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Abstract

Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes
encode these histone proteins, there is potential for generating more histones than what is required for chromatin
assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any
excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are
known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously
elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2
ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus) domain containing E3 ligase Tom1
in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting
New Gene) finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast.
These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs) YKR017C and
YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases) respectively. Mutants lacking these E3 ligases are
sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous
histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2
enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further
demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants
corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of
posttranslational histone regulatory mechanisms that employ multiple E3 ubiquitin ligases to ensure excess histone
degradation and thus contribute to the maintenance of genomic stability.
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Introduction

Histones are essential basic proteins that package the genomic

DNA of all eukaryotes into nucleosomes to form chromatin

[1,2,3]. In doing so, histones also regulate access to the genetic

information contained within the DNA and thereby affect all

aspects of DNA metabolism. Most histones are encoded by

multiple genes in all eukaryotes [4] that have the potential for

generating histones in excess of the requirement for chromatin

assembly [5]. Any excess of the positively charged histones can

allow them to potentially associate non-specifically with negatively

charged molecules such as DNA in the cell, resulting in deleterious

effects on cell viability and genomic stability [6,7,8]. As such, in

organisms such as the Xenopus that undergo rapid embryonic cell

cycles in the absence of transcription, large quantities of histones

are stored bound to chaperone proteins such as Nucleoplasmin in

their oocytes to provide adequate quantities of histones for

chromatin assembly during DNA synthesis [9,10]. A related

strategy has also been reported in Drosophila and other fly embryos

wherein histones appear to be stored in lipid droplets [11]. In the

budding yeast and mammalian cells, histone chaperones such as

Asf1 (Anti-Silencing Function 1), CAF-1 (Chromatin Assembly

Factor-1), Spt16 (Suppressor of Ty 16) and Nap1 (Nucleosome

Assembly Protein 1) can bind to and buffer against only a limited

excess of histone proteins [6,12,13,14,15,16]. Therefore, to avoid

the problems associated with excess histone accumulation, most

eukaryotic cells rely largely on the strict regulation of their histone

protein levels via transcriptional, posttranscriptional, translational

and posttranslational mechanisms [5,17].

Proteins are the structural and functional workhorses of all cells.

In order to respond effectively to constantly changing environ-

mental cues, protein levels must be regulated by eliminating the

pools that have either been damaged or are simply no longer

required for normal cell function. Therefore, cells have evolved

regulated proteolysis to fine-tune their metabolic processes

[18,19]. This regulated proteolysis involves a fairly well defined

choreography known as the ubiquitin-proteasome pathway.

Ubiquitin is a short 76-amino acid peptide that is universally

conserved among eukaryotes (hence the name ubiquitin). Ubiq-

uitin is attached to substrate proteins to mark them for destruction

or transduce other signals in the cell. Several ubiquitin molecules

(at least four) need to be covalently attached to the same lysine

residue in the target protein for it to be recognized and degraded

by the multifunctional protease known as the 26S proteasome

[20]. The conjugation of ubiquitin to proteins requires the

sequential action of three enzymes. The ubiquitin-activating

enzyme (Enzyme 1 or simply E1; Uba1 in the budding yeast)
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hydrolyzes ATP to convert ubiquitin into an activated form, which

is covalently linked at its carboxyl terminus to a cysteine (Cys)

residue of the E1 enzyme via a high-energy thiol-ester linkage [21].

The activated ubiquitin molecule is then transferred to the second

enzyme of this pathway, an ubiquitin conjugating enzyme (Ubc or

E2; Ubc1–Ubc13 in the budding yeast), and the activated form is

maintained through the formation of a thiol-ester linkage with a

Cys residue in the E2 enzyme. The third enzyme in the process,

the ubiquitin ligase (E3; approximately 80 E3 ligases in yeast),

supports the transfer of ubiquitin to substrates and generally

provides the specificity [20,22,23]. E3 ubiquitin ligases have been

broadly classified into three main categories, namely RING (Really

Interesting New Gene) finger domain containing E3 ligases [24],

the U-box domain containing E3 ligases that carry a modified

RING domain [25] and HECT (homologous to E6-AP C-

terminus) domain containing E3 ligases [26]. The RING domain

is a Cys rich sequence motif that can bind two zinc atoms and the

majority of the E3 ligases belong to this class [24]. The consensus

RING motif has been defined as a unique pattern of Cys and

histidine (His) residues at defined positions in a peptide sequence

that is Cys-X2-Cys-X9–39-Cys-X1–3-His-X2–3-Cys-X2-Cys-X4–48-

Cys-X2-Cys (and is often abbreviated to Cys3-His-Cys4), where X

can be any amino acid. The RING domain has been shown to

facilitate the interaction between the E2 and the substrate being

ubiquitylated without ever being covalently attached to ubiquitin.

U-box E3 ligases contain a U-box motif which is similar to RING

motif except that it lacks the canonical Cys residues for zinc

coordination [22,25]. The consensus 75-amino acid U-box

domain is poorly conserved and is characterized by the same

sequence of -helices, ß-sheets and unstructured loops found in

RING fingers. The HECT E3 ligases form a relatively small family

of conserved E3 ligases that are present from yeast to humans

[26,27]. These ligases are characterized by the HECT domain, a

C-terminal region of approximately 350 amino acids with

significant similarity to the C-terminus of E6-AP. Unlike RING

domain and U-box E3 ligases, the HECT E3 ligases interact with

the cognate E2 ubiquitin conjugating enzymes leading to covalent

attachment of the ubiquitin moiety by a thiol-ester bond to a

conserved Cys residue in HECT domain. Subsequently this

ubiquitin is transferred directly from the E3 ligase to the substrate

protein. Elongation of the initial ubiquitin into polyubiquitin

chains is carried out by the concerted actions of E2 and E3

enzymes. Even though some E2s might provide the chain-type

specificity, most of the substrate specificity is achieved by the E3

ligases. Not surprisingly, cells have a large number of proteins in

their proteome (1–2% of the total number of proteins) that are

putative E3 ligases [23]. The importance of E3 ligases is

underscored by the fact that a number of human diseases

including cancer, neurodegenerative processes, metabolic disor-

ders, familial Parkinson’s disease and Angelman’s syndrome have

been found to have defects in this proteolytic pathway

[28,29,30,31]. Further, some of the most important cell cycle

regulators are under very tight regulation and this is achieved by

employing multiple E3s for this task. The most studied protein to

fall in this class is the tumor suppressor p53, which is known to be

ubiquitylated by at least 11 different E3 ligases (Mdm2, Pirh2,

Cop1, TOPORS, Synoviolin, CHIP, UBC13, CARP1, CARP2,

p300/CBP and ARFBP1) [32]. Even though these E3 ligases have

other targets, they all contribute individually in regulating p53

levels, which is vital for proper cell cycle progression.

We have been engaged for the past decade in trying to

understand the posttranslational regulation of histone protein

levels using the budding yeast Saccharomyces cerevisiae as a model

system. Histones are generally considered to be extremely stable

proteins with half-lives in the order of several months in

mammalian cells [33]. However, these half-lives are likely to

mainly reflect the contribution of chromatin bound histones, as we

have previously shown that non-chromatin bound histones are

rapidly degraded with a half-life of 30–40 minutes in yeast cells

[6,7]. We went on to demonstrate that the phosphorylation,

ubiquitylation and subsequent degradation of excess histones in

yeast occurs via the ubiquitin-proteasome pathway. We identified

the DNA damage checkpoint kinase Rad53 as the master

regulator of this pathway which also employs the E2 ubiquitin

conjugating enzyme Ubc4/5 and the HECT domain E3 ligase

Tom1 for the degradation related polyubiquitylation of excess

histones. Interestingly HUWE1 (HECT, UBA and WWE domain

containing 1), the human homolog of Tom1, has been reported to

ubiquitylate all four core histones in vitro [34] as well as control the

levels or activities of important cellular regulators such as Cdc6

[35], Mcl-1 [36], Myc [37] and p53 [38]. tom1 deletion strains are

defective in efficient degradation of ectopically expressed histone

H3 [7]. Subsequent experiments carried out by us strongly

suggested that additional E3 ligases maybe involved in the

degradation of excess histones in budding yeast. Here we report

the identification and characterization of four additional histone

E3 ligases, namely Pep5, Snt2 and two novel E3 ligases that

correspond to previously uncharacterized ORFs. These ORFs

(YKR017c on chromosome XI and YDR266c on chromosome

IV) encode RING finger domain containing proteins. Based on

their involvement in ubiquitylating histones, we propose the name

HEL1 and HEL2 respectively (for Histone E3 Ligase) for these two

ORFs. Using a combination of genetic and biochemical assays we

show that these genes encode genuine ubiquitin E3 ligases and

histones serve as at least one of their major substrates. As such,

these E3 ligases play an important role in regulating histone

protein levels and are likely to contribute to the maintenance of

genomic stability in the budding yeast.

Results

Identification of four RING finger containing predicted E3
ligases that are sensitive to histone overexpression

Although we had previously demonstrated that tom1 mutants

were defective in the degradation of exogenous histones [7], when

followed for longer time points, the tom1 mutants appeared to

degrade the exogenously expressed histones, albeit with much

slower kinetics compared to the wild type cells (Figure 1A).

Additionally, the tom1 mutant was not as sensitive to genotoxic

agents as the ubc4 ubc5 double deletion strain that lacks both the E2

enzymes responsible for the degradation related ubiquitylation of

histones in yeast [7]. These data strongly suggested that additional

E3 ligases may be involved in the degradation of excess histones in

budding yeast. The yeast proteome has approximately 80 E3

ligases [23] and we used a simple screen based on the sensitivity of

yeast mutants defective in the histone degradation pathway to

histone overexpression as described previously [7] to identify

additional histone E3 ligases. For this, we acquired all the non-

essential deletions strains corresponding to the predicted E3 ligases

from the yeast genome deletion collection (Open Biosystems).

Additionally, we acquired temperature sensitive mutants for a few

of the essential E3 ligases as well. All the mutant strains along with

the isogenic wild type strain were transformed with either the

empty vector (pYES2-HTH) or a galactose inducible HIS10-TEV-

HA tagged histone H3 overexpression construct (pYES2-HTH-

HHT2) described previously [7]. The transformants were grown

overnight on a minimal liquid media with raffinose as the sole

source of carbon, but without uracil to maintain selection for the

Novel E3 Ligases Involved in Histone Degradation

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36295



plasmid. Then 10-fold serial dilutions corresponding to each strain

were plated on glucose or galactose containing plates lacking uracil

and incubated at 30uC (semi-permissive temperature for the

temperature sensitive mutants) for 2–3 days prior to being

photographed. The growth of each strain was compared between

galactose (in the presence of histone overexpression) and glucose

plates (no histone overexpression). In addition to the tom1 deletion

strain that served as a positive control in our screen, four putative

E3 deletion strains were sensitive to histone overexpression to

varying degrees (Figure 1B). Two of the strains corresponded to

deletions of previously characterized genes PEP5 and SNT2, while

the remaining two strains carried deletions of previously unchar-

acterized ORFs and we named them hel1 and hel2 for Histone E3

Ligase. Since histone overexpression causes cytotoxicity via

multiple mechanisms in yeast cells [8] we needed to further

characterize the four genes identified in our initial screen to

determine if they encoded bona fide histone E3 ligases.

hel1, hel2, pep5 and snt2 mutants are defective in histone
degradation

If hel1, hel2, pep5 and snt2 mutants were sensitive to histone

overexpression due to a defect in histone degradation, then this

defect could be detected using our histone degradation assays

described previously [6,7]. For this assay, G1 arrested cells were

induced with galactose for 90 minutes to express HA tagged

histone H3, after which cells were switched to glucose media to

stop the synthesis of the tagged H3. Samples were harvested at 30-

minute or indicated intervals and processed for Western blotting

using the H3-C antibody as described previously [6,7], except that

the signals were detected using fluorescently labeled secondary

antibodies on a Li-COR Odyssey imager. Compared to the wild

type BY4741 strain, the hel1, hel2, pep5 and snt2 deletion strains

were clearly defective in degrading ectopically expressed histone

H3 to varying degrees, with pep5 being the most defective and

nearly indistinguishable from rad53 mutants (Figure 2A). The

levels of endogenous chromatin bound histone H3 do not change

during the course of the experiment and serve as an excellent

internal loading control. Next, we investigated if the RING

domains of the putative histone E3 ligases were required for the

degradation of excess histones. For this we used site-directed

mutagenesis to replace the critical Cys and His residues in the

RING domains of Hel1, Hel2 and Snt2 with Alanine (Ala) residues

as described in Materials and Methods. These hel1-r1, hel1-r2, hel1-

r1r2, hel2-r and snt2-r2 mutants carrying point mutations in their

Figure 1. Identification of strains lacking specific E3 ligases that confer sensitivity to histone overexpression. (A) The tom1 deletion
strain can degrade exogenous histones with much slower kinetics than the wild type strain. Histone degradation assay was carried out exactly as
described previously [7] whereby a galactose inducible, HIS10-TEV-HA (HTH) tagged histone H3 was expressed in G1 arrested cells for 90 minutes,
following which cells were switched to glucose media and harvested at the indicated time points. Whole cell extracts were prepared and resolved on
18% polyacrylamide gels and subjected to Western blotting with the H3-C antibody described previously [6] that recognizes both the endogenous
chromatin associated histone H3 as well as the overexpressed H3. The entire experiment was carried out in G1 arrested cells to prevent incorporation
of exogenous histones into chromatin that occurs in replicating cells. (B.) Strains lacking Hel1, Hel2, Pep5 and Snt2 E3 ligases are sensitive to histone
overexpression. The histone overexpression sensitivity screen was carried out exactly as described previously [7]. Briefly, wild type (WT) BY4741 and
deletion strains corresponding to the indicated E3 ligases were transformed with either an empty vector (pYES2-HTH) or a galactose inducible HTH
tagged histone H3 expressing plasmid (pYES2-HTT-HHT2). Then 10-fold serial dilutions of the resulting transformants were plated on glucose (no
histone overexpression) or galactose (allows histone overexpression) containing media without uracil to select for the plasmid. Plates were
photographed after 3 days of incubation at 30uC.
doi:10.1371/journal.pone.0036295.g001
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respective RING domains were as defective in excess histone

degradation as the hel1, hel2 and snt2 deletion strains (Figure 2B),

strongly suggesting that their RING domains are important for

histone protein regulation.

hel1, hel2, pep5 and snt2 mutants accumulate excess
histones on the histone chaperone Asf1

We have previously shown that yeast strains defective in the

histone degradation pathway such as rad53, ubc4, ubc5 and tom1

accumulate excess endogenous histones on histone chaperones

such as Asf1 which typically binds small amounts of histones under

normal conditions but becomes saturated with histones upon

replication arrest or DNA damage [6,7]. If hel1, hel2, pep5 and snt2

are indeed defective in degrading endogenous histones, they

should also exhibit histone chaperones overloaded with endoge-

nous histones under normal conditions. Wild-type and E3-mutant

strains carrying FLAG3 tagged Asf1 (Asf1-FLAG) were treated

with or without methyl methane sulfonate (MMS) to induce

alkylation damage, following which Asf1-FLAG was immunopre-

cipitated using FLAG-M2 affinity resin. As expected, in the

absence of MMS, small amounts of H3 were associated with Asf1–

FLAG in wild-type cells, which increased dramatically upon MMS

treatment (Figure 3). In contrast, hel1, hel2, pep5 and snt2 deletion

strains showed high levels of H3 associated with Asf1–FLAG both

in the absence and presence of MMS-induced DNA damage. The

near saturation of Asf1 with histones in each of these mutants even

in the absence of DNA damage strongly suggests that the

corresponding E3 ligases contribute independently of each other

in the posttranslational regulation of endogenous histone protein

levels.

Hel1, Hel2, Pep5 and Snt2 interact with Ubc4 and
histones

All the new histone E3 ligases identified in our screen are RING

finger domain containing proteins. RING domains are known to

directly interact with Ubc (E2) enzymes as well as the substrate,

thereby helping the Ubc enzymes transfer the ubiquitin to the

substrate proteins [24,39]. Hence, if the putative RING finger

histone E3 ligases identified by us are bona fide E3 ligases, they

should interact physically with their substrate histones as well as

the E2 enzymes involved in the degradation related ubiquitylation

of histones. We tested this idea directly by checking if Hel1, Hel2,

Pep5 and Snt2 interact with the major histone ubiquitin

conjugating enzyme Ubc4 and histones. For this we transformed

a strain expressing MYC13-tagged Ubc4 [7] with constructs

expressing HIS6-HA-Protein A (HIS6-HA-PrA) tagged E3 ligases.

Then we prepared whole cell extracts and immunoprecipitated

(IPed) either Ubc4-MYC using anti-MYC EZ View beads (Sigma)

(Figure 4A) or HA-tagged E3 ligases using magnetic beads

conjugated to HA.11 antibodies (Figure 4B). All IPed material

was resolved on precast gradient gels. Western blotting with MYC

and HA antibodies clearly shows that all the four E3 ligases co-

immunoprecipitated (co-IPed) with Ubc4-MYC (Figure 4A).

Similar results were obtained using reciprocal immunoprecipita-

tion experiments (data not shown). Further, both histones H3 and

H4 co-IPed with all the four E3 ligases (Figure 4B). Overall, these

Figure 2. Strains lacking putative E3 ligases Hel1, Hel2, Pep5 and Snt2 are defective in degrading excess histones. (A) Strains carrying
deletions of hel1, hel2, pep5 and snt2 are deficient in degrading exogenously expressed histones. The exogenous histone degradation assay was carried
out in the indicated strains carrying the pYES2-HTH-HHT2 plasmid as described in Figure 1A. The rad53 deletion strain serves as a positive control in
this assay as we have previously shown that it is defective in the degradation of exogenously expressed histones [6]. The endogenous chromatin
bound histone H3 is not degraded in this assay and serves as a loading control. Glu = glucose. (B) The RING domains of Hel1, Hel2 and Snt2 are required
for efficient degradation of excess histones. Strains carrying mutations in the RING (r) domains of Hel1, Hel2 and Snt2 were generated as described in
the Materials and Methods section. These mutant strains were then transformed with the pYES6/CT-HA-HHT2 plasmid carrying a Blasticidin resistance
marker and a galactose inducible, HA-tagged histone H3 gene (HA-H3). The excess histone degradation assay was carried out as described in (A)
except that the duration of the experiment was limited to 90 minutes and the exogenous HA-H3 was detected using HA.11 antibodies, while the
endogenous H3 was detected using the H3-C antibody described previously [6,7].
doi:10.1371/journal.pone.0036295.g002
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interactions demonstrate that the new RING finger containing

histone E3 ligases can potentially mediate the ubiquitin transfer

from the E2 enzyme Ubc4 to the substrate histones by acting as a

scaffold to bring these proteins together.

Hel1, Hel2, Pep5 and Snt2 promote ubiquitylation of
histones in vitro

To further demonstrate that the E3 ligases identified by us were

bona fide histone E3 ligases, next we tested if they can

polyubiquitylate histones in vitro. For this we set up in vitro histone

ubiquitylation reactions using recombinant E1, E2, ubiquitin and

histone H4 along with purified TAP-tagged E3 ligases as described

previously [7]. Reactions were stopped by the addition of Sodium

Dodecyl Sulfate (SDS) loading buffer and boiling prior to analysis

by Western blotting using histone H4 antibodies. The formation of

high-molecular weight species clearly demonstrates that histone

H4 is efficiently ubiquitylated in vitro using Hel1, Hel2, Pep5 and

Snt2 E3 ligases (Figure 5). Further, the inclusion of Rad53

significantly stimulated the activity of all these E3 ligases in the in

vitro ubiquitylation reactions, especially in the case of Hel1

(Figure 5, compare lanes 3 to 4, 5 to 6 and 7 to 8), suggesting

that the newly identified E3 ligases may recognize the same

Rad53-dependent phosphorylation as degradation signals on

histones as the Tom1 ligase identified previously [7].

Hel1, Hel2, Pep5 and Snt2 do not regulate the levels of
the E2 enzyme Ubc4

Although the in vivo and in vitro data presented here so far

strongly suggest that the newly identified E3 ligases are likely to be

directly involved in histone ubiquitylation and degradation, it is

also formally possible that one or more of these ligases may be

indirectly affecting histone levels by controlling the abundance of

Ubc4, the major E2 enzyme involved in the ubiquitylation

mediated degradation of histones. To investigate this possibility,

we measured the levels of full-length MYC13-tagged Ubc4, as well

as its ubiquitylated forms and degradation products in wild type

and E3 mutant strains. Although we readily detected multiple

bands migrating slower than full-length Ubc4-MYC, we did not

observe any differences in the levels of the full-length or

ubiquitylated forms, as well as in the degradation products of this

protein upon the deletion of any of the newly identified E3 ligases

(Figure 6). This data strongly suggests that these E3 ligases do not

regulate Ubc4 protein levels, although it is still formally possible

that these E3 ligases may regulate the levels of Tom1 or each

other, thereby indirectly influencing histone levels.

Histone E3 ligases exhibit varying degrees of sensitivity
to genotoxic agents such as the replication inhibitor
hydroxyurea

DNA damage in eukaryotes occurs in context of chromatin.

Therefore, histone proteins and chromatin structure is likely to

influence DNA damage and repair. DNA repair enzymes need to

gain access to the damaged DNA in order to repair it. We have

previously shown that yeast strains lacking factors involved in the

regulation of histone protein levels such as the E3 ligase Tom1 are

sensitive to genotoxic agents to varying degrees [7]. To assess if the

new histone E3 ligases identified in our screen were also sensitive

to genotoxic agents, we plated 10-fold serial dilutions of mutant

and wild type strains on plates containing the replication inhibitor

hydroxyurea (HU). We found the pep5 deletion strain to be very

sensitive to HU, though not as sensitive as the rad53 deletion

strain, while the hel1 and hel2 deletion mutants were sensitive to HU

to a lesser extent (Figure 7A). The snt2D mutant was not sensitive

at all to HU, suggesting the possibility that different histone E3

ligases may be employed for the degradation of excess histones in

different contexts. Combining the tom1 deletion mutant which is

slightly sensitive to HU [7] with the hel1, hel2 and snt2 deletion

mutants individually did not further exacerbate the HU sensitivity

of any of these E3 ligases (Figure 7A), suggesting that they may be

working in the same pathway. Similar results were obtained for the

hel1 hel2 and the rad53 hel1 double mutants, as the HU sensitivity of

the hel2 and rad53 single mutants was not enhanced any further in

these double mutants (Figure 7A). However, all our attempts to

generate the tom1D pep5D double mutant have failed so far,

suggesting that this combination may be synthetically lethal (data

not shown) and that these two E3 ligases may work in parallel

pathways that are redundant with each other. We also investigated

if the RING domains of Hel1 and Hel2 played any role in

resistance of yeast cells to HU. Mutation of the critical residues

within the RING finger domains of Hel1 and Hel2 rendered them

as sensitive to HU as the complete loss of the proteins (Figure 7B),

once again suggesting that the RING finger domains are essential

for the function of these E3 ligases.

Discussion

In this study we have identified and characterized four putative

E3 ligases that contribute to the posttranslational regulation of

histone protein levels in the budding yeast. As opposed to the

previously identified HECT-domain containing histone E3 ligase

Tom1 [7], all the four new histone E3 ligases carry RING finger

domains that enable them to polyubiquitylate excess histones for

subsequent degradation. Non-degradation related polyubiquityla-

tion of histones H2B has also been reported to occur in the

budding yeast [40]. As such, although we have focused here on the

involvement of these new E3 ligases in the degradation related

ubiquitylation of histones, we acknowledge the possibility that they

may also be involved in histone ubiquitylation that is not related to

degradation. The five histone E3 ligases identified so far in the

posttranslational regulation of histone proteins represent roughly

7% of the 80 predicted E3 ligases in the budding yeast [23].

However, it is possible that this list may expand further upon the

analysis of the remaining essential predicted E3 ligases that we

have not screened so far. This involvement of multiple E3 ligases

Figure 3. hel1, hel2, pep5 and snt2 deletion strains accumulate
excessive amounts of endogenous histones on the histone
chaperone Asf1. The chromosomal copy of the gene encoding Asf1
was tagged with a 36FLAG epitope at the C-terminus in the indicated
strains. Whole cell extracts were prepared from 0.5 L cell cultures
treated with or without DNA damaging agent Methylmethane
Sulfonate (MMS; 0.033%) as described previously [7]. Then, Asf1-FLAG
was immunoprecipitated (IPed) using FLAG-M2 antibodies and the co-
immunoprecipitated (Co-IPed) histones were analyzed by Western
blotting using the H3-C and H4 polyclonal antibodies described
previously [6].
doi:10.1371/journal.pone.0036295.g003
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in the regulation of histone protein levels is reminiscent of the

multiple E3 ligases that independently contribute to the regulation

of p53 tumor suppressor protein levels in mammalian cells [32].

Overall, the identification of multiple E3 ligases, each of which

appears to contribute independently to the regulation of histone

protein levels, highlights the importance of the posttranslational

degradation of histones in yeast cells.

Two of the E3 ligases identified in our screen, Hel1 and Hel2,

correspond to previously uncharacterized budding yeast ORFs

YKR017C and YDR266C respectively. Hel1 is only one of two

yeast E3 ligases that belong to the RBR (RING-in between-RING)

or TRIAD sub-class of E3 ligases that are characterized by the

presence of two RING finger domains with a novel Cys-rich Cys6-

His-Cys in-between-RING (IBR) domain present in between the

two RING domains [41,42]. The other RBR E3 ligase in the

budding yeast, Itt1, is not sensitive to histone overexpression and

as such it is unlikely to be involved in the regulation of histone

protein levels (data not shown). The RBR family of E3 ligases

include human E3 ligases such as the human homolog of Drosophila

Ariadne (HHARI; also known as ARIH1) that shares homology

with Hel1, as well as TRIAD1 (or ARIH2) and Parkin (or

PARK2), the latter of which has been implicated in a subset of

Parkinson’s disease [43]. It remains to be determined if these

human RBR E3 ligases that share similarities with Hel1 can

ubiquitylate histones. Recent mechanistic insight into these RBR

E3 ligases suggest that they may function as hybrid RING/HECT

E3 ligases whereby the first RING domain interacts with the E2

enzyme while the second RING domain participates in the

transfer of the ubiquitin moiety to the substrate [44]. Not

surprisingly, the second RING domain of HHARI appears to

have a very different structure compared to canonical RING

domains [45]. Mutations in any one of the two RING domains of

Hel1 result in similar defects in histone degradation (Figure 2B)

and confer the same degree of DNA damage sensitivity as the null

mutant (Figure 7B), further confirming that both the RING

domains are required for the function of RBR E3 ligases. Overall,

our studies on Hel1 constitute the first characterization of an RBR

Figure 4. Hel1, Hel2, Pep5 and Snt2 interact with the E2 enzyme Ubc4 as well as histones. (A) Hel1, Hel2, Pep5 and Snt2 interact with Ubc4.
Whole cell extracts prepared from 0.5 liter cultures of the indicated strains were used to IP Ubc4-MYC essentially as described for Asf1-FLAG IPs in
Figure 3, but using anti-MYC EZ view beads (Sigma). Co-IPed HA-tagged E3 enzymes were detected using HA.11 antibodies. Apart from the
predominant bands corresponding to the full length proteins (indicated by the asterisks), additional bands of weaker intensity are detected and these
are likely to be either degradation products (faster migrating) or ubiquitylated (slower migrating) forms of these proteins. No co-IPed proteins were
detected in the parental untagged strain carrying Ubc4-MYC but lacking HA-tagged proteins. 1% of the whole cell extracts were loaded on a separate
gel to determine that roughly equal amounts of proteins were present in the input fraction by measuring the amount of histone H4. (B) Hel1, Hel2,
Pep5 and Snt2 interact with histones. The HA-tagged E3 enzymes were IPed from 1 liter cultures of the indicated strains using HA.11 antibodies. Co-
IPed endogenous histones H3 and H4 was detected using the polyclonal antibodies described previously [6]. No co-IPed histones were detected in
the ‘‘no tag’’ control. The amount of Ubc4-MYC was measured in 1% of the input fraction to demonstrate that roughly equal amounts of cell extracts
were used for the IP reactions. (C) Hel1 and Hel2 interact with Rad53. MYC tagged Hel1 or Hel2 were IPed using MYC antibody beads from 3 liter
cultures of strains carrying FLAG-tagged Rad53. IPed and Co-IPed proteins were detected by Western Blotting using appropriate antibodies. The
relative amount of histone H3 present in each of the ‘‘input’’ extracts used for the IP is shown to demonstrate that same amount of material was used
for each IP. (D) Snt2 interacts with Rad53 whereas Pep5 does not. Tandem Affinity Purification (TAP) tagged Pep5 or Snt2 was IPed from 3 liter cultures
of strains carrying FLAG-tagged Rad53. Any co-IPed Rad53 was detected using FLAG antibodies. The similar levels of Rad53-FLAG present in the
extracts confirm that the same amount of extracts was used for each IP. No evidence for any interaction between Rad53 and Pep5 was observed even
upon scaling up the Pep5-TAP IP by 3-fold (data not shown).
doi:10.1371/journal.pone.0036295.g004

Novel E3 Ligases Involved in Histone Degradation

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e36295



E3 ligase in yeast and suggest that histones are a potential

substrate.

Hel2 is a canonical RING domain containing E3 ligase that has

been previously shown to be phosphorylated by the DNA damage

checkpoint kinase and histone protein regulator Rad53 [46]. Not

surprisingly, in vitro ubiquitylation of histone H4 in the presence of

Hel2 is significantly stimulated by the presence of Rad53 (Figure 5).

Further, hel2 mutants are sensitive to the replication inhibitor HU

and this maybe in part due to its role in regulating histone protein

levels, although it is quite likely that there are additional substrates

that are ubiquitylated in vivo by Hel2 in response to replication

arrest and we are currently investigating this. The human protein

with the highest similarity to Hel2 is an uncharacterized zinc

finger protein 598 (ZNF598), although known E3 ligases such as

KPC1 (Kip1 Ubiquitination-Promoting Complex 1; also known as

RNF123) also show limited similarity to Hel2 [47]. It is unclear if

these human E3 enzymes are capable of ubiquitylating histones.

Snt2 is a poorly characterized protein. It was initially identified

and named for the presence of the DNA binding SANT (SWI3,

ADA2, N-CoR and TFIIIB) domain and has been predicted to

function as a transcriptional regulator based largely on in silico

analyses, although this prediction is yet to be verified experimen-

tally [48,49]. Snt2 also has three PHD (Plant Homeo-Domain)

fingers consisting of the Cys4-His-Cys3 motif which is typically

involved in binding methylated lysine residues on histones,

although the Snt2 PHD fingers show weak or nonspecific binding

to methylated histone H3 peptides at best [50]. The PHD finger is

very similar to the Cys3-His-Cys4 containing RING finger domain

and two of the PHD fingers of Snt2 are also RING fingers

potentially capable of E3 ligase activity. Our data clearly show that

the snt2 deletion strain is sensitive to histone overexpression

(Figure 1B), defective in histone degradation (Figure 2A) and

accumulates excess endogenous histones (Figure 3). Further, point

mutations in the second RING domain of Snt2 result in a defect in

excess histone degradation (Figure 2B). More importantly, Snt2

interacts with Ubc4, histones and Rad53 (Figure 4) and exhibits

robust histone ubiquitylation activity in vitro that is further

stimulated by Rad53 (Figure 5). Hence, based on these data we

conclude that Snt2 is a genuine histone E3 ligase and contributes

to the regulation of histone protein levels.

Pep5 (also known as Vps11) was initially isolated as a protease

deficient mutant [51]. Pep5 was subsequently shown to be

involved in protein trafficking and vacuole biogenesis pathways

[52], although it has not been studied as a RING E3 ligase. In our

in vitro ubiquitylation assay, Pep5 shows robust activity in

Figure 5. Hel1, Hel2, Pep5 and Snt2 can efficiently ubiquitylate histone H4 in vitro in a reaction that is stimulated by Rad53.
Recombinant and purified components were used to reconstitute the ubiquitylation of histone H4 in vitro exactly as described previously [7]. The
reaction products were resolved on an 18% polyacrylamide gel and processed for Western blotting with H4 antibodies. Addition of commercially
available recombinant yeast Uba1 (E1), human UbcH5A (E2; homolog of yeast Ubc4) and HIS6-tagged ubiquitin to recombinant human histone H4
with or without Rad53 did not result in appreciable histone modifications, apart from some monoubiquitylation (lanes 2 and 1 respectively). Only the
addition of the E3 ligases Hel1 (H1), Hel2 (H2), Pep5 (P5) and Snt2 (S2) purified from yeast extracts via TAP epitope tags resulted in considerable high
molecular weight histone modifications, which were further stimulated to varying degrees by the addition of recombinant Rad53 to the reaction
mixture.
doi:10.1371/journal.pone.0036295.g005

Figure 6. The E3 ligases Hel1, Hel2, Pep5, Snt2 and Tom1 do
not regulate the protein levels of Ubc4, the major E2 enyme
involved in excess histone degradation. Whole cell lysates were
prepared as described previously [69] from wild type and the indicated
E3 ligase deletion strains carrying MYC-tagged Ubc4. The lysates were
resolved on a 12% polyacrylamide gel and processed for Western
blotting using MYC antibodies. No significant differences are observed
in the levels of full-length Ubc4-MYC, or in its slower migrating modified
forms and faster migrating degradation products.
doi:10.1371/journal.pone.0036295.g006
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ubiquitylating histone H4 (Figure 5), indicating that histones may

serve as its substrates in vivo as well. Of the four histone E3 ligases

identified in this study, the pep5 deletion strain exhibited the most

pronounced defects in the degradation of exogenous histones

(Figure 2A) and accumulated high amounts of excess endogenous

histones on the histone chaperone Asf1 (Figure 3). Interestingly,

pep5 mutants have been reported to exhibit a synthetic growth

defect when combined with hir1, hir2 or asf1 mutations, and are

synthetically lethal when combined with rad53 mutations [53].

Hir1 and Hir2 are part of the four-subunit HIR complex that

serves as a negative transcriptional regulator of histone gene

expression outside of S-phase in yeast [54], apart from functioning

as a histone chaperone [55]. Asf1 also contributes to the

transcriptional regulation of yeast histone genes [56], while

Rad53 is known to regulate histone protein levels [6,7]. Taken

together, our data suggests that Pep5 is likely to be a major player

in the regulation of histone proteins, which would explain the

synthetic phenotypes observed upon the simultaneous loss of pep5

along with known regulators of histone levels. Loss of the histone

transcriptional regulator complex HIR may result in an increased

production of endogenous histones, thereby increasing the burden

on the remaining histone regulators, including Pep5. Similarly, loss

of Asf1 would result in a reduction in the capacity of the cells to

sequester excess endogenous histones on the remaining histone

chaperones, thereby channeling more histones for degradation via

Pep5. It will be interesting to determine if Vps11, which appears to

be a clear human homolog for Pep5 [57], is also involved in

histone regulation.

We have previously provided evidence that the kinase activity of

Rad53 is required for the efficient polyubiquitylation of histones

both in vitro and in vivo [7]. We further identified the tyrosine 99

residue of histone H3 as a crucial determinant for the degradation

of this histone in vivo, presumably due to phosphorylation at this

residue. Based on the phosphorylation-ubiquitylation mediated

degradation of well-known proteins [58,59], we proposed a similar

model for the degradation of excess histones whereby these

histones were first detected and phosphorylated by Rad53, leading

to their efficient polyubiquitylation and subsequent degradation by

the proteasome. Consistent with this model, our current in vitro

ubiquitylation reactions demonstrate that the activities of all the

identified histone E3 ligases in ubiquitylating histone H4 were

further stimulated by the addition of Rad53, but to varying

degrees (Figure 5), suggesting that these ligases may also recognize

phosphorylation dependent degradation signals on histones similar

to Tom1. Further, just like Tom1 [7], Hel1 shows limited H4

ubiquitylation activity in the absence of Rad53, while Hel2, Snt2

and Pep5 show significant H4 ubiquitylation under the same

conditions (Figure 5). Upon the addition of Rad53, the H4

ubiquitylation activity of Hel1 was stimulated strongly, while the

activities of Hel2, Snt2 and Pep5 showed a more modest increase.

The varying degree of Rad53-dependent stimulation of the in vitro

histone ubiquitylation reactions by these E3 ligases may be

indicative of the requirement for additional cellular regulatory

factors, such as accessory proteins and possibly other kinases that

are missing from our in vitro reactions, which may be crucial for the

full range of regulated activities of these ligases in vivo. Since

deletion of pep5 confers a synthetic lethal phenotype when

combined with the rad53 deletion [53] (and data not shown), it

is possible that at least this and possibly all of these E3 ligases may

carry out significant histone ubiquitylation independent of Rad53

in vivo by relying on other kinases to phosphorylate excess histones

and mark them for degradation. This idea would be consistent

with the strong defects in histone protein regulation in the pep5

(Figure 2A and 3) and rad53 [6,7] single mutants, the synthetic

lethality of the rad53 pep5 [53] and possibly the tom1 pep5 double

mutants (data not shown), as well as the mutually exclusive

localization of Pep5 and Rad53 in the cytoplasm and the nucleus

respectively.

Our previous studies have shown that excess histones are

degraded by the proteasomes following polyubiquitylation [7].

Since the proteasomes are primarily localized in the nucleus in

budding yeast [60,61,62], following the initial identification of the

nuclear histone E3 ligase Tom1 [7], we had suggested that excess

histone degradation was likely to be occurring in the nucleus.

However, the cytoplasmic localization of the histone E3 ligases

such as Hel2 and Pep5, as well as the nucleocytoplasmic

localization of Snt2 [63], suggest the possibility that some excess

histone degradation may occur in the cytoplasm (the localization

of Hel1 has not been determined yet). Due to the predominant

nuclear localization of proteasomes in budding yeast [60,61,62],

cytoplasmic degradation of excess histones may even occur in a

proteasome independent manner, perhaps in the vacuoles. A very

recent report suggests that histones may be targeted for

degradation via the Chaperone Mediated Autophagy (CMA)

pathway in mammalian cells [64]. Although CMA has not been

reported to occur in yeast, a related autophagy process known as

Vacuolar Import and Degradation (VID) has indeed been

described in yeast [65] and this pathway requires components of

the ubiquitylation pathway [66,67]. Hence, it is possible that the

known function of Pep5 in vacuolar sorting [52] is somehow

involved in such a proteasome independent cytoplasmic degrada-

tion of excess histones. Based on their localization, another

Figure 7. Histone E3 ligase mutants exhibit varying degrees of
sensitivity to the replication inhibitor hydroxyurea. (A) hel1, hel2
and pep5 mutants are sensitive to hydroxyurea. 10-fold serial dilutions of
the indicated strains were plated on media containing glucose with or
without the indicated concentrations of hydroxyurea (HU) and
incubated at 30uC for 3 days before being photographed. (B) Mutations
in the RING finger domains of Hel1 and Hel2 render them sensitive to HU.
10-fold serial dilutions of the indicated strains were plated on media
containing galactose with or without 200 mM HU and incubated at
30uC for 3 days before being photographed. The hel1-r1r2 mutant
carries inactivating mutations in both r finger domains of Hel1, while
the hel2-r mutant carries inactivating mutations in the single r finger
domain of Hel2. The rad53 deletion strain was included as a positive
control.
doi:10.1371/journal.pone.0036295.g007
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possibility is that Tom1 targets excess histones in the nucleus for

degradation, while Hel2 and Pep5 are involved in the cytoplasmic

degradation of excess histones, whereas Snt2 contributes to histone

degradation in both cellular compartments. Future studies will

determine if this is indeed the case.

Materials and Methods

All yeast strains used are listed in Table S1. These strains were

either obtained from Open Biosystems budding yeast genome

deletion collection or were generated in the lab as needed using

standard yeast manipulations [68]. MYC13-tagged Ubc4 and the

plasmid pRS416-RAD53-FLAG for the expression of FLAG-

tagged Rad53 have been described previously [7]. TAP-tagged

strains were obtained from Open Biosystems. Plasmids pYES2-

HTH and pYES2-HTH-HHT2 have been described previously

[7]. Plasmid BG1805 based constructs expressing C-terminal

HIS6-HA-Protein A (HIS6-HA-PrA) tagged Hel1, Hel2, Pep5 and

Snt2 under the control of a galactose inducible promoter were also

obtained from Open Biosystems. Mutagenesis of the HEL1, HEL2

and SNT2 RING finger domains was carried out on the plasmid

BG1805 based constructs expressing Hel1, Hel2 and Snt2 using

Stratagene’s QuikChange Multi Site-Directed Mutagenesis kit

following the manufacturer’s instructions. Briefly, the crucial Cys

and His residues in the RING (r) finger domains were mutated to

Ala residues. The hel1-r1 mutant carries the Cys-195, His-197,

Cys-200RAla mutations in r1, while the hel1-r2 of carries the His-

356, Cys-359, Cys-362RAla mutations in r2. The hel1-r1r2 mutant

carries both the r1 and r2 mutations simultaneously. The hel2-r

mutant carries the Cys-79, His-81, Cys-87RAla mutations in its r

finger domain. The snt2-r2 carries the Cys1061, His1066,

Cys1069RAla mutations in its second r2 finger domain. All

mutations were confirmed by sequencing the entire mutant gene.

The plasmids bearing the r finger mutants of the E3 ligases were

transformed into cells lacking the endogenous gene for the

respective E3 ligase to perform the experiments shown in

figures 2B and 7B. All other methods used such as the histone

degradation assay, histone overexpression sensitivity assay, West-

ern blotting, co-immunoprecipitation assay and in vitro ubiquityla-

tion assay have been described extensively in our previous

publications [6,7].

Supporting Information

Table S1 List of strains used in this study.

(PDF)
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