

were, i) which aligner could handle the size of our reference

database, and ii) which aligner could map both paired end reads

and fragment reads in a single execution. The number of reference

genomes is increasing with a rapid rate. For example, only the

HMP project is committed to sequencing 3,000 bacterial genomes

over its course, resulting in an ever-increasing size of the RGD

(presently 7.3 Gb). Many available next generation aligners

impose a 4 Gb database size limitation, which is a technical

hurdle for mapping algorithms that use the Burrows-Wheeler

transform in their implementation (e.g. [9,10]). Additionally, steps

within the read mapping process (see Text S2) prior to alignment

result in a fraction of the paired end reads being orphaned during

low complexity screening, resulting in a sample having both a set

of paired end reads, and a fragment read file that both need to be

aligned. These issues together would have been a computational

hurdle because they would have required us to run four alignments

per sample to scan the full breadth of the RGD.

The SOAP aligner was a statistically significant outlier,

detecting fewer hits to all strains in the MMD as compared to

the other aligners. BWA’s primary weakness was its inability to

handle a database larger than 4 Gb in size. The SMALT aligner,

while claiming to be able support larger databases if the user

increases search window size, was unable to handle a database

larger than 6 Gb in our hands. In addition, the loss of sensitivity

prompted by an increased window size (data not shown) was of

concern. Novoalign displayed the smallest memory footprint of all

aligners tested during our benchmarking. Its limitation proved to

be speed, clocking in as the slowest aligner tested (over 10 fold

slower than the frontrunner). MAP performed similarly to CLC,

and was able to support the large database size we required, but

the version tested was limited in that the only available mapping

strategy revolved around their topN setting, which will only report

hits with that number or fewer identical top hits (i.e. topN=5 tells

MAP not to report a query that aligns equally well to .5 spots in

the reference). Drastically increasing the topN value to ensure we

are not missing hits caused a significant increase in the amount of

memory needed to complete the alignment. Note that parameter

modifications have since been made in MAP to address this issue

(Brian Hilbush, RealTime Genomics, personal communication),

but only after this evaluation had been completed. Finally, only the

CLC aligner was able to map both fragment and paired end reads

in a single execution while still considering read paring in-

formation. While several aligners achieved similar levels of

sensitivity and accuracy, the overall feature set that CLC offered

tipped the balance and so it was selected for the optimization

related analysis in our study.

None of the aligners compared were able to map 100% of the

22,735,802 mock community reads back to the MMD. Depending

on the aligner, only 63% to 92% of the mock community queries

could be aligned (Table 1). This is attributed in part to the fact that

the mock query data had not been screened for low complexity.

The DUST application [11] was used to mask low complexity

sequence and subsequently remove it from the query set. This

filtering accounted for 3-4% of the unmappable queries (data not

shown). The inability to map the remainder of the reads is likely

due to the fact that: i) of the 21 genomes included in the MMD, 2

are based on draft assemblies (Actinomyces odontolyticus ATCC 17982

and Enterococcus faecalis OG1RF) therefore may not be complete

representations of their respective genomes and ii) not all plasmid

sequences associated with each strain were available in GenBank

when the MMD was created.

The CLC parameters were tested to achieve maximum

sensitivity while minimizing false positives on a gross level. Due

to limitations in the availability of bacterial organisms for inclusion

in the reference database, no amount of parameter tweaking will

be able to completely overcome problems with false positives

detection, but by considering the problem at a higher taxonomic

level (the genus level), where we do have good representation

Figure 2. Parameter effects on mapping against the MMD and the amended MMD. This plot shows the percent of total mock queries able
to be mapped to the mock database at each given CLC parameter combination. The Mock vs. Mock data (dark blue) uses the original MMD, which
contains all strains present in the mock community. The Mock vs. Amended data (light blue) shows the same results when the mock query is mapped
to an amended MMD where several strains were removed and other strains from the same genus were included in their place.
doi:10.1371/journal.pone.0036427.g002
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across the phylogeny, we were able to arrive at a parameter

combination that could provide a relatively good profiling of

a microbial community.

Based on the results, in the ideal case when all organisms in the

query pool are represented in the database (as in the case of

aligning the mock query data against the MMD), it is apparent

that the length constraint has a much stronger impact on

sensitivity than did the various similarity settings tested. And it

was also apparent that only the most stringent length requirements

hampered sensitivity. But when we attempted to model the state of

live data by replacing several strains with other organisms from

within the same genus, we began to see a difference in community

structure reflecting changes of required percent identity. This is

expected when sequences are mapped to more divergent strains.

Furthermore, there is a significant overall decrease in detection

caused by the substitution of D. geothermalis [12] for D. radiodurans

R1. D. radiodurans R1 [13] is by far the most abundant strain

present in the mock community, and its replacement (D. geother-

malis) is only ,46% similar at a genome wide level, so this was an

expected result. Somewhat surprising is the fact that when the

Figure 3. Phylogenetic tree view of MMD strains and amended MMD strains based on 16S genes. This image displays a phylogenetic
tree based on 16S data for all 21 strains in the MMD, and also the 4 strains used as replacements in the amended MMD (D. geothermalis, Helicobacter
hepaticus, Neisseria gonorrheae and Escherichia fergusonii). The shaded regions indicate the genera containing the amended strains (yellow:
Escherichia, blue: Neisseria, red: Helicobacter, brown: Streptococcus and green: Deinococcus).
doi:10.1371/journal.pone.0036427.g003
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genus Streptococcus was modified by removing two of the three mock

species present [14,15,16], the depth found for the remaining

genome alone was approximately equivalent to the average depth

found across all three Streptococcus species in the original MMD.

One could have expected that under a top random mapping

strategy the remaining species would have captured the reads that

had originally mapped to the now missing species, increasing its

reported depth of coverage. But instead we observed the same

depth of coverage for the remaining species as was originally seen.

A possible explanation for this is that the two removed species

were diverse enough from S. mutans UA159 to prevent any kind of

cross mapping. Consistent with this, genome-wide pair-wise

alignments between S. mutans UA159 and the other two genomes

Table 5. Amended strain similarity to original MMD strains.

Genus Original strain in mock community Replacement strain
Genome wide
similarity

Deinococcus Deinococcus radiodurans R1 Deinococcus geothermalis ,46%

Helicobacter Helicobacter pylori Helicobacter hepaticus ,15%

Neisseria Neisseria meningitidis Neisseria gonorrheae ,81%

Escherichia Escherichia coli K12 Escherichia fergusonii ,78%

Streptococcus agalactiae 2603V/R

Streptococcus Streptococcus mutans UA159 Streptococcus mutans UA159* na

Streptococcus pneumoniae TIGR4

*For Streptococcus, 2 of the 3 strains were removed, leaving only S.mutans UA159.
doi:10.1371/journal.pone.0036427.t005

Figure 4. A comparison of mock and amended MMD depth of coverage. This plot shows the log transformed depth values for the mock
query versus the amended MMD on the y-axis, and the mock query versus the original MMD on the x-axis. Unaffected genera should lie along the
diagonal, while those showing a change in depth of coverage will fall off the diagonal. The amended genera are indicated, and the 4 that were
swapped do stand off the diagonal. The genus Streptococcus was represented by 3 strains in the mock community, and was amended by removing
two of the three strains leaving only S. mutans UA159 in the amended MMD. The depth value of this multi-strain genus was the read normalized
average value of the 3 member strains, and after being pruned down to a single strain, the single strain depth remained similar to the original,
averaged value.
doi:10.1371/journal.pone.0036427.g004
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Figure 5. Mapping Resolution. (A). Using a top randommapping strategy to classify at the strain or genus level. This image shows the
mapping fate of all 22,735,802 mock queries when mapped to the RGD under a top random mapping strategy, falling back to genus level
annotations when the strain cannot be identified. (B). Using a unique only mapping strategy to classify at the strain or genus level. This
image shows the mapping fate of all 22,735,802 mock queries when mapped to the RGD under a unique only mapping strategy, falling back to genus
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shows a ,51% and ,35% similarity to Streptococcus agalactiae

2603V/R and Streptococcus pneumoniae TIGR4 respectively.

The experiment investigating the effects of mapping strategy on

taxonomic resolution (i.e. the ability to correctly identify an

organism at a given taxonomic level) showed a clear trade-off

level annotations when the strain cannot be identified. (C). Using a top random mapping strategy to classify at the strain or species level.
This image shows the mapping fate of all 22,735,802 mock queries when mapped to the RGD under a top random mapping strategy, falling back to
species level annotations when the strain cannot be identified. (D). Using a unique only mapping strategy to classify at the strain or species
level. This image shows the mapping fate of all 22,735,802 mock queries when mapped to the RGD under a unique only mapping strategy, falling
back to species level annotations when the strain cannot be identified.
doi:10.1371/journal.pone.0036427.g005

Figure 6. Mock strain coverage. (A). Coverage of mock strains in the MMD. This image shows the results of mapping the mock community
query against the MMD under both top random and unique only mapping strategies. (B). Coverage of mock strains in the RGD. This image
shows the results of mapping the mock community query against the RGD under both top random and unique only mapping strategies. The
numbers printed in the plot reflect the number of strains present in the RGD for the genus in which the displayed strain belongs.
doi:10.1371/journal.pone.0036427.g006
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between the fraction of the reads representing a sample that can be

characterized and the accuracy of that classification. As shown in

Figure 5, 88% of all reads can find a hit under the top random

mapping strategy, but 21% of those alignments are incorrect at the

strain level. Thus, using this strategy, we can only confidently

classify reads to higher order taxonomies (the genus level in this

figure). Under the unique placement only strategy we are able to

annotate only 58% of reads, but in this case the characterization is

accurate at the strain level. This ability to classify data to the strain

level represents a key advantage that shotgun metagenomic

sequences have over 16s rRNA characterizations made with the

commonly-used RDP algorithm [17] which typically makes

identifications (at 0.8 level of confidence) at the genus level.

Looking into the effect of strain representation within the

reference database on mapping resolution, we found a relationship

between the number of strains available in the RGD under a given

genus and our ability to resolve down to the strain level. Mappings

performed against the MMD, where only the mock strains known

to be present were available, showed that mapping strategy played

little role in the ability to detect coverage. In such a perfect

scenario almost any hit will be to the correct strain because there

are no phylogenetically closely related neighbors to compete for

alignment within conserved regions that could preclude its

detection under unique placement only rules. But when a query

metagenomic shotgun sequence is mapped to the RGD, strains

with many similar neighbors available in the database preclude

accurate mappings to finer grained taxonomic levels. In summary,

genera with many strains available in the reference database, such

as Bacteroides, Lactobacillus, Staphylococcus and Streptococcus will present

a challenge when trying to resolve to the strain level using the

unique only mapping strategy. Genera with few strains available

will offer strong resolving power using either mapping strategy. In

the two examples where this did not hold true, the mock

community strains were considerably divergent from other

organisms within their genus (Figure 7) [18].

Furthermore, based on alignments of the mock queries against

the RGD under the top random alignment strategy, we found that

the number of false positive identifications at the species level is

higher than what is seen when taxonomic assignments are made at

the genus level. Approximately 4% of these classifications are

incorrect at the species level, but all of those reads can be mapped

to the correct genus. When using the unique only mapping

protocol, we did find a few more false positive classifications at the

species level, but the overall misclassification rate was not

significantly inflated (0.3% false positive rate). This is expected

because the only time a misclassification can happen under unique

only rules is when the sequence’s strain of origin is missing from

the RGD, but the read happens to fall into a region that is

divergent from other close neighbors within the same species, but

conserved in some other organism represented in the database.

Based on our results, this is a very rare event.

In future studies, the more advanced approach would be to

generate a pan-genome (e.g. [19]) reference database in which

only the unique portions of genomes are represented. By

maintaining only single instances of highly conserved regions,

and by tracking which genomes share these unique conserved

regions, one could confidently classify the shotgun metagenomic

sequences to a lower taxonomic resolution more confidently.

Using a pan-genome reference would allow either mapping

strategy, top random and unique only, to see conserved sequence

and offers solid annotation for all genomes sharing that region.

This will allow the user to fine tune the taxonomic resolution based

on available information, sometimes allowing annotation down to

the species level where previously one could only assign a genus

level classification.

In conclusion, we compared six short read aligners for the

purpose of identifying an aligner and parameters that will enable

accurate profiling of metagenomic communities for any project

that uses large NGS datasets and aims at completing the analysis

within a reasonable timeframe. We used a mock community

sample of known composition and aligned it against the MMD,

which comprises genome sequences of all organisms in the

community. Five of the six aligners perform similarly well, with the

notable exception of the SOAP aligner, which seemed to detect

less coverage in general. The selection of CLC aligner was

prompted by several practical factors: i) the ability to handle large

databases, ii) its ability to map both paired end and fragment

sequence data in a single operation and iii) its speed and small

memory footprint. The MAP aligner held a respectable second

place, but its lack of support for traditional top random & unique

only mapping strategies (at the time of this evaluation) and its

inability to map both paired end and fragment reads simulta-

neously kept it from taking the lead.

Once the best performing aligner was chosen, we focused on

identifying appropriate parameters for mapping shotgun metage-

nomic data. When the database provided the exact strain targets

for all reads in the query, we found that that length of alignment

constraint had the strongest effect on mapping sensitivity, with the

percent identity (considering only two fairly stringent settings)

having only a minimal effect. But when swapping out several

MMD strains with other organisms from the same genus, the

percent similarity setting becomes more important. When the

genome of an exact strain present in the metagenomic community

is not sequenced (therefore absent from the reference database) but

the genome of a close relative is sequenced, having a slightly more

lenient similarity cutoff can improve sensitivity at the species or

genus level. The suggested parameter settings for profiling

microbial community structure using metagenomic shotgun

sequences are 80% similarity over 75% length of the query being

required to align.

We further explored the issue of mapping resolution and the

effects of taxonomic density (i.e. the number of closely related

strains available under a species or genus) within the RGD. We

Figure 7. The effect of strain representation within the RGD andmapping strategy on mapping resolution. (A). Top 20 most covered
strains from the genus Bacillus found in mock vs. RGD mapping. This figure shows the detected coverage using both mapping strategies
when aligning the mock community queries against the full RGD for Bacillus strains. Note that the strain present in the mock community (B. cereus
ATCC 10987) is indicated in the image. (B). Top 20 most covered strains from the genus Clostridium found in mock vs. RGD mapping. This
figure shows the detected coverage using both mapping strategies when aligning the mock community queries against the full RGD for Clostridium
strains. Note that the strain present in the mock community (C. beijerinckii NCIMB 8052) is indicated in the image. (C). Top 20 most covered strains
from the genus Bacteroides found in mock vs. RGD mapping. This figure shows the detected coverage using both mapping strategies when
aligning the mock community queries against the full RGD for Bacteroides strains. Note that the strain present in the mock community (B. vulgatus
ATCC 8482) is indicated in the image. (D). Top 20 most covered strains from the genus Escherichia found in mock vs. RGD mapping. This
figure shows the detected coverage using both mapping strategies when aligning the mock community queries against the full RGD for Escherichia
strains. Note that the strain present in the mock community (E. coli K-12 MG1655) is indicated in the image.
doi:10.1371/journal.pone.0036427.g007
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considered the cost of the top random mapping strategy in loss of

resolution at the strain level to the benefit of being able to map

a larger fraction of samples to the genus level. While identifying

a larger percentage of samples at a lower resolution might have

more immediate value for some applications than correctly

identifying a smaller portion of the samples at a finer grained

taxonomic level, its of importance to note that by using the unique

placement only alignment strategy the capability to map to

a greater degree of taxonomic clarity exists. We also showed that

the number of conserved strains or species present within a genus

both increases the likelihood of correctly identifying the genus of

a read, while lessening the likelihood of correctly identifying the

exact strain (or species) under the top random mapping strategy.

The final Read Mapping Standard Operating Procedure is

described in Text S2.

Methods

Mock Database Creation
For a number of the analyses described in this paper we used

a mock community comprising 20 bacterial and 1 archaeal

species, mixed together at different concentrations per strain [20]

and sequenced on Illumina GAIIx (100 bp paired-end reads). The

Illumina sequences are available in GenBank under Accession:

PRJNA48475, ID: 48475. These 20 bacterial and 1 archaeal

strains have genome sequence available in GenBank [21]. The

fasta sequence of these 21 strains is what is referred to as the ‘Mock

Metagenomic Database’ (MMD)(Text S1).

Reference Database Creation
For the ‘Mapping resolution’ analysis we generated a database

comprising archaeal, bacterial, lower eukaryotic and viral organ-

isms available in GenBank, referred to as the ‘Reference Genome

Database’ (RGD). These sequences were downloaded via keyword

search from the NCBI’s GenBank database on 11/10/2009. The

bacterial component underwent special processing as described

below, but for the other three superkingdoms, we used the

keywords ‘‘Archaea[ORGN]’’, ‘‘Virus[ORGN]’’ and ‘‘Eukaryo-

ta[ORGN] NOT Bilateria[ORGN] NOT Streptophyta[ORGN]’’

(for Archaea, Virus, and lower Eukaryotes respectively), along with

the descriptor ‘‘complete’’ and/or ‘‘WGS’’. All archaeal, viral and

lower eukaryotic strains found in that manner were included in the

RGD. For the bacterial component of the RGD, a similar keyword

search was used, ‘‘Bacteria[ORGN] and complete’’ and ‘‘Bacter-

ia[ORGN] and WGS’’, followed by removing highly redundant

strains that were not part of the HMP. For this redundancy

removal step, all sequences from a given genome were first tagged

with a prefix unique to that strain. This allows a hit to any

component of a draft genome to be easily related back to its parent

genome, and was a required step to enable the creation of

abundance metrics per genome. The complete and draft genomes

were categorized on per species level, resulting in categories

including anywhere from single strains to those including many

strains per species (e.g. E. coli and Bacillus anthracis, 57 and 11

strains respectively at the time of the original construction). For

selecting representatives among multiple strains within a species,

the mauveAligner module of Mauve [22] was wrapped into

custom-built PERL scripts to automate most of the process (Figure

S1 shows an example mauve alignment). The criterion for

exclusion was a similarity of over 90% on a genome-wide level

(pair-wise comparisons) and the genome that is longer and

provides the most unique sequence was kept. While this process

worked well for cases with a small number of strains per species,

the challenge grew as the number of sequences increased and the

homology decreased among greater numbers of genomic pieces. In

some cases many pair-wise alignments were done and the

sequences were eliminated progressively. In the case of a large

numbers of strains, a slightly relaxed homology (as low as 83%)

was used. Bacterial strains that were collected from humans as part

of the HMP were retained without being subject to redundancy

removal because these strains were deemed informative to the

project. Finally plasmids corresponding to the non-redundant

genomes that were selected through the above analysis were also

incorporated in the database. Figure 1 shows an overview of this

process. The RGD fasta database is provided as Text S3, and an

index describing the strain-prefix relationship is provided as Text

S4.

Aligner Comparison
Six aligners were tested, BWA [9], CLC [23], MAP [24],

SMALT [25], SOAP [10] and Novoalign (www.novocraft.com,

unpublished), using roughly default parameters for each program

(see Table 1) by aligning 22,735,802 reads generated from the

Microbial mock community and sequenced on the Illumina GAIIx

against the MMD described above.

Alignments from each aligner were collected using a random

top-hit strategy for all programs that supported it (BWA, CLC,

SOAP, Novoalign), and the default mapping strategy of the aligner

for the others (MAP, SMALT). The top random mapping strategy

involves reporting only a single, best hit per query, and in the case

of a query having multiple, equally strong best hits (i.e. mapping

quality 0 [26]), one of those hits is chosen at random. The MAP

aligner supports a novel approach for its mapping strategy where

the user sets a ‘topN’ value that sets the maximum number of

equally scoring best hits that will be reported. In cases where

a query has that many equally scoring best hits or fewer, all hits are

reported. If more than those numbers of equal placements are

found, no hit is reported. The SMALT aligner only supports

2 mapping strategies. The first reports all hits regardless of the

number of tied, best hits, and the default mode is unique only

placement, where only queries with a single, best placement are

reported.

The breadth (defined as the percentage of covered bases over

the length of the reference genome) and depth (defined as the sum

of the depths of each covered base divided by the length of the

genome) of coverage were calculated based on all alignments of

each genome represented in the MMD using a software package

called RefCov (http://gmt.genome.wustl.edu/gmt-refcov) and

results were compared.

Parameter Optimization
Parameter optimization was performed only for the aligner that

best fulfilled all the required criteria (CLC bio’s CLC Assembly

Cell) by varying the minimum similarity setting (-similarity) and

the minimum length of alignment setting (-lengthfraction) across

6 different combinations. The tested combinations include: i) 50%

length +80% identity (default), ii) 50% length +90% identity, iii)

75% length +80% identity, iv) 75% length +90% identity, v) 100%

length +80% identity and vi) 100% length +90% identity. The

64bit version of the CLC Assembly Cell long read alignment

program, clc_ref_assemble_long, was used with the parameters ‘‘–l

,% length. -s ,% identity. -p fb ss 180 250’’ where the –l & -s

values were varied as described above. The castosam program was

used to extract a sam format file [27] from the cas format output of

clc_ref_assemble_long program, and analysis was performed on

the sam files. A top random mapping strategy was applied for the

parameter tuning analysis, which in the case of multiple, equally
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strong best mappings, will randomly report one of those mappings

as the hit.

Mapping Resolution Analysis
The effects on mapping accuracy and sensitivity resulting from

changing mapping strategies was tested by aligning 22,735,802

illumina GAIIx reads prepared from the mock community against

both the RGD and the MMD. CLC Assembly Cell alignments

were run using the 64bit version of the program clc_ref_assem-

bly_long with the parameters ‘‘–l,% length. -s,% identity. -p

fb ss 180 250’’ where the ,% length. + ,% identity. settings

varied across: i) 50% length +80% identity (default), ii) 50% length

+90% identity, iii) 75% length +80% identity, iv) 75% length

+90% identity, v) 100% length +80% identity and vi) 100% length

+90% identity, and then sam files were produced from alignment

outputs as described in the mapping resolution analysis section

above, We report the number of hits to the exact mock strains, to

the genera represented by those mock strains, to the species

represented by those mock strains, false positive organism

assignments and those with no hits at all. The hits were reported

using both the top random and unique only mapping strategies

against both the RGD and the MMD. We also report how many

strains were present in the RGD per genera represented in the

mock community.

Supporting Information

Text S1 Mock Metagenomic community database
(DOCX)

Text S2 Read mapping Standard Operating Procedure
(DOCX)

Text S3 Reference Genome database
(DOCX)

Text S4 Prefix-Strain index for Reference Genome
database
(DOCX)

Figure S1 Example Mauve alignment. This picture shows

a screenshot of an example Mauve alignment of 8 similar strains of

B. cereus. Colored blocks show regions of homology between

organisms with the amplitude shown within each box showing the

strength of the similarity. Lines between strains show smaller

regions of homology between sequences.

(TIF)

Figure S2 Alignment parameter effects on breadth and
depth of coverage of original MMD strains. (A).
Parameter effects on genome coverage of the MMD at
the genus level. This chart shows the effect of varying the

parameters on the coverage of the mock genomes on the genus

level. For the genera Streptococcus and Staphylococcus, which are

represented by more than a single strain in the mock community

pool, the values are averaged across each member strain. The

genus Pseudomonas, represented in the mock community by the

strain P. aeruginosa PAO1, displays a marked decrease in coverage

when using the stringent 100% length cutoff. (B). Parameter
effects on genome depth of coverage of the MMD at the
genus level. This chart shows the effect of varying the

parameters on the depth of coverage found for the mock genomes

on the genus level. For the genera Streptococcus and Staphylococcus,

which are represented by more than a single strain in our mock

community pool, the values are averaged across each member

strain. The genus Deinococcus, which in the mock community is

represented by the strain D. radiodurans R1, shows a marked

decrease in estimated depth of coverage for parameter combina-

tions that require 100% length to align.

(TIF)

Figure S3 Alignment parameter effects on breadth and
depth of coverage of amended MMD strains. (A).
Parameter effects on genome coverage of the amended
MMD at the genus level. This chart shows the effect of varying
the parameters on the breadth of coverage of the mock genomes

on the genus level. The most affected genera are the ones where

the strain membership was modified before running the

alignments. For Deinococcus, Escherichia, Helicobacter and Neisseria,

the member strain was removed, and a non-mock strain from the

same genus was put in its place, and for Streptococcus, two of the

three strains were removed, leaving the original S.mutans UA159

strain intact. This figure illustrates that for those genera not having

strains present in the mock community, the similarity value begins

to have more of an effect on the numbers able to align. (B).
Parameter effects on genome depth of coverage of the
amended MMD at the genus level. This chart shows the

effect of varying the parameters on the depth of coverage of the

mock genomes on the genus level. The most affected genera are

the ones where the strain membership was modified before

running the alignments. For Deinococcus, Escherichia, Helicobacter and

Neisseria, the member strain was removed, and a non-mock strain

from the same genus was put in its place, and for Streptococcus, two

of the three strains were removed, leaving the original S.mutans

UA159 strain intact. This figure illustrates that for those genera not

having strains present in the mock community, the similarity value

begins to have more of an effect on the numbers able to align.

(TIF)
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