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Abstract

Background: Streptococcus suis is an important infectious agent for pigs and occasionally for humans. The host innate
immune system plays a key role in preventing and eliminating S. suis infections. One important constituent of the innate
immune system is the protein lysozyme, which is present in a variety of body fluids and immune cells. Lysozyme acts as a
peptidoglycan degrading enzyme causing bacterial lysis. Several pathogens have developed mechanisms to evade
lysozyme-mediated killing. In the present study we compared the lysozyme sensitivity of various S. suis isolates and
investigated the molecular basis of lysozyme resistance for this pathogen.

Results: The lysozyme minimal inhibitory concentrations of a wide panel of S. suis isolates varied between 0.3 to 10 mg/ml.
By inactivating the oatA gene in a serotype 2 and a serotype 9 strain, we showed that OatA-mediated peptidoglycan
modification partly contributes to lysozyme resistance. Furthermore, inactivation of the murMN operon provided evidence
that additional peptidoglycan crosslinking is not involved in lysozyme resistance in S. suis. Besides a targeted approach, we
also used an unbiased approach for identifying factors involved in lysozyme resistance. Based on whole genome
comparisons of a lysozyme sensitive strain and selected lysozyme resistant derivatives, we detected several single
nucleotide polymorphisms (SNPs) that were correlated with the lysozyme resistance trait. Two SNPs caused defects in
protein expression of an autolysin and a capsule sugar transferase. Analysis of specific isogenic mutants, confirmed the
involvement of autolysin activity and capsule structures in lysozyme resistance of S. suis.

Conclusions: This study shows that lysozyme resistance levels are highly variable among S. suis isolates and serotypes.
Furthermore, the results show that lysozyme resistance in S. suis can involve different mechanisms including OatA-mediated
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peptidolycan modification, autolysin activity and capsule production.
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Introduction

Streptococeus suis is an important pig pathogen causing severe
infections including meningitis, septicemia, endocarditis, pneumo-
nia and arthritis. S. suis is also a zoonotic agent displaying
comparable disease manifestations in humans as are seen in pigs
[1,2,3]. The host innate immune system is an important factor in
the prevention and elimination of S. suss infections, the
involvement of pattern recognition receptors (PRRs) in sensing
S. suis has recently been described [4,5]. However, little is known
about the role of effector molecules of the innate immune system
in counteracting S. suis infections. One important effector
molecule, with anti-bacterial activity, is the protein lysozyme.

Lysozyme is found in high concentrations (>500 pg/ml) in
several bodily secretions including tears, mucus, milk and saliva
[6,7]. In addition neutrophil granules contain significant amounts
of the protein [8,9,10]. Lysozyme weakens bacterial peptidoglycan
layers by hydrolysis of the 1,4-beta-linkages between MN-acetyl-
muramic acid (NAM) and MN-acetyl-D-glucosamine (NAG) resi-
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dues. Extensive hydrolysis results in bacterial lysis. Deficiencies in
lysozyme, by gene inactivation, have been shown to increase
susceptibility to streptococcal disease [11].

To survive in hostile environments comprising high levels of
lysozyme, bacteria have evolved mechanisms to resist lysozyme
digestion. In streptococcal species the peptidoglycan modifying N-
acetylglucosamine deacetylase PgdA and the peptidoglycan O-
acetyltransferase OatA (designated Adr in S. preumoniae [12]),
confer lysozyme resistance. Both enzymes directly change the
NAM and NAG structures of peptidoglycan and reduce lysozyme
affinity to the peptidoglycan layer [12,13,14]. In addition, the
tRNA dependent ligases MurM and MurN, encoded by the
murMN operon, can increase resistance to lysozyme by introducing
extra peptide cross-linking in the peptidoglycan layer [15,16].
Occasionally, such molecular changes to the peptidoglycan layer
are accompanied with changes in bacterial morphology [17].

For S. suzs the lysozyme sensitivity between and within serotypes
has not been investigated systematically. Furthermore, limited data
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is available about the involvement of peptidoglycan modifying
enzymes of S. suts in lysozyme resistance. So far, only the role of a
PgdA homologue in lysozyme resistance of a serotype 2 strain has
been reported [18]. In the latter study, an isogenic pgdd mutant
showed an unaltered lysozyme resistance phenotype compared to
wild type bacteria @ vitro and a strongly reduced virulence i vivo.
The genome sequences of various S. suis serotype 2 strains suggests
the presence of an O-acetyltransferase (OatA) gene and the
absence of a pneumococcal murMN operon homologue in S. suis
[19,20]. However, recent sequence analysis of a S. suis serotype 9
strain suggests the existence of a S. suts murMN operon [21].

The objective of the present study was to determine lysozyme
resistance levels in a panel of S. suis isolates and to investigate the
molecular basis of this resistance. To accomplish this, we focussed
on homologues of well-known peptidoglycan modifying enzymes.
In addition, we used an unbiased approach based on comparative
whole genome analysis.

Results

Heterogeneous lysozyme resistance levels in S. suis

To investigate lysozyme resistance levels in the S. suis species,
the lysozyme minimal inhibitory concentration (MIC) was
determined for a broad panel of S. suis isolates belonging to
serotypes 1, 2, 7 or 9. The lysozyme MICs varied between 0.3 and
10 mg/ml, as measured by a plate assay (Fig. 1 and Table S1). In
general, isolates belonging to serotypes 7 and 9 resisted higher
levels of lysozyme compared to serotype 1 isolates and the majority
of the serotype 2 isolates. The differences in lysozyme resistance
among the serotype 2 isolates correlated with clusters A and B
identified by comparative genome hybridization (CGH) for this
serotype [22]. Taken together, these results indicate that lysozyme
resistance varies between and within different S. suis serotypes and
suggest that resistance levels correlate with serotype-related genetic
backgrounds.
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Figure 1. Lysozyme MIC levels of S. suis. Wild type serotype 1, 2, 7
and 9 isolates (Table S2) were spotted onto Colombia agar plates
containing two-fold increasing concentrations of lysozyme (start
concentration: 62.5 ug/ml). Growth was assessed 24 h later and MICs
were determined. Serotype 2 strains were separated into two (A and B)
different genetic clusters based on CGH data [22]. Each isolate is
represented by a dot and one dot represents the mean of two
independent observations. The red lines represent the mean resistance
level and SD of the indicated groups.

doi:10.1371/journal.pone.0036281.g001
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Distribution of genes that encode peptidoglycan
modifying enzymes

To assess the presence of the oatd gene and the murdN operon
in 8. suis, we performed gene specific PCRs on the same panel of S.
suis 1solates used above. PCRs yielded products of the expected size
for the oatd gene in all tested isolates (Table 1, Table Sl),
suggesting that oatd is widely distributed in the S. suss species. A
putative murMN operon (presence product of the expected size)
could be detected in about half of the isolates tested. The putative
murMN operon is predominantly present in serotype 9 isolates with
relative high lysozyme resistance levels, however the majority of
relatively high lysozyme resistant serotype 7 and 2 isolates lack the
operon. Furthermore, the murMN operon could not be detected in
all lysozyme sensitive serotype 1 and 2 isolates (Table 1, Table S1).
Based on these data, no apparent correlation could be detected
between oatd and/or murMN presence and the level of lysozyme
resistance.

OatA but not MurM and MurN contributes to lysozyme
resistance

To investigate the role of cell wall modification to S. suis
lysozyme resistance in more detail, we constructed isogenic oatd
and muMN mutants. Oaid and muwMN mutant strains were
constructed of serotype 9 strain 8067 (which displays low virulence
in pigs) [22], and an oatd mutant strain and a murMN
complemented strain were constructed of serotype 2 strain 10
(which displays high virulence in pigs) [23]. The MIC towards
lysozyme for strain 10 and strain 8067 were respectively 0.3 mg/
ml and 2,5 mg/ml. Comparisons of the lysozyme MICs of mutant
and parent strains indicated that lysozyme MICs of the 8067-
AmurMN mutant and the muwrMN complemented strain 10
(10::pGA14-murMN) were identical to those of their parent strains
(Fig. 2). However, the oatd mutants (10-Aocatd and 8067-Aoatd)
displayed increased sensitivity to lysozyme compared to their
parent strains (Fig. 2). Interestingly, transcription levels of oatA,
determined by quantitative real time RT-PCR analysis, were
highly similar in serotype 1, 2, 7 and 9 isolates (Table SI).
Altogether, these results strongly suggest that OatA increases
lysozyme resistance in S. suis, although OatA seems not solely
responsible for a lysozyme resistant phenotype.

Selection for lysozyme resistance

To discover additional genetic factors involved in lysozyme
resistance in S. suis, we took advantage of the observation that a
lysozyme sensitive strain can acquire higher lysozyme resistance
levels by passage in the presence of sub-lethal concentrations of
lysozyme. As shown in Fig. 3, the lysozyme sensitive strain 10

Table 1. Distribution of genes encoding peptidoglycan
modifying enzymes in different S. suis serotypes.

Serotypes oatA murMN
1 (5/5) (0/5)

2 (CGH A) (19/19) (0/19)

2 (CGH B) (7/7) (4/7)

7 (8/8) (1/8)

9 (55/55) (53/55)

Serotype 2 strains were separated into two (A and B) different genetic clusters
based on CGH data [22]. The numbers between brackets represent the number
of positive PCR products compared to the total number of analyzed isolates.
doi:10.1371/journal.pone.0036281.t001
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Figure 2. Lysozyme MIC levels of OatA and MurMN mutants.
Strains 10-AoatA, 8067-AoatA, 8067-AmurMN, 10:pGA14-murMN and
wild type strain 10 and 8067 were spotted onto Colombia agar plates
containing two-fold increasing concentrations of lysozyme. Growth was
assessed 24 h later and MICs were determined. Green bars represent
wild type and mutant derivatives of serotype 9 strain 8067 and blue
bars represent wild type and mutant derivatives of serotype 2 strain 10.
Values represent the mean of three independent observations. No error
bars are displayed since the MIC values were identical in replicate
experiments.

doi:10.1371/journal.pone.0036281.9002

(serotype 2) was able to acquire step-wise higher lysozyme
resistance levels during passage on plates with successive increasing
concentrations of lysozyme. In general, after maximal 4 passages
the lysozyme MIC of an isolate was even higher compared to the
MIC of the natural lysozyme resistant isolates of serotype 2, 7 and
9 (Fig. 1). In two independent rounds of passaging two lysozyme
resistant strains, designated 10-LysR-1, and 10-LysR-2, were
obtained (both in three passages). After sub-culturing in the
absence of lysozyme, the strains remained equally resistant to
lysozyme. For both strains we compared the growth rate in THB
with the growth rate in THB supplemented with 500 pg/ml
lysozyme. In THB growth rates of strain 10-LysR-1 and 10-LysR-
2 roughly resembled those of the wild type strain, although strain
10-LysR-1 displayed an extended lag phase (Fig. 4A). In the
presence of lysozyme, only the selected strains 10-LysR-1 and 10-
LysR-2 were able to grow efficiently (Fig. 4B), consistent with the
selected lysozyme-resistant phenotype.

Identification of gene polymorphisms associated with
increased lysozyme resistance

Since the acquired lysozyme resistance phenotype of strains 10-
LysR-1 and 10-LysR-2 remained stable during sub-culture in the
absence of lysozyme (Fig. 3), we expected to find changes in the
genome sequences of these strains. To identify these genomic
alterations we performed Illumina whole genome sequence
analysis of strain 10-LysR-1, strain 10-LysR-2 and of parent
strain 10. The paired end sequence reads were mapped to
reference strain P1/7 [19] and the unmapped reads were
assembled de novo. Subsequently, single nucleotide polymorphisms
(SNPs), insertions and deletions (InDels) of each individual strain
were identified relative to reference strain P1/7. Finally, by
subtraction, differences in the genome sequences of strain 10-
LysR-1, strain 10-LysR-2 and the parent strain 10 were identified.
As shown in Table 2, strain 10-LysR-1 and strain 10-LysR-2 both
had acquired 3 SNPs during the selection procedure. No insertions
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Figure 3. Lysozyme MIC levels of strain 10 after passaging.
Lysozyme MIC of strain 10 passaged four times onto Colombia agar
plates containing two-fold increasing concentrations of lysozyme (start
concentration: 62.5 pg/ml). In general, within 4 passages the lysozyme
MIC increased towards levels observed in natural lysozyme resistant
strains (compare with Figure 1). * Lysozyme MIC level after sub-
culturing lysozyme resistant strains in the absence of lysozyme. Values
represent the MIC levels of an example of a selection procedure.
doi:10.1371/journal.pone.0036281.9003

or deletions resulting from the selection were detected. The SNPs
present in strain 10-LysR-1 were at different loci compared to the
SNPs in strain 10-LysR-2, suggesting lysozyme resistance can be
acquired via different routes and/or mechanisms. Of the 6
identified SNPs in the two lysozyme resistant strains, 5 were
present in protein coding regions and resulted in amino-acid
substitutions. In strain 10-LysR-1 one SNP resulted in the amino-
acid substitution of His-136-Asn in gene SSU0383 (protein
phosphatase), one SNP resulted in the substitution of Arg-215-
Ser in gene SSU1292 (membrane protein), and one resulted in the
substitution of the start codon (Met-1-Ile) of gene SSU0475
(glycosyl hydrolase family protein; putative autolysin). In strain 10-
LysR-2 one SNP resulted in the substitution of Thr-138-Ile in
SSU1566 (TrkA family transport protein) and one resulted in the
introduction of a stop codon (Leu-211-Stop) in the Cps2E protein
(SSUO0519, sugar transferase involved in capsule synthesis). The
third SNP was located in a non-coding region between gene

SSU0319 and gene SSU0320.

SSU0475 (autolysin) and SSU0519 (capsule) involved in
lysozyme resistance

From the 6 identified SNPs, the SNPs in SSU0475 (putative
autolysin) and SSUO0519 (¢ps2E) putatively result in defects in
protein expression due to an inactivated start codon and the
introduction of a premature stop codon, respectively. To
demonstrate the power of this unbiased search for genes involved
in a particular trait and to verify the role of these genes in lysozyme
resistance, we selected the latter two genes and tested isogenic
mutants with defects in gene SSU0475 (10-A0475) and gene
SSU0519 (capsule mutant, 10-Acps2EF) [24] for lysozyme
resistance. In addition we tested the lysozyme resistant phenotype
of strain 10-LysR-2 complemented with an intact copy of the
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Figure 4. Growth curves of wild type, 10-LysR-1 and 10-LysR-2 S. suis strains. Growth of S. suis strain 10 (wild type), strain 10-LysR-1 and
strain 10-LysR-2 in THB (A) and in THB supplemented with 500 pg/ml lysozyme (B). Values represent the mean of three independent experiments. At
almost all time points (three per hour) SD values were maximal 30% of the indicated values.

doi:10.1371/journal.pone.0036281.g004

SSU0519 gene. We were unable to introduce an intact copy of
SSU0475 into strain 10-LysR-1. As shown in Fig. 5 the lysozyme
MICs of strains 10-A0475 and 10-A¢ps2?EF were increased
compared to wild type strain 10 and thus resembled the
phenotypes of the passage-selected resistant strains. In contrast
introduction of an intact copy of gene SSU0519 in strain 10-LysR-
2 caused a decrease in lysozyme resistance compared to the
selected resistant parent strain, confirming the involvement of the
¢ps2E gene in lysozyme resistance. Altogether these results indicate
that both SSU0475 and SSU0519 are involved in lysozyme
resistance. Since the level of lysozyme resistance of 10-A0475 and
10-Acps2EF was increased but not as high as observed for strains
10-LysR-1 and 10-LysR-2, it is tempting to speculate that the
other identified SNP containing genes are involved in lysozyme
resistance as well.

Identified SNPs and genes affect bacterial morphology
Whether the identified SNPs affect more than solely the
observed increase in lysozyme resistance, we tested whether the
SNPs caused changes in bacterial morphology. Hereto strain 10,
strain 10-LysR-1, strain 10-LysR-2, strain 10-A0475, strain 10-
Acps2EF and strain 10-LysR-2-¢ps2F were stained with crystal
violet and examined by light microscopy and processed for
viewing by transition electron microscopy (TEM). Both light
microscopy (Fig. 6A) and TEM (Fig. 6B) of strain 10-LysR-1
revealed increased bacterial chain lengths and cluster formation
and more bacterial cell shape diversity compared to the wild type

strain. Strain 10-A0475 showed also increased chain lengths and
heterogeneity in bacterial shape. No major differences in chain
lengths were observed between strain 10-LysR-2, strain 10-LysR-
2-cps2E and the wild type strain. However, TEM analysis clearly
indicated reduced amounts of capsule for strain 10-LysR-2 and (as
expected) for the isogenic mutant strain 10-A¢ps2EF. Thus
acquiring lysozyme resistance may be accompanied by alterations
(such as loss of classical cell shape or capsule) that may change
bacterial behaviour and characteristics besides lysozyme resis-
tance.

Discussion

In this study we showed lysozyme resistance levels in the S. suzs
species are highly variable. Furthermore with the use of two
distinct approaches we identified and characterized factors
involved in lysozyme resistance in S. suzs. The first approach was
based on investigating homologues of well-known peptidoglycan
modifying enzymes present in other Gram-positive species, and
the second (unbiased) approach involved comparative whole
genome analysis of a lysozyme sensitive strain and selected
lysozyme resistant derivatives. With the use of isogenic mutants we
provided convincing evidence that the OatA enzyme of S. suis is
involved in increasing lysozyme resistance and that autolysin
activity and capsule production may also be linked to variation in
lysozyme resistance.

Table 2. Genomic differences observed between parent strain 10 and its selected lysozyme resistant derivatives 10-LysR1 and 10-
LysR-2.
Strain Reference Position Variation Type Reference Allele Variations Gene in P1/7 Amino Acid Change
10-LysR-1 409567 SNP C A S5U0383 His136Asn

507081 SNP C T 5500475 Met1lle

1323604 SNP G T SSU1292 Arg215Ser
10-LysR-2 339081 SNP T G

557107 SNP T G SSU0519 Leu211Stp

1571782 SNP C T SSU1566 Thr138lle
doi:10.1371/journal.pone.0036281.t002
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Figure 5. Lysozyme MIC levels of autolysin and capsule mutant
strains. Strain 10 (wild type), strain 10-LysR-1, 10-LysR-2, 10-A0475, 10-
Acps2EF and 10-LysR-2-cps2E were spotted onto Colombia agar plates
containing two-fold increasing concentrations of lysozyme. Growth was
assessed 24 h later and MICs were determined. Values represent three
independent observations. No error bars are displayed since the MIC
values were identical in replicate experiments.
doi:10.1371/journal.pone.0036281.g005

Here we provided conclusive evidence based on isogenic oatd
mutants that OatA, in contrast to PgdA [18], is partly involved in
lysozyme resistance in S. suis in both relatively lysozyme resistant
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Lysozyme Resistance in S. suis

1solates and in relatively lysozyme sensitive isolates. The OatA
protein of S. suis serotype 2 strain 10 (relatively lysozyme sensitive)
and serotype 9 strain 8067 (relatively lysozyme resistant) used in
this study share >95% amino-acid sequence identity with
homologous proteins in other S. suis isolates present in the NCBI
database. Furthermore, S. suis OatA proteins share around 50%
protein sequence identity with the Adr proteins (OatA homolo-
gous) of S. pneumoniae. It seems that the OatA protein in the S. suis
species is relatively conserved, though we cannot exclude that
amino-acid differences between different S. suis OatA proteins
influence protein functionality or activity. The oatd gene is also
widely distributed in probably all S. suis serotypes and expressed at
similar levels independent of the S. suis background. Overall, we
expect that OatA mediated lysozyme resistance is a common and
widespread phenomenon in S. suis. The contribution of S. suis
OatA to lysozyme resistance is in agreement with observations in
Staphylococcus  aureus [25,26), Listeria monocylogenes [27], and S.
pneumoniae [12,14], emphasizing OatA is an important factor
involved in lysozyme resistance in Gram positive species.

In our experiments, no changes in lysozyme resistance due to
the presence of the murMN operon was observed in S. suzs, in
contrast to observations in S. pneumoniae [15,16]. Possibly, genetic
differences in murMN sequences of S. suts compared to S. preumoniae
(45% protein sequence homology) or the bacterial background in
which murMN is expressed might influence lysozyme resistance
phenotypes in S. suzs.

Using a comparative genome sequence analysis approach,
based on specifically selected strains, we were successful with the
identification of genetic factors contributing to lysozyme resis-

10-Acps2EF

10-LysR-2

10-LysR-2-cps2E

Light microscopy

Transition electron microscopy

peed 0.2 UM

Figure 6. Bacterial morphology lysozyme resistant strains. Strain 10 (wild type), 10-LysR-1, 10-LysR-2, 10-A0475, 10-Acps2EF and 10-LysR-2-
cps2E were grown exponentially in THB and visualised using crystal violet and light microscopy (A) and TEM (B).

doi:10.1371/journal.pone.0036281.g006
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tance. With this approach we identified and characterized
autolytic activity and capsule as important mediators reducing
lysozyme resistance in S. suis. To our knowledge this kind of
approach is the first described to identify factors involved in
lysozyme resistance. Besides investigating factors involved in
lysozyme resistance, similar approaches may be useful to identify
factors and understand mechanisms involved in other phenotypic
characteristics like bacteriophage resistance, and antimicrobial
peptide resistance.

The effect of increased lysozyme resistance in the presence of
reduced autolytic activity strongly suggests S. suzs autolysins acts in
synergy with lysozyme to cause bacterial lysis. Similar to lysozyme,
autolysins are able to break down the B(1,4) bond between the
NAM and NAG residues, facilitating daughter cell separation.
Synergistic effects of autolysin and lysozyme have been reported in
S. pneumoniae [28]. Interestingly, autolysin activity depends on
bacterial growth phase and is tightly regulated by the presence of
teichoic acids. Therefore the level and the structure of teichoic
acids might influence lysozyme resistance as well, as has been
shown in S. aureus [29].

The increased resistance to lysozyme of capsule-deficient S. suzs
strains was unexpected. It may be assumed that in the absence of
capsule the bacterial peptidoglycan is more easily accessible for
lysozyme. One possible explanation for our unexpected finding is
that in the absence of capsule there might be increased activity of
peptidoglycan modifying enzymes (such as OatA), resulting in
increased lysozyme resistant phenotypes. This theory is in
agreement with a previous observation in S. pnreumoniae in which
pgdA and adr mutants displayed thicker capsules [12]. It can be
speculated that modifications of the peptidoglycan structure
negatively affect the amount of capsule produced and vice versa.

Since increased resistance to lysozyme can be acquired by just a
few SINPs as evidenced in this study, it is expected that persistence
of lysozyme-sensitive isolates in host-environments containing high
levels of lysozyme, such as the upper respiratory tract, would be
low. On the other hand, the observed differences in bacterial
morphology and growth between the lysozyme resistant deriva-
tives: strain 10-LysR-1 and 10-LysR-2, compared to the parent
strain suggest acquiring lysozyme resistance reduces overall
bacterial fitness. Non-encapsulated S. suzs mutants are non-virulent
[24] and autolysin mutants are attenuated in virulence in other
Streptococci [30,31]. The results are consistent with a scenario
that acquiring lysozyme resistance facilitates S. suzs colonization,
but decreases the ability of the pathogen to cause systemic disease.
The negative correlation between lysozyme resistance and
virulence is in agreement with the observed MIC values of wild
type S. suis strains. Most lysozyme sensitive isolates belong to the
generally highly invasive serotypes 1 and 2 [6], while most of the
lysozyme resistant isolates belong to serotype 9, which are in
general effective colonizers of the upper respiratory tract [5,6,7]. A
similar negative correlation between lysozyme resistance and
virulence has been suggested for S. pneumoniae.

Although our experiments clearly showed involvement of OatA,
autolysin and capsule in lysozyme resistance, some other
uncharacterised factors are most probably involved in lysozyme
resistance in S. suts as well. Specific candidates include the
additional identified genes in the lysozyme resistance selection
procedure (which also contained SNPs), besides the autolysin and
the capsule transferase. Especially gene SSU0383, encoding a
protein phosphatase, is of increased interest since a homologue of
the protein has recently been described to affect bacterial
morphology in a serotype 9 isolate [32]. Furthermore, we cannot
exclude that additional selection procedures will result in the
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identification of other unknown factors involved in lysozyme
resistance.

Overall, this study has gained conclusive evidence that the
lysozyme resistant phenotype of S. suis involves multiple factors,
including those responsible for increased resistance and those
responsible for reduced resistance. As displayed in a model (Fig. 7)
we hypothesize that, peptidoglycan modification, autolysin
activity, and the level of peptidoglycan associated structures such
as capsule, are closely related and as a whole determine the level of
lysozyme resistance. For example, bacteria with low capsule
expression, low activity of autolysins and expressing peptidoglycan
modifying enzymes such as OatA are most capable to resist high
levels of lysozyme, nevertheless acquiring lysozyme resistance
might affect bacterial morphology and overall bacterial fitness
and/or virulence.

Materials and Methods

Bacterial strains

We used a panel of S. suis serotype 1, 2, 7, and 9 isolates as
depicted in Table S1. Wild type bacteria, isogenic mutants and
complemented mutant strains were grown on Colombia agar
plates (Oxoid Ltd, London, United Kingdom) containing 6%
horse blood at 5% COy and 37°C. Bacterial suspensions were
grown in Todd-Hewitt broth (THB) (Oxoid Ltd.) for 18 h at 37°C
without agitation. Escherichia coli were grown on Luria-Bertani (LB)
agar plates and in LB broth. Antibiotics were added to culture
media at the following concentrations: for E. coli, ampicillin
100 pg/ml; chloramphenicol 8 pg/ml and spectinomycin 100 pg/
ml; for S. suis, chloramphenicol 5 pg/ml and spectinomycin
100 pg/ml when necessary.

Lysozyme MIC assay

Lysozyme MICs were determined by spotting 8 pl (contain-
ing=~5x10* CFU) bacterial suspension in Dulbecco’s phosphate
buffered saline (D-PBS) on Colombia agar plates containing two-
fold increasing concentrations of lysozyme (L6876, Sigma-Aldrich,
Zwindrecht, The Netherlands). Subsequently, growth was evalu-
ated after incubation at 5% CO, and 37°C for 24 h. The minimal
concentration in which <5 bacteria were able to grow was
designated as the MIC value.

Detection oatA, murM and murN genes

Opvernight cultures in THB were diluted 1:10 in D-PBS and
directly used as template in PCR analysis. Primers (Table S2) used
to detect oatd (SSU1504 in P1/7), murM (SSUD12_0367 in D12)
and murN (SSUD12_0368 in D12) genes were designed to bind at
relatively conserved sequence regions, based on the available S. suis
genomes in the NCBI database and based on a preliminary S. suis
serotype 9 genome sequence (H. E. Smith et al., unpublished
results). In a final volume of 20 pl, forward and reverse primers
(final concentration; 0.25 uM, Table S2) were mixed with 1x
Phusion High-Fidelity DNA polymerase master mix (BIOKE,
Leiden, The Netherlands) and 2 pl template. PCR conditions were
as follows: denaturation for 2 min at 98°C, followed by 35 cycles
of 15 s of denaturation at 98°C, 15 s of annealing at 55°C, and
30 s elongation. Amplification of the specific genes was verified on
ethidium bromide based 1% agarose gels.

THB growth

Opvernight THB cultures (containing similar amounts of CFUs)
of wild type and mutant strains were diluted 1:100 in 400-pl fresh
THB with or without the addition of 500 pug/ml lysozyme.
Subsequently, the optical density at 600 nm was followed in time
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Figure 7. Lysozyme resistance model of S. suis. S. suis bacteria are expected to resist the antimicrobial activity of lysozyme efficiently in the
absence or reduced expression of capsule, in the presence of the peptidoglycan modifying enzyme OatA, and during reduced activity of autolysins.
Loss of peptidoglycan stability, due to lysozyme digestion, makes S. suis increased vulnerable for osmotic pressure resulting in the flow of water into

the bacterium’s cytoplasm finally resulting in bacterial lysis.
doi:10.1371/journal.pone.0036281.g007

using a Bioscreen C instrument (Thermo Scientific, Breda, The
Netherlands) at 37°C.

Generation 10-Lys-R1 and 10-Lys-R2 strains

Serotype 2 strain 10 (lysozyme sensitive) was plated on
Colombia agar plates containing two-fold increasing concentra-
tions of lysozyme and allowed to grow for 24 h at 37°C and 5%
COgy (passage one). Subsequently, colonies growing on plates
containing the highest lysozyme concentration were collected, re-
suspended in 100 pl D-PBS and used to inoculate a new set of
plates (passage two). Yet again, colonies growing on plates
containing the highest lysozyme concentration were collected
and used to inoculate a new set of plates (passage three). After four
passages highly lysozyme resistant clones were obtained.

Construction mutants and complemented mutants
General DNA techniques. Chromosomal S. suzs DNA was

isolated as previously described [33]. Phusion High-Fidelity DNA

polymerase master mix was used to amplify specific fragments.

@ PLoS ONE | www.plosone.org

Plasmid DNA was isolated with the Plasmid DNA Purification
System (Promega, Leiden, The Netherlands). DNA purifications
were performed with the Zymogen clean up kits (BaseClear, Leiden,
The Netherlands). Ligations were performed with T4 DNA ligase
(Promega) and ligation mixtures were used to transform FE. coli.
Plasmids were introduced into S. suis via electroporation [34].
Primers used in this study are listed in Table S2.

Generation of oatd and murMN mutants. To inactivate
the oatd gene in serotype 2 strain 10 and serotype 9 strain 8067
and to inactivate the murMN operon in strain 8067 we used an
inverse PCR strategy. Briefly, primer pairs 1/4 respectively 9/12
were used to amplify chromosomal fragments of the oat4 and the
murMN operon with flanking regions of about 0.7-1.5 kb. The
fragments were subsequently cloned into pJET1.2 (Fermentas, St.
Leon-Rot, Germany) according the manufactures instructions.
Subsequently, the generated pJET1.2 plasmids were used as
template for an inverse PCR using primer pairs 2/3 or 10/11 to
replace an internal fragment by a fragment encoding a
spectinomycin resistance mechanism (spe, amplified with primers
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17/18) as described previously [35,36]. The spc gene was oriented
in the same direction as the gene of interest. The resistance
cassette containing the flanking regions of oatd and/or murMN
were subsequently amplified using primer pairs 1/4 and 9/12.
Finally, these fragments were ligated to the thermo sensitive shuttle
vector pSETS [37], which was linerialized with the Smal restriction
enzyme. The pSET5 plasmids were than used to inactivate the
oat4 gene of strain 10 and strain 8067 and the murMN operon of
strain 8067 as previously described [35,36] generating 10-Aoatd,
8067-AoatA and 8067-AmurMN. Mutants were confirmed to have
the expected genotype by PCR using primer pairs 5/6, 7/8, 13/
14, 15/16. No oatd complemented mutants were generated since
we did not expected polar effects of oatd inactivation because the
oatd gene is the last gene of the operon and directly downstream
the operon, genes are transcribed in the opposite direction from
the complementary DNA strand.

MurMN complementation. To complement strain 10 with
the murMN operon of strain 8067 we constructed an expression
plasmid containing the 8067 murMN operon including its putative
promoter region. Primers 33 and 34 were used to amplify the
murMN fragment which was cloned into pJET1.2 generating
pJET1.2-murMN. Subsequently, the pJET1.2-murMN plasmid was
digested with Sall and a chloramphenicol resistance gene (caf) of
pSETS5, amplified with primers 15 and 16 and also digested with
Sall was cloned upstream. The entire fragment (murdIN-cat) was
amplified using primers 35 and 36 and subsequently cloned into
pGA14 [38], which is able to replicate in S. suzs. To do this pGA14
was digested with HinDIII and Sacl, made blunt and ligated to the
murMN-cat PCR fragment, generating pGAl4-murdN-cat. The
plasmid was introduced into S. suis strain 10 generating
10:pGA14-murMN. RNA expression of the murMN operon was
confirmed by quantitative real time PCR.

SSU0475 inactivation. To inactivate SSU0475 (autolysin) in
S. suis strain 10 we used an overlap extension PCR strategy.
Briefly, three fragments (flanking left, spe, flanking right) were
generated using primers pairs 19720, 21/22 and 23/24.
Subsequently, the three fragments were mixed and used as
template in a fusion PCR mixture containing primers 19 and 24.
The resulting fragment flanking left-spe-flanking right was cloned
into pJET1.2 according the instructions.
Subsequently, the plasmid was directly used for electroporation
mnto strain 10 followed by spectinomycin selection. Double cross
over mutants were identified by PCR using primer pairs 25/26,
27/28 and 31/32.

SSU0519 complementation. To complement strain 10-
lysR-2 with an intact copy of SSU0519 (¢ps2E) we constructed a
plasmid containing the promoter region and ribosomal binding
site. of SSU0514 fused with the start codon of SSUO0519. In
addition the spectinomycin resistance gene (spc) was added
upstream the fragment for positive selection. Briefly, the three
fragments (promoter region SSU0514, SSU0519, spe) amplified
with primer pairs 37/38, 39/40 and 41/42 were generated and
used as template in an overlap extension PCR reaction containing
primers 37 and 42. The resulting fragment was subsequently
ligated into the thermo sensitive shuttle vector pSET) [37], which
was linerialized with the Smal restriction enzyme. The pSETS
plasmid was subsequently introduced into strain 10-lysR-2 at 37°C
allowing single cross over events generating 10-lysR-2-¢ps2F.

manufactures
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Sequence analysis

Highly purified DNA of parent strain 10, strain 10-lysR-1 and
strain 10-lysR-2 was isolated [33] and used for paired end Illumina
sequence analysis (BaseClear, Leiden, The Netherlands). The reads
were 50 or 75 bp in length and across all bases Illunina quality scores
(1.5 encoding) were above 30 and no over-representative k-mers
were observed. Of each individual strain the average insert size was
about 250 bp. Using CLCbio software, the reads were subsequently
mapped against the serotype 2 reference strain P1/7 [19], resulting
in a general coverage >100, and unmapped reads were assembled de
novo. Subsequently, single nucleotide polymorphisms (SNPs), inser-
tions and deletions (InDels) of the individual strains were identified
and the genetic changes in 10-LysR-1 and 10-LysR-2, obtained due
to the lysozyme resistance selection procedure were identified.

Morphological analysis

Crystal violet staining. Exponentially growing wild type or
mutant bacteria (in THB) were heat fixed onto glass slides, washed
with water, stained with crystal violet and again washed with water.
Bacteria were directly visualized using a Zeiss microscope (1000 x).

TEM analysis. TEM analysis was performed as previously
described with some modifications [39]. Briefly, exponentially
growing wild type or mutant bacteria (in 10 ml THB) were
harvested by centrifugation, washed with D-PBS and re-suspended
in 1 ml D-PBS. Subsequently, bacteria were fixed in cacodylate
buffer (0.1 M cacodylate, 5% w/v glutaraldehyde, 0.15%
ruthenium red) for 2 h at room temperature, immobilized and
pelleted in 2% agarose. One mm?® pieces of the bacterial pellet were
washed with cacodylate buffer (0.1 M cacodylate) and post-fixed
with 2% v/v osmium tetraoxide (overnight at room temperature).
Finally, the pieces were dehydrated in graded series of ethanol (50,
70, 95, and 100%) and embedded in Spurr low-viscosity resin
(Aurion, Wageningen, The Netherlands) according the manu-
factures instructions. The samples were cut using a diamond knife
and post-stained with uranyl acetate and lead citrate and viewed in
an electron microscope (Philips CM 10) at 60 kV.
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