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Abstract

The N-player quantum games are analyzed that use an Einstein-Podolsky-Rosen (EPR) experiment, as the underlying
physical setup. In this setup, a player’s strategies are not unitary transformations as in alternate quantum game-theoretic
frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The
players’ strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR
setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero
entanglement. We find the relations for the probability distribution for N-qubit GHZ and W-type states, subject to general
measurement directions, from which the expressions for the players’ payoffs and mixed Nash equilibrium are determined.
Players’ N|N payoff matrices are then defined using linear functions so that common two-player games can be easily
extended to the N-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the
Prisoners’ Dilemma game for general N§2. We find a new property for the game that for an even number of players the
payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher
payoffs. By dispensing with the standard unitary transformations on state vectors in Hilbert space and using instead rotors
and multivectors, based on Clifford’s geometric algebra (GA), it is shown how the N-player case becomes tractable. The new
mathematical approach presented here has wide implications in the areas of quantum information and quantum
complexity, as it opens up a powerful way to tractably analyze N-partite qubit interactions.
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Introduction

The field of classical game theory began around 1944 [1–3] and

dealt with situations involving strategic interdependence between a

set of rational participants. Following this, several situations in

quantum theory were found to have connections to game theory.

Blaquiere [4] found that the saddle-point condition, on which

optimality of game strategies is based, is an extension of

Hamilton’s principle of least action. Wiesner’s work [5] on

quantum money from 1983 is widely accepted to have started the

field of quantum cryptography, and cryptographic protocols can

be written in the language of game theory. In 1990 Mermin [6]

presented an N-player quantum game that can be won with

certainty when it involves N spin half particles in a GHZ state,

whereas no classical strategy can win the game with a probability

greater than 1
2
z 1

2N=2. Following this, in 1999 two key papers were

published by Meyer [7] and Eisert et al [8] laying the foundation

for the field of quantum game theory, which has since been

developed by many others [4–6,9–54]. Initially, studies in the

arena of quantum games focused on two-player, two-strategy non-

cooperative games but was then extended to multi-player games

by various authors [6,12,17,55–62]. Quantum games have been

reported in which players share Greenberger-Horne-Zeilinger

(GHZ) states and W states [10,26,50], with analysis showing the

benefits of players forming coalitions [20,36] and also the effects of

noise [25,39]. Such games can be used to describe multipartite

strategic situations, such as in the analysis of secure quantum

communication [63].

The usual approach to implementing quantum games involves

players sharing a multi-qubit quantum state with each player

having access to an allocated qubit upon which they perform local

unitary transformations. A supervisor then submits each qubit to

measurement in order to determine the outcome of the game. An

alternative approach in constructing quantum games uses an

Einstein-Podolsky-Rosen (EPR) type setting [27,30,37,48,64–71],

based on a framework developed by Mermin [9] in 1990. In this

approach, quantum games are constructed using an EPR

apparatus, with the players’ strategies now being the classical

choice between two possible measurement directions implemented

when measuring their qubit. This thus becomes equivalent to the

standard arrangement for playing a classical mixed-strategy game,

in that in each run a player has a choice between two pure

strategies. Thus, as the players’ strategy sets remain classical, the

EPR type setting avoids a well known criticism [13] of

conventional quantum games, stemming from the fact that

typically, in quantum game frameworks based on Eisert et al’s

formalism, players are given access to extended strategy sets

consisting of local unitary transformations that can be interpreted

as fundamentally changing the underlying classical game.

Recently [47,49,50] the formalism of Clifford’s geometric

algebra (GA) [72–76] has been applied in the analysis of quantum

games. These works demonstrate that the formalism of GA

facilitates analysis and gives a geometric visualization of the game.

Multipartite quantum games are usually found significantly harder

to analyze, as we are required to define an N|N payoff matrix

and calculate measurement outcomes over N-qubit states. In this

regard, GA is identified as the most suitable formalism in order to
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allow ease of analysis. This becomes particularly convincing in the

case where N??, where matrix methods become unworkable.

As we will later show, an algebraic approach such as GA is both

elegant and tractable as N??.

Using an EPR type setting we firstly determine the probability

distribution of measurement outcomes, giving the player payoffs,

and then determine constraints that ensure a faithful embedding of

the mixed-strategy version of the original classical game within the

corresponding quantum game. We then apply our results to an N
player prisoner dilemma (PD) game.

EPR Setting for Playing Multi-player Quantum Games
The EPR setting [27,37,48] for a multi-player quantum game

assumes that players Pi are spatially-separated participants of a

non-cooperative game, who are located at the N arms of an EPR

system [10], as shown in Fig. 1. In one run of the experiment, each

player chooses one out of two possible measurement directions.

These two directions in space, along which spin or polarization

measurements can be made, are the players’ strategies. As shown

in Fig. 1, we represent the ith players’ two measurement directions

as ki
1,ki

2, with a measurement returning z1 or {1.

Over a large number of runs consisting of a sequence of N-

particle quantum systems emitted from a source, upon which

measurements are performed on each qubit, subject to the players

choices of measurement direction, a record is maintained of the

experimental outcomes from which players’ payoffs can be

determined. These payoffs depend on the N-tuples of the various

players’ strategic choices made over a large number of runs and on

the dichotomic outcomes (measuring spin-up or spin-down) from

the measurements performed along those directions.

Clifford’s Geometric Algebra (GA)
Typically in a quantum game analysis the tensor product

formalism along with Pauli matrices are employed, however

matrices become cumbersome for higher dimensional spaces, and

so GA is seen as an essential substitute in this case, where the

tensor product is replaced with the geometric product and the

Pauli matrices are replaced with algebraic elements. The use of

GA has also previously been developed in the context of quantum

information processing [77].

To setup the required algebraic framework, we firstly denote

feig as a basis for <3. Following [49,50], we can then form the

bivectors eiej , which are non-commuting for i=j, with

eiej~{ejei but if i~j we have e2
i ~eiei~1. We also have the

trivector.

i~e1e2e3, ð1Þ

finding i2~e1e2e3e1e2e3~{1 and furthermore, that i commutes

with each vector ei, thus acting in a similar fashion to the unit

imaginary
ffiffiffiffiffiffiffiffi
{1
p

. We have e1e2~e1e2e3e3~ie3 and so eiej~iek

for cyclic i,j,k. We can therefore summarize the algebra of the

basis elements feig by the relation

eiej~dijziEijkek, ð2Þ

which is isomorphic to the algebra of the Pauli matrices [74], but

now defined as part of <3.

In order to express quantum states in GA we use the one-to-one

mapping [74,76] defined as follows

jyT~aj0Tzbj1T~

a0zia3

{a2zia1

" #
<y~a0za1ie1za2ie2za3ie3,

ð3Þ

where ai are real scalars and i~
ffiffiffiffiffiffiffiffi
{1
p

.

Symmetrical N Qubit States
For N-player quantum games an entangled state of N qubits is

prepared, which for fair games should be symmetric with regard to

the interchange of the N players, and it is assumed that all

information about the state once prepared is known by the players.

Two types of entangled starting states can readily be identified

which are symmetrical with respect to the N players. The GHZ-

type state.

DGHZTN~ cos
c

2
D00 . . . 0Tz sin

c

2
D11 . . . 1T, ð4Þ

where we include an entanglement angle c[½{ p

2
,
p

2
� and the W -

type state

jWTN~
1ffiffiffiffiffi
N
p j1000 . . . 00Tzj0100 . . . 00Tzð

j0010 . . . 00Tz . . . zj0000 . . . 01TÞ:
ð5Þ

To represent these in geometric algebra, we start with the

mapping for a single qubit from Eq. (3), finding

D0T<1, D1T<{ie2, ð6Þ

so that for the GHZ-type state in GA we have

yGHZN
~ cos

c

2
z({)N sin

c

2
ie1

2ie2
2 . . . ieN

2 , ð7Þ

Figure 1. The EPR setup for an N-player quantum game. In this
setup, each player i has a choice of two measurement directions ki

1 and
ki

2 for their qubit, allocated from a shared N-qubit quantum state.
doi:10.1371/journal.pone.0036404.g001
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where the superscript on each bivector indicates which particle

space it refers to. Also for the W-type state we have in GA

yWN
~{

1ffiffiffiffiffi
N
p ie1

2zie2
2z . . . zieN

2

� �
: ð8Þ

Unitary Operations and Observables in GA
General unitary operations on a single qubit in GA can be

represented as.

R(h1,h2,h3)~e{h3ie3=2e{h1 ie2=2e{h2ie3=2, ð9Þ

which is the Euler angle form of a rotation that can completely

explore the space of a single qubit, and is equivalent to a general

local unitary transformation. We define Ui~R(ai
1,ai

2,ai
3) for a

general unitary transformation acting locally on each qubit i,

which the supervisor applies to the individual qubits that gives the

starting state

U1
6U2

6 . . .6UN
� �

DyT, ð10Þ

upon which the players now decide upon their measurement

directions.

The overlap probability between two states y and w, in the N-

particle case [74], is.

P(y,w)~2N{2SyEy{wEw{T0{2N{2SyJy{wJw{T0, ð11Þ

where the angle bracket S T0 indicates that we retain only the

scalar part of the product, and where

E~ P
N

b~2

1

2
1{ie1

3ieb
3

� �
~

1

2N{1
1z

XtN2 s
r~1

{ð ÞrCN
2r iei

3

� �0
B@

1
CA, ð12Þ

where txs returns the nearest integer less than or equal to a given

number x, and where we define CN
r (iei

3) to represent all possible

combinations of N items taken r at a time, acting on the object

inside the bracket. For example C3
2 (iei

3)~ie1
3ie2

3zie1
3ie3

3zie2
3ie3

3.

The number of terms produced being given by the standard

combinatorial formula

CN
r ~

N!

r!(N{r)!

We also have

J~Eie1
3~

1

2N{1

XtNz1
2

s

r~1

{ð Þ
rz1

CN
2r{1 iei

3

� �
, ð13Þ

where for simplicity, we initially assume that N is odd, which

simplifies our derivation, and our results can easily be generalized

later for all N.

The supervisor now submits each qubit for measurement,

through N Stern-Gerlach type detectors, with each detector being

set at one of the two angles chosen by each player. As mentioned,

each player’s choice, is a classical choice between two possible

measurement directions, and hence each player’s strategy set

remains the same as in the classical game, with the quantum

outcomes arising solely from the shared quantum state.

In order to calculate the measurement outcomes, we define a

separable state w~A1A2 . . . AN , to represent the players directions

of measurement, where Ai is a rotor defined in Eq. (9), with

probabilistic outcomes calculated according to Eq. (11). The use of

Eq. (11) gives the projection of the state y onto w, and thus returns

identical quantum mechanical probabilities conventionally calcu-

lated using the projection postulate of quantum mechanics. The

set of D0T and D1T outcomes obtained from the measurement of

each of the N qubits gives a reward to each player p according to a

payoff matrix Gp. The expected payoff for each player then

calculated from.

Pp~
X1

i1,...,iN ~0

G
p

i1...iN
P

i1...iN ~f (P
i1...iN ), ð14Þ

where P
i1...iN is the probability of recording the state

Di1TDi2T . . . DiNT upon measurement, where i1, . . . ,iN[f0,1g, and

G
p

i1...iN
is the payoff for this measured state. For large N it is

preferable to calculate the payoff as some function f of the

measured states, to avoid the need for large N|N payoff

matrices, as developed in the following section.

Results

GHZ-type state
Firstly, we calculate the probability distribution of measurement

outcomes from Eq. (11), from which we then calculate player

payoffs from Eq. (14). For the GHZ-type state we have the first

observable given by Eq. (12) producing.

yEy{~
1

2N{1
P
N

i~1
Ui

� �
1z

XtN
2
s

r~1

({)rCN
2r(ie

i
3)

0
B@

1
CA P

N

i~1
Ui{

� �

~
1

2N{1
1z

XtN2 s
r~1

{ð ÞrCN
2r V i

3

� �0
B@

1
CA,

ð15Þ

where we define V
j
k~iUjekUj{ , and

yJy{~
1

2N{1
cos c

XtNz1
2

s

r~1

{ð Þ
rz1

CN
2r{1 Vi

3

� �
{

sin c
XtN=2s

r~0

{ð Þ
rzN{1

2
CN

2r V i
2V

j
2

� �
Vk

1 . . . VN
1

 !
:

ð16Þ

For the measurement settings with a separable wave function

w~Pi Ai, we deduce the observables by setting c~0 in Eq. (15)

and Eq. (16) to be

wJw{~
1

2N{1

XtNz1
2

s

r~1

{ð Þrz1
CN

2r{1 Mi
3

� �

wEw{~
1

2N{1
1z

XtN
2
s

r~1

{ð ÞrCN
2r Mi

3

� �0
B@

1
CA,

ð17Þ

N-Player Quantum Games
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where M
j
k~iAjekAj{ . For Aj~e

{ike
j
2
=2

that allows a rotation of

the detectors by an angle k, we find

wJw{~
1

2N{1

XtNz1
2

s

r~1

{ð Þrz1
CN

2r{1 iei
3e

ikei
2

� �

wEw{~
1

2N{1
1z

XtN2 s
r~1

{ð ÞrCN
2r iei

3e
ikei

2

� �0
B@

1
CA:

ð18Þ

It should be noted in Eq. (18) that we have defined the

measurement angles with a simplified rotor, e
{ikei

2
=2

, and we

assume no loss of generality, which is in accordance with the

known result [10] that Bell’s inequalities can still be maximally

violated when the allowed directions of measurement are located

in a single plane, as opposed to being defined in three dimensions.

So, referring to Eq. (11), we find, through combining Eq. (15)

and Eq. (18).

2N{2SyEy{wEw{T0~
1

2N
S(1z

XtN2 s
r~1

({)rCN
2r(V

i
3))

(1z
XtN2 s
r~1

({)rCN
2r(ie

i
3e

ikei
2 ))T0

~
1

2N
1z

XtN
2
s

r~1

CN
2r(K

i)

0
B@

1
CA,

where Ki~Vi
3iei

3e
ikei

2~ cos ki cos ai
1z sin ki sin ai

1 cos ai
3, using

the standard results listed in Eq. (56). The cross terms in the

expansion of the brackets in Eq. (19), do not contribute because we

only retain the scalar components in this expression. We also have

for the second part of Eq. (11), through combining Eq. (16) and

Eq. (18)

{2N{2SyJy{wJw{T0~
1

2N
( cos c

XtNz1
2

s

r~1

CN
2r{1(Ki)z sin cV), ð20Þ

where we define

V~
XtN=2s

r~0

{ð ÞrCN
2r X i

2X
j
2

� �
X k

1 . . . X N
1

X i
1~Vi

1iei
3e

ikei
2~ { sin kð cos a1 cos a2 cos a3{ sin a2 sin a3ð Þ

z sin a1 cos a2 cos kÞi

X i
2~Vi

2iei
3e

ikei
2~ sin kð cos a2 sin a3z sin a2 cos a3 cos a1ð Þ

{ sin a1 sin a2 cos kÞi,

ð21Þ

also referring to Eq. (56).

Probability amplitudes for N qubit state, general
measurement directions. So combining our last two results

from Eq. (19) and Eq. (20) using Eq. (11), we find the probability to

find any outcome after measurement, which can be shown to be

valid for all N not just N odd as initially assumed, is

P
k1...kN ~

1

2N
(1z

XtN2 s
r~1

CN
2r(E

iKi)z

cos c
XtNz1

2
s

r~1

CN
2r{1(EiKi)zE1...NV sin c),

ð22Þ

where we have included Ei~({)ki
[fz1,{1g, to select the

probability to measure spin-up or spin-down on a given qubit.

If we take c~0, describing the classical limit, we have from Eq.

(22)

P
k1...kN ~

1

2N
1z

XtN=2s

r~1

CN
2r(E

iKi)z
Xt(Nz1)=2s

r~1

CN
2r{1(EiKi)

 !

~
1

2N
1z

XN

r~1

CN
r (EiKi)

 !

~
1

2N
(1zE1K1)(1zE2K2) . . . (1zENKN ),

ð23Þ

which shows that for zero entanglement we can form a product

state as expected. Alternatively with general entanglement, but

only for operations on the first two qubits, we have

P
kikj ~

1

8
1zEk cos c
� �

1z
XN

r~2

CN
r (Ei)

 !
1zEikKi)(1zEjkKj
� �

,ð24Þ

which shows that for the GHZ-type entanglement that each pair of

qubits is mutually un-entangled, a well-known result for GHZ-type

states.

Player payoffs. In general, to represent the permutation of

signs introduced by the measurement operator we can define for

the first player, say Alice,

ai1...iN ~
1

2N

X1

j1 ...jN ~0

Ei1...iN G1

j1...jN
, ð25Þ

so for example, a0...0~ 1

2N

P1

j1 ...jN ~0
G1

j1 ...jN
, and we adopt the

notation aiaj~aij etc., i.e. we write a0...1...0 with a 1 in the ith

position as ai.

Using the payoff function we find for Alice

PA(ki
j)~a0...0z

XtN=2s

r~1

CN
2r(a

iKi)

z cos c
Xt(Nz1)=2s

r~1

CN
2r{1(aiKi)zak1...kN

V sin c

ð26Þ

and similarly for the second player, say Bob, where we would use

Bob’s payoff matrix in place of Alice’s.

Mixed-strategy payoff relations. For a mixed strategy

game, players choose their first measurement direction ki
1, with

probabilities xi, where xi[0,1� and hence choose the direction ki
2

with probabilities (1{xi), respectively. Then Alice’s payoff is now

given as

N-Player Quantum Games
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PA(x1,x2, . . . ,xN )

~x1 . . . xN
X1

i,j,k~0

P
i1 ...iN (k1

1,k2
1, . . . ,k3

1)G
i1...iN

ð27Þ

z . . . zx1(1{x2) . . . xN
X1

i,j,k~0

P
i1...iN (k1

1,k2
2, . . . ,k3

1)G
i1...iN

z . . . z(1{x1)(1{x2)x3 . . .

xN
X1

i,j,k~0

P
i1...iN (k1

2,k2
2,k3

1, . . . ,kN
1 )G

i1 ...iN

z . . . z(1{x1)(1{x2)x3 . . .

xN
X1

i,j,k~0

P
i1...iN (k1

2,k2
2,k3

1, . . . ,kN
1 )G

i1 ...iN

z . . . z(1{x1)(1{x2)(1{x3) . . .

(1{xN )
X1

i,j,k~0

P
i1...iN (k1

2,k2
2,k3

2, . . . ,kN
2 )G

i1...iN :

ð28Þ

Embedding the Classical Game
If we consider a strategy N-tuple (x1,x2,x3, . . . ,xN )~

(0,1,0, . . . 0) for example, at zero entanglement, then the payoff

for Alice is obtained from Eq. (28) to be

PA(x1, . . . ,xN )~

1

2N
½G000...0(1zK1

2 )(1zK2
1 )(1zK3

2 ) . . . (1zKN
2 )

ð29Þ

zG100...0(1{K1
2 )(1zK2

1 )(1zK3
2 ) . . . (1zKN

2 )

.
zG010...0(1zK1

2 )(1{K2
1 )(1zK3

2 ) . . . (1zKN
2 ) ð30Þ

zG110...0(1{K1
2 )(1{K2

1 )(1zK3
2 ) . . . (1zKN

2 )

.

z . . . zG111...1(1{K1
2 )(1{K2

1 )(1{K3
2 ) . . . (1{KN

2 )�: ð31Þ

Hence, in order to achieve the classical payoff of G101...1, we can

see that we require K1
2 ~{1, K2

1 ~z1 and K3
2 . . . KN

2 ~{1.

This shows that we can select any required classical payoff by

the appropriate selection of Ki
j ~+1. We therefore have the

conditions for obtaining the classical mixed-strategy payoff

relations as

Ki
j ~ cos ai

1 cos ki
jz sin ai

1 cos ai
3 sin ki

j~+1: ð32Þ

We find two classes of solution: If ai
3=0, then for the equations

satisfying Ki
2~{1 we have for Alice in the first equation ai

1~0,

ki
2~p or ai

1~p, ki
2~0 and for the equations satisfying Ki

1~z1
we have ai

1~ki
1~0 or ai

1~ki
1~p, which can be combined to give

either ai
1~0, ki

1~0 and ki
2~p or ai

1~p, ki
1~p and ki

2~0. For

the second class with a3~0 we have the solution ai
1{ki

2~p and

for Ki
1~z1 we have ai

1{ki
2~0.

So in summary, for both cases we can deduce that the two

measurement directions are p out of phase with each other, and

for the first case (ai
3=0) we can freely vary ai

2 and ai
3, and for the

second case (ai
3~0), we can freely vary ai

1 and ai
2 to change the

initial quantum quantum state without affecting the game Nash

equilibrium (NE) or payoffs [2,3]. These results can be shown to

imply in both cases that V~0.

The associated payoff for Alice therefore becomes

PA(x1,x2, . . . xN )~

a00...0{ cos c
Xt(Nz1)=2s

r~1

CN
2r{1½ai0(1{2xi)za0i(1{2xi)�

z
XtN=2s

r~1

CN
2r½a1i(1{2x1)(1{2xi)za0ij(1{2xi)(1{2xj)�:

ð33Þ

For example, for three players this will reduce to

PA(x1,x2,x3)

~a000za011(1{2x2)(1{2x3)z

a110(1{2x1)((1{2x2)z(1{2x3))

{ cos c a111ð 1{2x1
� �

1{2x2
� �

1{2x3
� �

z

a100 1{2x1
� �

za001 2{2x2{2x3
� ��

,

ð34Þ

in agreement with previous results for three-player games [50].

Now, we can write the equations governing the NE for the first

player as

PA(xi�,x2�, . . . xN�){PA(xi,x2�, . . . ,xN�)

~(x1�{x1) {
XtN=2s

r~1

CN
2r(a

1iI1(1{2xi�))z

 

cos c
Xt(Nz1)=2s

r~1

CN
2r{1(ai0I1(1{2xi�))

!
§0:

We are using I1 as a placeholder, which has a value one, but

ensures that the correct number of terms are formed from CN
r ().

For example, for three players we find the NE governed by

PA(x1�,x2�,x3�){PA(x1,x2�,x3�)

~(x1�{x1) a110(2x2�{1)za101(2x3�{1)z
	

cos cfa100za111(2x2�{1)(2x3�{1)g


§0,

ð35Þ

in agreement with previous results [50].

Symmetric game. For a symmetric game we have a1...1~

b1...1~etc, a0...0~b0...0~etc and a11000...0~a10100...0~a10010...0
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~ . . . , and similarly for other symmetries, and using these conditions

for a symmetric game, we can find the NE for other players, such as

Bob, from the constraint

PA(xi�,x2�, . . . xN�){PA(xi�,x2, . . . ,xN�)

~(x2�{x2) {
XtN=2s

r~1

CN
2r(a

1iI2(1{2xi�))z

 

cos c
Xt(Nz1)=2s

r~1

CN
2r{1(ai0I2(1{2xi�))

!
§0:

ð36Þ

We can see that the new quantum behavior is governed solely by

the payoff matrix and by the entanglement angle c, and not by

other properties of the quantum state.

Linear payoff relations. We can see that as N??, that we

need to define an infinite number of components of the payoff

matrix as shown by Eq. (25). Hence in order to proceed to solve

specific games for large N, we need to write the payoff matrix as

some functional form of the measurement outcomes, as shown in

Eq. (14). The simplest approach is to define linear functions over

the set of player choices, as developed in [40], defining the

following general payoff function

$0~anzb, $1~cnzd, ð37Þ

where $0 is the payoff for players which choose their first

measurement direction and $1 is the payoff for the players which

choose their second measurement direction, and where n is the

number of players choosing their first direction and a,b,c,d[<.

This approach enables us to simply define various common

games. For example the prisoner dilemma (PD), which has the

essential feature that a defecting player achieves a higher payoff, is

represented if we have c§a, dwazb and aw0. These conditions

ensure that if a cooperating player decides to defect, then his

payoff rises as determined by Eq. (37). For example for

a~3,b~{3,c~4,d~1 we have defined an N player PD, and

for N~2 we find

GA
ij ~

3 0

5 1

� �
, ð38Þ

which gives us the typical payoff matrix for two-player PD game.

In the EPR setting for the quantum game, a cooperating player is

defined as the player who chooses their first measurement

direction and a defecting player as one who chooses their second

measurement direction.

For the Chicken game (also called the hawk-dove game) [3],

which involves the situation where the player that does not yield to

the other is rewarded, but if neither player yields then they are

both severely penalized, in this case we require c§a, dvazb and

aw0 and for the minority game, an implementation would be

c~{a, av0 and d~bzaN which rewards a minority choice

and punishes a majority one. Hence we are led to define

p1~d{(azb), p2~c{a, ð39Þ

as two key determinants of quantum games, and we will find that

the NE is indeed a function of p1 and p2 alone, see Eq. (44). With

this definition the PD game is selected if p1w0 and p2§0 and the

minority game with p1v0 and p2w0 for example.

It should be noted that while the definition in Eq. (37) can

generally define an infinite set of PD games through simply putting

conditions on p1 and p2, it is still only a subset of the space of all

possible PD games defined over N|N payoff matrices.

Using the linear functions defined in Eq. (37) we find

a0...0~
1

4
(N(cza){p2z2(bzd))

a10...0~{
1

4
((N{1)(c{a)z2(d{(azb)))

~{
1

4
(N{1)p2z2p1ð Þ

a110...0~{
c{a

4
~{

p2

4

a1110...0,a11110...0 . . . ~0

ð40Þ

and

a010...0~
cza

4

a011...0,a0111...0, . . . ~0:

ð41Þ

If required, Eq. (37) can be extended with quadratic terms in n to

allow a greater variety of PD games to be defined, and we find that

if this is done that one extra term is added to the series in Eq. (40)

and Eq. (41).

Flitney and Hollenberg [40], define slightly different linear

functions for the prisoner dilemma game, including a special case

at m~1, as follows:

$C~0 if m~1

~3z4(m{2) if mw1
ð42Þ

and for the defecting player

$D~5z4(m{1), ð43Þ

where m is the number of players cooperating. We find that the

advantage of this definition is that the phase diagram has

entanglement transitions that are independent of N, but with the

disadvantage that we need to administer this special case at m~1 in

the calculations. Also we found with our definition in Eq. (37), that

the series in ‘a’ terminates, as shown in Eq. (40) and Eq. (41), allowing

significant simplifications in the algebra as the payoff function in Eq.

(34) will terminate. On the other hand using the definition in [40],

we find an alternating series in ‘a’ which never terminates

a0...0~2(N{1)z1=2N ,a10...0~{1z1=2N ,a11...0~{1=2N ,a111...0

~1=2N ,a1111...0~{1=2N ,::: and so will generate much more

complicated algebraic expressions in the general case for the payoff

as shown in Eq. (34), which will become an infinite series, and so our

approach is preferred.

NE and payoff for linear payoff relations. We can see that

the series in Eq. (40) and Eq. (41) terminates, which thus allows us

to simplify the NE conditions, for the first player to
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(x1�{x1) p2

XN

i~2

(1{2xi�){ cos c (N{1)p2z2p1ð Þ
 !

§0 ð44Þ

and similarly for the other N{1 players, which thus determines

the available NE for all games, defined as linear functions, in terms

of the two parameters p1 and p2.

The payoff can then also be simplified for the first player to

PA~
1

4
(2(bzd){p2z(cza)(N{ cos c

XN

i~2

(1{2xi))

z(1{2x1)( cos c((N{1)p2z2p1){p2

XN

i~2

(1{2xi))):

ð45Þ

For the minority game defined previously, we find

(N{1)p2z2p1~0, which gives an interesting result for this game

that both the NE and the payoff are unaffected by the

entanglement of the state.

Prisoner dilemma (PD). For the PD, having p2§0 and

p1w0, and we find from the equation for Nash equilibrium in Eq.

(44) that in order to produce the classical outcome we requirePN
i~2 (1{2xi�)v cos c(N{1z2p1=p2) which thus requires

cos cw
N{1

N{1z2p1=p2

and hence the phase transitions, in terms

of cos c, are given by

N{1{2n

N{1zd
v cos cv

Nz1{2n

N{1zd
~ln, ð46Þ

where d~
2p1

p2
, and with the PD d[(0,?), and hence the above

inequality will hold for N§2. So in summary, at the classical limit

we have all players defecting, and then we have the transition to

the non-classical region at l1 and we then have equally spaced

transitions as entanglement increases down to maximum entan-

glement where we have the number of players cooperating

n~tN=2s. That is, we always have the same number of

transitions for a given number of players, but they concertina

closer together as the first transition l1, moves towards zero,

through changing the game parameters, p1 and p2.

The maximum payoff, close to maximum entanglement, can be

found from Eq. (45) as

Pc
A~

1

4
(2(bzd)z(cza)Nz(c{a)N[Odd)

Pd
A~

1

4
(2(bzd)z(cza)N{(c{a)N[Odd),

ð47Þ

where the final (c{a) term only occurs for odd N . So for N even

the payoffs are equal, but for odd N , the cooperating player

receives a higher or equal payoff to the defecting player. The

payoff rises linearly with N, whereas without entanglement, we

have the payoff fixed at d units from Eq. (37).

The conventional prisoner dilemma (PD) game for all

N. For the special case with the PD settings shown in Eq. (38),

which gives the conventional PD game for two players, we find

from Eq. (39), p1~1 and p2~1, and so we can then simplify the

general NE conditions in Eq. (44), for the first player to

(x1�{x1)
XN

i~2

(1{2xi�){(Nz1) cos c

 !
§0 ð48Þ

and similarly for the other N{1 players. The left and right edges

of each NE zone, shown in Fig. 2, can now be written from Eq.

(46) as

N{1{2n

Nz1
v cos cv

Nz1{2n

Nz1
: ð49Þ

In each zone we find the payoff for cooperation and defection,

from Eq. (45), now given by

Pc~
1

2
4N{2{n{(4z4N{7n) cos cð Þ

Pd~
1

2
3N{2znz(4{3Nz7n) cos cð Þ,

ð50Þ

which defines the payoff diagram for an N player PD, and which

produces the classical PD at N~2 at zero entanglement.

At each left hand boundary, for the defecting player, we have

from Eq. (49),
N{1{2n

Nz1
~ cos c or n~

1

2
N{1{(Nz1) cos cð Þ.

Substituting this into the defecting player payoff in Eq. (50), we

find

Pd~{3z
7

4
(Nz1)(1{ cos2 c)~{3z

7

4
(Nz1) sin2 c, ð51Þ

for the defecting players’ payoff. We thus see that the payoff at

each boundary follows a downwards parabolic curve in cos c, if

drawn on Fig. 2. If we allow N to increase without limit, then the

boundaries would concertina infinitesimally close together, and in

the limit as N??, the payoff’s would form a continuous

Figure 2. Phase structure for N-player Prisoner dilemma. For
cos cwl1 we identify the classical regime, where all players defect, and
as entanglement increases we find an increasing number of players
cooperating, up to tN=2s near maximum entanglement. The left and
right hand edges of the boundaries each form an inverted parabola in
cos c given by Eq. (51).
doi:10.1371/journal.pone.0036404.g002
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downward parabolic curve in cos c given by Eq. (51). The special

case of the PD selected here with p1~1 and p2~1 forms a

parabola, whereas for the general case of a PD game with p2§0
and p1w0 from Eq. (39), we will produce a quadratic curve in

cos c for the payoff. We can also see that this will be a general

feature for all games defined using linear functions as both the NE

in Eq. (44) and the payoffs in Eq. (45) are linear in cos c, therefore

typically producing a payoff diagram quadratic in cos c.

We can also note that Eq. (50) indicates a different payoff for the

defecting and cooperating player at the NE. If a player decides to

try to change their choice in order to improve their payoff, often a

lower payoff will be the outcome, because overall the player’s

choices have now moved away from the NE. This then illustrates

the value of coalitions and in aligning one’s choices with the

coalition with the higher payoff [20,36].

W entangled State
Following the same procedure as used for the GHZ-type state,

we find the probability distribution for the W-type state

P
k1...kN ~

1

N2N
(Nz

XN

r~1

(N{2r)CN
r (EiKi)z

2
XN

r~2

CN
r (EiEjEk(X i

2X
j
2zX i

1X
j
1)Kk)):

ð52Þ

We can then find the payoff function for the first player, Alice

PA(k1, . . . ,kN )~Na0...0z
XN

r~1

(N{2r)CN
r (aiKi)z

2
XN

r~2

CN
r (aijk(X i

2X
j
2zX i

1X
j
1)Kk)

ð53Þ

and similarly for other players. However with the W-type state it is

impossible to turn off the entanglement, and so it will not be

possible to embed the classical game, as we have done with the

GHZ-type state. Hence we will not proceed any further except to

show the result of maximizing the payoff function in Eq. (53) for

the PD.
Prisoner Dilemma (PD). For the PD we can maximize the

payoff function, and we find that we require all players to defect,

for all N and the resultant payoff for the first player Alice and

hence all players is

PA~czd{
czd{(azb)

N
: ð54Þ

So as N??, then the payoff approaches czd from below.

Discussion

Using Clifford’s geometric algebra, the probability distribution

is found for general measurement directions on a general N qubit

entangled state, for the GHZ-type state shown in Eq. (22) and for

the W-type state shown in Eq. (52).

Linear functions parameterized by the number of players

selecting their first measurement direction for an N player game

are then defined as shown in Eq. (37), from which games can then

be easily defined for general N . Using these linear functions, the

Nash equilibrium and payoff relations are then determined for

general N as shown in Eq. (44) and Eq. (45) respectively. We also

find a general feature for these games of producing a payoff

diagram with phase transition boundaries quadratic in cos c, as

shown in Fig. 2. If the linear functions are increased in order, then

we would expect the payoff diagram to become a higher order

polynomial in cos c.

As a specific example the PD is solved for a general N and we

find an interesting feature, that the payoffs at the Nash equilibrium

are equal for the defecting and cooperating player only for even N

and also in the limit of large N the payoff rises linearly with N

given by (cza)N=4 for the GHZ-type state.

At maximum entanglement the payoff for the GHZ-type and

W-type states for the PD become equal at N~2, producing the

formula from the parameters of the linear functions as

PGHZ~PW~
azbzczd

2
: ð55Þ

This equality is to be expected at N~2, because these two states

are equivalent under local operations.

In summary, we have produced a general quantum game

environment, with the number of players N§2, which will embed

the classical game at zero entanglement, and using linear functions

we determine the NE and player payoffs for general N. These

general results thus subsume previous analyses for two-player and

three-player games in an EPR setting [49,50].

Analysis

Calculating Observables
Given a rotor defined in Eq. (9), after some algebraic

manipulation, the following three results can be determined that

are useful when observables are calculated. Assuming a measure-

ment direction k we find:

SiRe3R{ie3ekie2T0~{ cos h1 cos k{ cos h3 sin h1 sin k, ð56aÞ

SiRe2R{ie3ekie2T0~sin k(cos h2 sin h3zsin h2 cos h3 cos h1)

{ sin h1 sin h2 cos k,
ð56bÞ

SiRe1R{ie3ekie2T0~{sin k(cos h1cos h2cos h3{sin h2sin h3)

z sin h1 cos h2 cos k:
ð56cÞ

Author Contributions

Wrote the paper: JC AI DA.

References

1. von Neumann J, Morgenstern O (1944) Theory of Games and Economic

Behavior. Princeton University Press.

2. Binmore KG (2007) Game Theory: A Very Short Introduction, volume 173.

Oxford University Press, USA.

N-Player Quantum Games

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36404



3. Rasmusen E (2007) Games and Information: An Introduction to Game Theory.

Wiley-Blackwell.

4. Blaquiere A (1980) Wave mechanics as a two-player game. Dynamical Systems

and Microphysics. pp 33–69.

5. Wiesner S (1983) Conjugate coding. SIGACT News 15: 78–88.

6. Mermin ND (1990) Extreme quantum entanglement in a superposition of
macroscopically distinct states. Physical Review Letters 65: 1838–1840.

7. Meyer DA (1999) Quantum strategies. Phys Rev Lett 82: 1052–1055.

8. Eisert J, Wilkens M, Lewenstein M (1999) Quantum games and quantum
strategies. Phys Rev Lett 83: 3077–3080.

9. Mermin ND (1990) Quantum mysteries revisited. American Journal of Physics
58: 731–734.

10. Peres A (1993) Quantum Theory: Concepts and Methods, volume 57. Kluwer
Academic Publishers.

11. Vaidman L (1999) Time-symmetrized counterfactuals in quantum theory.
Foundations of Physics 29: 755–765.

12. Benjamin SC, Hayden PM (2000) Multi-player quantum games. Physical
Review A 64: 5.

13. van Enk SJ, Pike R (2002) Classical rules in quantum games. Phys Rev A 66:
024306.

14. Johnson NF (2000) Playing a quantum game with a corrupted source. Physical
Review A 63: 1–4.

15. Marinatto L, Weber T (2000) A quantum approach to games of static
information. Phys Lett A 272: 291–303.

16. Iqbal A, Toor A (2001) Evolutionarily stable strategies in quantum games.
Physics Letters A 280: 249–256.

17. Du J, Li H, Xu X, Zhou X, Han R (2002) Entanglement enhanced multiplayer
quantum games. Physics Letters A 302: 229–233.

18. Du J, Li H, Xu X, Shi M, Wu J, et al. (2002) Experimental realization of

quantum games on a quantum computer. Physical Review Letters 88: 137902.

19. Piotrowski EW, Sadkowski J (2002) Quantum market games. Physica A:

Statistical Mechanics and its Applications 312: 208–216.

20. Iqbal A, Toor A (2002) Quantum cooperative games. Physics Letters A 293:

103–108.

21. Flitney AP, Abbott D (2002) An introduction to quantum game theory.

Fluctuation and Noise Letters 2: R175.

22. Iqbal A, Toor A (2002) Backwards-induction outcome in a quantum game.

Physical Review A 65: 052328.

23. Piotrowski EW, S ladkowski J (2003) An invitation to quantum game theory.

International Journal of Theoretical Physics 42: 1089–1099.

24. Shimamura J, Ozdemir SK, Morikoshi F, Imoto N (2004) Entangled states that

cannot reproduce original classical games in their quantum version. Physics
Letters A 328: 20–25.

25. Flitney AP, Abbott D (2005) Quantum games with decoherence. Journal of
Physics A: Mathematical and General 38: 449.

26. Han Y, Zhang Y, Guo G (2002) W state and Greenberger-Horne-Zeilinger state
in quantum threeperson prisoner’s dilemma. Physics Letters A 295: 61–64.

27. Iqbal A, Weigert S (2004) Quantum correlation games. Journal of Physics A:
Mathematical and General 37: 5873.

28. Mendes RV (2005) The quantum ultimatum game. Quantum Information
Processing 4: 1–12.

29. Cheon T, Tsutsui I (2006) Classical and quantum contents of solvable game
theory on Hilbert space. Physics Letters A 348: 147–152.

30. Iqbal A (2005) Playing games with EPR-type experiments. Journal of Physics A:
Mathematical and General 38: 9551.
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