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Abstract

Parkinson’s disease (PD) is manifested by motor impairment, which may impede the ability to accurately perform motor
tasks during functional magnetic resonance imaging (fMRI). Both temporal and amplitude deviations of movement
performance affect the blood oxygenation level-dependent (BOLD) response. We present a general approach for assessing
PD patients’ movement control employing simultaneously recorded fMRI time series and behavioral data of the patients’
kinematics using MR-compatible gloves. Twelve male patients with advanced PD were examined with fMRI at 1.5T during
epoch-based visually paced finger tapping. MR-compatible gloves were utilized online to quantify motor outcome in two
conditions with or without dopaminergic medication. Modeling of individual-level brain activity included (i) a predictor
consisting of a condition-specific, constant-amplitude boxcar function convolved with the canonical hemodynamic
response function (HRF) as commonly used in fMRI statistics (standard model), or (ii) a custom-made predictor computed
from glove time series convolved with the HRF (kinematic model). Factorial statistics yielded a parametric map for each
modeling technique, showing the medication effect on the group level. Patients showed bilateral response to levodopa in
putamen and globus pallidus during the motor experiment. Interestingly, kinematic modeling produced significantly higher
activation in terms of both the extent and amplitude of activity. Our results appear to account for movement performance
in fMRI motor experiments with PD and increase sensitivity in detecting brain response to levodopa. We strongly advocate
quantitatively controlling for motor performance to reach more reliable and robust analyses in fMRI with PD patients.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative

disorder causing basal ganglia (BG) dysfunction [1]. It is

characterized by a large number of motor and non-motor deficits,

which significantly contribute to reduced quality of life. Despite

the definition of the broad spectrum of clinical characteristics and

criteria for diagnostics [2], mechanisms triggering illness, the

nature of its progression, and the character of therapeutic effects

are still a matter of debate [1,3–6]. Motor symptoms are key

features of clinical criteria and are essential for the diagnosis of PD

and its differentiation from related disorders. Bradykinesia,

tremor, rigidity, and postural instability are regarded as cardinal

symptoms and are associated with difficulties with planning,

initiating and executing movements, performing sequential and

simultaneous tasks, progressively reduced magnitude of sequential

movements, involuntary choreatic and dystonic movements,

hesitation in initiation, or finishing voluntary movements [2].

For the last two decades, positron emission tomography (PET)

and functional magnetic resonance imaging (fMRI) have been

used to investigate the neural substrates of motor deficits in PD

[7,8]. More recently, fMRI studies have tended to outnumber

PET studies due to their advantages of greater temporal and

spatial resolution and non-invasiveness [8]. Frequently used block-

design paradigms primarily utilize the upper limbs, in particular,

various hand and finger movement sequences, to investigate the

neural basis of PD patients’ motor performance. This is motivated

by a higher degree in limitations of potential movement

complexity and larger hand cortical representation [9]. Prevalent

tasks in investigating the brain motor circuitry in PD are sequential

finger movements, which are also part of the widely used Unified

PD Rating Scale (UPDRS) [10]. This clinical scoring system rates

the symptomatic severity of the disease. It is easily accessible and

suitable for providing a direct comparison between subjects or use

in longitudinal studies.

To assess the correctness of task execution and confirm

comparable performance among PD participants, previous imag-

ing studies have used push buttons [11–13], video-camera

recordings [14–16], observers/raters [17], custom-built systems

[18], or no specific arrangements [19]. Prior training sessions have
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also been employed [15,17,20–23] to practice the task and obtain

adequate performance. A recent study [24] assessed the motor

outcome of PD patients quantitatively using electromyography

(EMG) and fMRI. In particular, measured fluctuations of the

tremor amplitude were used to identify tremor-related brain

activity. However, no study has explicitly considered the effect of

accounting for the motor outcome on the sensitivity in detecting

task-related brain activity in fMRI experiments with PD patients

so far.

The analysis and interpretation of task-dependent fMRI data is

highly dependent on the choice of the hemodynamic response

(HR) model. Hemodynamic timing variability limits the interpre-

tation of fMRI data because of its relatively rapid time scale

ranging from milliseconds to seconds [25]. Accurate modeling of

motor-related brain responses in fMRI investigations therefore

relies on the experimental timing to a great extent. Another

important characteristic is the movement amplitude. Large-

amplitude movements seem to lead to an increased blood-

oxygenation level dependent (BOLD) response in several brain

regions as compared to small-amplitude movements [26]. Other

factors influencing the HR include force [27], reaction time [28],

and movement rate [29,30]. Due to this high sensitivity of the

BOLD response, modeling of fMRI data should ideally consider

all potential factors affecting the shape or timing. The fine-grained

nature of the BOLD signal is further underlined by its relatively

tenuous changes of ,1% in BG [31], regions that are

predominantly affected by PD. In investigations of PD subjects,

this becomes even more apparent due to motion variability

because of bradykinesia and hypokinesa, impaired initiation of the

movements after internal or sensory cues, frequent hesitation or

freezing of the movements, resting tremor and dyskinesias while

performing motor tasks. The motor abnormalities in PD are not

always easily differentiable and may even manifest as a mixture of

several symptoms with a great degree of variability between

patients. Unfortunately, all this may compromise the correct

interpretation of the functional imaging of motor tasks in general.

In investigations of therapeutic effects, for example medication or

deep brain stimulation, requiring repeated fMRI sessions and

where the motor outcome of participants may even dramatically

change between the sessions intra-individually, experimental

accuracy and reproducibility is a critical issue. Therefore, it is

impossible to achieve favorable accuracy in modeling the BOLD

response without explicitly and quantitatively assessing partici-

pants’ motor outcomes. Without such knowledge, statistical tests

relying on the standard BOLD model will be degraded by

inappropriate estimates of partial regression coefficients, ß, and

thus result in biased, unreliable, and potentially invalid conclu-

sions. The goals of the current study were to confirm this

statement and present a robust solution to problems arising from

it. To emphasize the possibility of within-subject, but also

between-subject, task-related deviations caused by the broad

motor heterogeneity of the disease, we designed the study with

repeated measurement sessions, by employing experimental

manipulation (levodopa medication) having a radical, and more

importantly, individual task-dependent effect on the response of

the participants. With this experimental setup we hypothesized

that in contrast to generic fMRI statistics, accounting for

deviations in task execution quantitatively in BOLD modeling

improves the accuracy of detecting individual motor activity by

reducing ‘type II’ errors. Consequently, this should result in

increased sensitivity of detecting the patients’ brain responses to

levodopa medication on the group level.

Several attempts to record kinematic information on-line during

motor tasks for consideration in hemodynamic modeling have

already been proposed. Most prevalent and established techniques

employ simultaneous fMRI and EMG recordings in healthy

subjects to validate brain activation by their relation to the EMG

recordings [32–35]. An optoelectronic motion capture system

monitoring a stroke patient [36] or a custom-built sensing system

[37] have also been utilized in clinical studies. Recently,

instrumented, MRI-compatible gloves for capturing movements

during fMRI investigations have been introduced. Specifically,

gloves were used in investigations of correlates of finger

movements and brain activity [38] or for qualitative control in a

study in stroke patients [39]. In the current work, the gloves were

employed during simultaneous recordings of fMRI and kinematics

in serial investigations of PD patients to evaluate potential

improvements in the statistical data analysis.

Materials and Methods

Patients
Twelve right-handed male patients with advanced akinetic-rigid

type of PD (Hoehn-Yahr stages II–III, 45–64 years of age) [40]

were recruited for this study. As basis for the diagnosis, the UK PD

Society Brain Bank Criteria [41] were used. All patients included

in the study met the criteria. Each of them gave written informed

consent prior to participation in accordance with the declaration

of Helsinki. Ethics Committee of the General University Hospital

in Prague, Czech Republic approved the protocol of the study.

Severity of patients’ motor symptoms was clinically assessed using

the motor examination (part III) of the UPDRS. UPDRS-III score

sheets were used to evaluate hemibody scores comprising

information about dominant lateral involvement of PD by

summing rigidity (sum of item 22), akinesia (sum of items 19,

23–26, 31), and tremor (sum of items 20, 21) for each hemibody

separately [10,42]. Patients’ clinical and demographic character-

istics are summarized in Table 1. For detailed individual

information see Table S1.

Patients were measured in two conditions, once after overnight

withdrawal of levodopa (‘levodopa OFF’ condition) and once one

hour after administration of 250 mg of levodopa/25 mg carbido-

pa (‘levodopa ON’ condition) (Isicom 250, Desitin Arzneimittel,

Hamburg, Germany). Any other anti-parkinson’s medication

(dopamine agonists, selegiline, amantadine, anticholinergics) was

not administered for four days before the medication-free

condition measurement.

Table 1. Demographic and clinical summary of studied
patients (N = 12).

Characteristic Mean (SD) Range

Age (years) 56.0 (7.0) 45–64

Gender (M/F) 12/0 -

Disease duration (years) 12.4 (2.0) 9–15

Levodopa treatment duration
(years)

9.3 (3.0) 5–13

Motor complications duration
(years)

5.0 (3.0) 2–12

UPDRS*-III: levodopa OFF 33.5 (9.0) 20.5–47.0

UPDRS*-III: levodopa ON 9.6 (4.0) 1.5–20.5

MMSE{ 28.9 (1.0) 28–30

UPDRS* - Unified Parkinson’s Disease Rating Scale. MMSE{ - Mini Mental State
Examination.
doi:10.1371/journal.pone.0036271.t001
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MRI data acquisition
Functional imaging was performed on a 1.5T MAGNETOM

Symphony scanner (Siemens, Erlangen, Germany) using a

birdcage head coil. A T2*-weighted gradient-echo echo-planar

imaging (EPI) sequence (flip angle 90u; repetition time, TR = 1 s;

echo time, TE = 54 ms) was used for BOLD fMRI. Ten oblique

slices (thickness 3 mm; 1-mm slice separation; nominal in-plane

resolution 363 mm2) were acquired. The slices were oriented

along the central sulcus, covering the primary sensorimotor cortex

and the basal ganglia. Additionally, a three-dimensional T1-

weighted dataset was acquired with a magnetization prepared

rapid acquisition gradient echo (MP-RAGE) sequence in 160 axial

slices 1.65-mm thick with nominal in-plane resolution

0.960.9 mm2 and field of view (FOV) 238 mm covering the

entire brain and cerebellum (inversion time, TI = 1100 ms;

TR = 2140 ms; flip angle 15u; TE = 3.93 ms) for registration and

display of fMRI results.

Movement monitoring set-up
Patients’ motor outcome was recorded using instrumented,

MRI-compatible, bilateral sensory gloves (5th Dimension Tech-

nologies, Irvine, CA, USA). The glove contains no ferromagnetic

parts and communicates with a control box placed outside the

scanner room via optical cable. The control box is connected with

a remote computer via USB or serial port. The glove is made of a

stretch lycra material (fits to many hand sizes) with embedded

proprietary fiber-optic-based flexor technology sensors. Two

sensors per finger measure flexion of its knuckle and first joint.

One sensor quantifies the abduction between particular fingers. A

set of 14 sensors allows the complexity of various finger movement

patterns or gestures to be captured with a maximum sampling rate

of 100 Hz and amplitude resolution of 8 data bits. The gloves were

linked to an in-house-built EVSENG system (J. Wackermann, T.

Sieger) for synchronization with the MRI scanner and on-line

recording of the information from the glove. EVSENG was

written to communicate with the glove on the low-level (i.e.

reading data directly from port), but a high-level interface is also

possible via libraries and routines supported by the producer.

Experimental paradigm
A block-based motor paradigm was conceived to investigate the

brain activity associated with the motor performance. Consecutive

movement and rest epochs, each lasting 10 s, recurred 25 times,

resulting in 50 blocks with a total session length of 500 s. During

rest epochs, a visual ‘rest signal’ (centered static red fixation cross

on a black background) was presented on a projection screen,

whereas during movement epochs, 10 pacing ‘movement cues’

(yellow square behind the fixation cross displayed for 100 ms) were

presented with a frequency of 1 Hz. While viewing the ‘rest

signal’, patients were instructed to retain motionless with their

arms in a resting position. During movement epochs, patients had

to perform a unilateral index finger-thumb opposition whenever

the ‘movement signal’ appeared. For ideal performance, a session

would consist of a total of 250 distinct unilateral movements. The

first measurement session started with right-hand movements and

was subsequently repeated for the contralateral hand in the

particular medication condition. Prior to the fMRI experiment,

patients had to perform a calibration gesture (fully clenched fist

followed by one index finger-thumb opposition) to allow the flexor

sensors to reach their peak values and accommodate the amplitude

dynamic range.

A two-by-two factorial design with within-subject factors ‘Hand’

(RIGHT/LEFT) and ‘Levodopa medication’ (OFF/ON) resulted

in four scanning sessions for each patient.

Glove recording processing
For each session, a 14-dimensional kinematic signal was

recorded with the glove with a sampling rate of 64 Hz. Processing

was performed using MatlabH (R2010b, The MathWorks Inc.,

Natick, MA, USA) and subroutines of the SPM8 package

(Wellcome Trust Centre for Neuroimaging, UCL, London, UK).

To consider potential inter/intra-individual differences in the

dynamic range of the finger movements, a normalization

procedure was conducted to obtain consistent scaling of the signal

amplitude. The calibration sequence was used to detect peak and

baseline of the movement, and the signal was then normalized

accordingly by adjusting the peak amplitude to one. Removal of

low frequency fluctuations and drifts was achieved by subtracting

the output of a fast one-dimensional median filter [43] with a 20-s

window from the original signal. Substantial amount of high

frequency quantization noise was primarily present in signals

recorded from less active sensors with the restrained dynamic

range. Wavelet-based de-noising [44] was applied in order to

remove the noise using the global thresholding and a ‘db3’ wavelet

filter family.

Glove waveforms were first analyzed independently on a

behavioral level. Data-driven filtering using principal component

analysis (PCA) [45] was performed to tease apart the global/

deterministic and residual/stochastic features of movement. For a

comprehensive description of data-driven filtering using PCA, see

Daffertshofer et al. [46]. The global pattern represented a

coherent, dominant pattern (the finger tapping movement itself)

and was calculated for each session by reconstructing the 14-

dimensional dataset with principal components explaining more

than 90% of the data. Remaining principal components were used

to reconstruct the residual part of the data. The residual part

reflected movement deviations in participants’ performance.

Variance of each filtered waveform was calculated and averaged

across sensors to obtain the average variance of a session for both

the global and residual movement pattern. The variances of a

session were separated and averaged across particular levels of

experimental factors (RIGHT, LEFT, OFF, ON) and statistically

analyzed inter-individually using analysis of variance with

repeated measures (rmANOVA) with IBM SPSS Statistics 19.

Pre-processed glove recordings were first synchronized with the

timing of MR images acquisition. To build a personalized

regressor as input to the individual-level fMRI design matrix,

time-courses from 14 glove sensors in a session were merged using

two distinct approaches based on linear Gaussian models. (i) The

‘mean approach’ resulted in a waveform computed from the

average of all 14 session-specific waveforms. (ii) The ‘eigenvariate

approach’ reflected the session-specific movement recordings in

terms of the projection of glove data on the first principal

component, which explained the highest proportion of variance of

the input observations. This calculation was based on PCA. Both

mean and eigenvariate versions of waveforms were corrected for

outliers by replacing them with maximal/minimal values in the

non-outliers range. Outliers were defined as data points, which

were more than 1.5 times the interquartile range above the third

or below the first quartile. Frequency spectra of all waveforms

were observed, to verify the absence of any restlessness and

rhythmic motions in frequency band of 4–7 Hz (i.e. resting

tremor/dyskinesias) during resting phase of the task. Furthermore,

when no significant peaks of movement performance were

detected within data values of resting periods, they were adjusted

to zero. Besides spectral analysis of the resting periods we also

focused on motor periods of the task. No peaks suggesting presence

of low (4–6 Hz), intermediate (6–8 Hz) or higher (8–20 Hz)

frequency of tremor in any patient were observed. Finally, for both

Enhancing Study Protocols of PD fMRI Studies
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approaches the envelope curve of the resulting waveform was

calculated. To investigate the effect of movement amplitude on the

brain response, amplitude-invariant versions of the mean and

eigenvariate predictors were additionally formed by adjusting

amplitudes of the waveforms in movement periods to unity. This

adjustment provided time series sensitive to the timing of the

movement execution, but invariant in terms of the amplitude of

movement performance. Finally, signals were resampled to match

the number of acquired fMRI time points. Four distinct

waveforms – mean; mean amplitude-invariant (AI); eigenvariate;

eigenvariate AI – were constructed for each participant this way

and used in further analyses in SPM.

fMRI time series analyses
Data pre-processing and analysis was performed using SPM8 in

MatlabH for every session separately. To correct for head

movement artifacts, fMRI data were spatially realigned to the

first image. The individual T1-weighted MP-RAGE dataset was

co-registered with the functional images, segmented with the

unified segmentation approach (UnSA) [47] and normalized to the

Montreal Neurological Institute (MNI) [48] T1 template. Normal-

ization parameters from UnSA were then used to normalize all

remaining images. In the final stage of pre-processing, the

functional volumes were smoothed using an isotropic Gaussian

kernel of 8-mm full width at half maximum [49].

Fixed-effects, first-level statistics were performed using a general

linear model (GLM). Two separate types of models were used: (i) a

standard model incorporating a constant baseline term and a

predictor containing a condition-specific, constant-amplitude

boxcar function characterized by onsets and durations of task-

related epochs. This generic model was generated by a conven-

tional procedure standard to SPM that assumed movements

coinciding precisely with cues presented on-screen. (ii) a kinematic

model including the constant term and a custom-made predictor –

one possible alternative to mean, eigenvariate or their amplitude-

invariant/amplitude-sensitive approaches, calculated from kine-

matic recordings as described in ‘Glove recording processing’.

Further processing was conventional and common to both the

standard and kinematic approaches. It involved high-pass filtering

of a 32-s cutoff for removing the most possible amount of low-

frequency fluctuations while sustaining no loss of experimental

power, first-order autoregressive AR(1) model [50,51] for estimat-

ing the intrinsic correlations between residual errors, and a linear

time-invariant (LTI) convolution model [52] based on a linear

approximation of the BOLD response. The session-specific

predictor of each modeling approach was convolved with a

canonical hemodynamic response function (HRF) modeled as the

first-order Volterra kernel [53,54]. Parameters of Gaussians

modeling were determined by timing characteristics of the

experiment. Since amplitude-sensitive varieties of kinematic

predictors had no baseline-to-peak unique range, they were

additionally standardized by scaling the values (5th to 95th

percentile) range of each to unity to consequently ensure valid

comparisons of ß-estimates between different modeling approach-

es. Fixed-effects analysis was performed by fitting the mass-

univariate GLM to calculate parameter estimates and residual

errors. The standard model and four distinct kinematic models

were estimated for each patient and session. Figure 1 illustrates

standard and one of the kinematic predictors for a particular

patient’s session. Contrasting the effect of interest (non-constant

Figure 1. Comparison of session-specific predictors of standard and kinematic approaches in individual-level modeling. (left, blue:
standard approach, generated using experimental timing information and no movement assumptions; right, orange: kinematic, mean amplitude-
sensitive approach, constructed using average of recorded kinematics from all sensors). Dashed lines indicate the most pronounced movement
deviations in a measurement session of a particular patient. Standard modeling is not able to capture this variability and reflects it in the error term in
GLM, likely resulting in biased statistics.
doi:10.1371/journal.pone.0036271.g001
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session-specific regressor of the design matrix) resulted in contrast

images which were used as input for random-effects group

analyses.

To evaluate the effect of dopaminergic medication on brain

correlates of finger motion in the group of PD patients

investigated, both medication conditions were studied separately

for each hand by estimating one-sample t-test random-effects

models. Four models for each level of experimental factor were

estimated for each (standard, kinematic) modeling approach. The

group maps were thresholded at an uncorrected rate of p,0.001,

with the threshold extended to 150 voxels to preserve only clusters

corrected for multiple comparisons using the family-wise error

(FWE) [55] rate of p,0.05 at the peak level. The amplitude of

activity was inspected in regions of interest (ROI) in the left and

right precentral gyrus. The ROIs were generated using automated

anatomical labeling (AAL) atlas [56] with Marsbar SPM toolbox

[57]. Proper scaling of predictors (unit values) and setting contrast

levels (absolute sum of unity) in individual-level models ensured

their maximal interpretability and comparability; the contrast

images calculated approximated the percent signal change (PSC)

directly [58]. We formed the ‘group-level mean’ and ‘group-level

standard error’ PSC image for each levodopa medication

condition and extracted the values from ROI and displayed their

average for every modeling approach, for every level of

experimental factors separately. In order to take inter-individual

differences into account, PSC values were extracted and averaged

from the ROI inter-individually. IBM SPSS Statistics was then

used to calculate rmANOVA with factors ‘Hand’ and ‘Modeling

approach’ for both levodopa ON and levodopa OFF medication

conditions. Hence, the standard approach was compared to each

particular kinematic approach in a pairwise fashion. Using the

same technique, differences between particular (mean, eigenvari-

ate) amplitude-invariant and amplitude-sensitive kinematic ap-

proaches were evaluated.

The difference between medication conditions was assessed

using a flexible-factorial model with within-subjects factors ‘Hand’

(RIGHT/LEFT) and ‘Levodopa medication’ (OFF/ON) by

choosing the difference between the ON and OFF conditions as

an effect of interest. The analyses were carried out for both

standard and kinematic approaches. An uncorrected threshold of

p,0.001 with 30 voxels extent was adopted. On the cluster level,

an FWE rate of p,0.05 was used to control for false positive

activations. To assess the amplitude of activity, ROIs in the left

and right pallidum were defined a priori using the AAL atlas based

on previous work of Kraft et al. [11] and Feigin et al. [59]

revealing the activity in BG in patients on and off medication.

Then, PSC was calculated for each level of experimental factors

using the same procedure as described above. Similarly, pairwise

statistical comparisons were evaluated between the particular

modeling approaches for the levodopa ON condition. Since BG

were not activated in the levodopa OFF medication condition at

all (time courses corresponded to noise), we decided not to perform

any statistics for that condition.

Results

Comparing OFF and ON conditions, the UPDRS-III scores

dropped significantly (F(1,11) = 122.52, p,0.001) from 33.5 (9.0)

to 9.6 (4.0) (mean value with standard deviation), demonstrating

the improvement of patients’ motor symptoms in the ON

condition. Analysis of lateralized hemibody UPDRS-III scores in

the OFF condition showed non-significant left/right asymmetry

suggesting that patients with main involvement of the right or left

hemispheres were represented equally in our study.

Behavioral analyses of the hand revealed a significant increase

in the movement variability in the ON condition compared to

OFF in both global (F(1,11) = 14.83, p,0.001) and residual

(F(1,11) = 33.61, p,0.001) movement patterns (Figure 2). More-

over, a significant interaction between RIGHT/LEFT hand

tapping and the OFF/ON medication condition was found in

the global movement pattern (Figure 2; F(2,11) = 5.57, p = 0.04).

The resting tremor and dyskinesias were absent in the course of

the experiment in all our patients which was confirmed by analysis

of the glove motion during resting periods of the task.

FMRI analyses performed for each hand and both medication

conditions independently, with the purpose of showing neural

Figure 2. Variability of movement on behavioral level. Each bar
represents average variance of movement performance calculated from
a collection of measurement sessions separated for each level of
experimental factors ‘Hand’ and ‘Levodopa medication’; displayed as
mean+standard error. A: Average variances of global movement pattern
representing the most coherent parts of glove recordings – finger
tapping itself. Main effect of ‘Levodopa medication’ is significant
(p,0.001) and an interaction between ‘Levodopa medication’ and
‘Hand’ is significant (p,0.05). B: Average variances of residual
movement pattern representing stochastic, variable quantity of
participants’ motor behavior. Main effect of ‘Levodopa medication’ is
significant (p,0.001). a.u. - arbitrary unit.
doi:10.1371/journal.pone.0036271.g002
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correlates of finger movements, revealed brain activity in the

primary motor cortex in the hemisphere contralateral to finger

tapping. However, for each hand, a decreased extent of activity in

the primary motor cortex was observed with levodopa intake

(Figure 3). In addition, as opposed to OFF, significant activity was

detected in subcortical areas (BG) after levodopa administration.

Figure 3. Random-effects parametric maps showing brain correlates of right finger movements with and without dopaminergic
medication. Maps were obtained by separate analysis (one sample t-test) of both medication-free (OFF) and medication (ON) conditions on the
group level (top, blue: group maps obtained by standard first-level modeling without further assumptions on motor performance; bottom, orange:
group maps obtained by mean kinematic modeling technique taking motor performance into account). The brain correlates of left finger movements
are not shown here, nevertheless resulted in a similar activity pattern as right finger movements, with a cortical cluster located in the contralateral
hemisphere. Maps were adjusted with a threshold of p,0.001; uncorrected and extended to 150 voxels to show only significant clusters (p,0.05;
FWE corrected) on the cluster level. FWE - Family Wise Error. kC - number of activated voxels in cortical cluster. kS - number of activated voxels in
subcortical cluster.
doi:10.1371/journal.pone.0036271.g003

Enhancing Study Protocols of PD fMRI Studies
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Comparing OFF and ON separately, a sensitivity increase in the

extent of activity using kinematic modeling compared to the

standard one was found (Figure 3; see kC, kS). All kinematic

approaches showed significantly higher amplitude of activity

compared to the standard approach, in particular in the precentral

gyrus with patients OFF (Figure 4A; Table 2) and ON (Figure 4B;

Table 2) medication. Also, a significant difference between

amplitude-sensitive and amplitude-invariant versions of both

kinematic approaches was observed for both conditions with an

exception of the eigenvariate kinematic approach in OFF

condition (Table 2).

Investigating the difference between both medication condi-

tions, an increased bilateral response to levodopa in the putamen

and globus pallidus was revealed. Interestingly, the increased

BOLD response in the ON condition was present solely within

areas of BG and not observed in the primary motor cortex. This

result was obtained with all modeling methods (Figure 5; p,0.001

uncorrected). Strikingly, all variations of kinematic modeling

outperformed standard modeling and resulted in an extensive

sensitivity increase, and provided a larger spatial extent of activity

and higher FWE-corrected cluster p-values (Figure 5; Table 3). In

contrast, the right subcortical cluster obtained with standard

modeling did not remain significant after FWE multiple test

correction.

Effect sizes represented as percent signal change in ROIs

located in the left and right pallidum revealed differences between

standard and kinematic modeling approaches even without taking

inter-individual differences into account (Figure 6B). With regard

to inter-individual variability, rmANOVA showed significance in

the main effect of ‘Modeling approach’ (p,0.05) with all kinematic

approaches. Additionally, a significant difference (p,0.05) be-

tween amplitude-sensitive and amplitude-invariant versions of

both (mean, eigenvariate) kinematic approaches was discovered

(Figure 6B). Table 4 summarizes the results in more detail.

Discussion

We investigated the benefit of controlling PD patients’

movement within a finger-tapping fMRI experiment by taking

the movement parameters into account in the analysis. Our results

provide clear evidence of increasing sensitivity in detecting brain

activity in PD patients using fMRI analyses considering on-line

quantification of their motor outcome, compared to generic fMRI

statistics.

Solely behavioral analyses revealed substantial differences in

motor outcome of PD patients between two experimental

manipulations requiring repeated sessions, underlining the impor-

tance of controlling for movement to obtain ‘true’ brain motor

responses with fMRI.

Previous studies investigating levodopa intervention in PD

patients with fMRI have produced conflicting results [17,20,60].

Contradictory activity patterns solely in cortical areas such as the

supplementary motor area (SMA), premotor cortex (PMC) and

primary motor cortex (M1) were observed. Surprisingly, no

activity was detected in subcortical areas such as BG – areas

closely associated with PD – possibly due to a lack of statistical

power with a combination of relatively subtle BOLD responses in

those areas [31]. A more recent study by Ng et al. [18] discussing

conflicting results and interpretations in previous studies conclud-

ed that they only investigated the amplitude of BOLD response

and neglected the spatial pattern of levodopa-induced activity.

They showed that the main effect of levodopa seems to be a spatial

‘focusing effect’ in both subcortical and cortical structures. Work

by Kraft et al. [11] exploited a bimanual task to increase BOLD

responses in BG and showed a bilateral striatal activity in PD

patients as a response to levodopa treatment. However, only

Haslinger et al. [60] explicitly applied the behavioral motor

information in fMRI modeling. In our opinion, not taking the

movement into account in HR modeling may have been a

sufficient source of bias in interpretations in the aforementioned

studies, considering the close relationship between patients’ motor

performance and dopaminergic medication. Using flexible-facto-

rial random-effects design, we increased the statistical power by

joining data from left and right finger movements in one model.

We observed a significant increase in the BOLD response in BG as

a result of levodopa intake in PD patients compared to the

medication-free condition, which is in agreement with the fMRI

results of Kraft et al. [11] and PET results of Feigin et al. [59].

This supports the idea of a ‘normalizing effect’ of levodopa in

Figure 4. Comparison of modeling approaches as average
effect size in anatomical ROI (contralateral precentral gyrus).
Each bar represents the average value from ROI for the ‘group-level
mean’ PSC image, and each error bar the average of the ‘group-level
standard error’ PSC image. A: Percent signal change for the Levodopa
OFF condition and all modeling approaches. B: Percent signal change
for the Levodopa ON condition and all modeling approaches. AI{ -
amplitude invariant.
doi:10.1371/journal.pone.0036271.g004
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putamen in cortico-subcortico-cortical circuits of the current

pathophysiological model [1,61]. The response in BG nevertheless

appears to a different degree of amplitude and extent using either

standard or kinematic modeling techniques.

In this study, kinematic modeling was performed using the

behavioral information incorporated in a single regressor, in order

to preserve the design efficiency and avoid covariate correlation

problems because the movement-related regressor is likely to

correlate with the stimulus-based regressor to a high degree. In the

interpretations of fMRI statistical tests, correlation is a potential

source of ambiguity arising even in the simplest models [62].

Orthogonalizing the regressor in respect to other as a method to

tackle correlation problems in studies controlling for motor

performance of participants [33–35] is an option; however, it may

not solve the problem because of decreased sensitivity. The type of

modeling framework used in this work is especially useful for

identifying ‘true’ motor brain responses. Extending the design with

another stimulus-specific regressor would be particularly interesting

for investigating phenomena such as neural correlates of motor

planning and preparation, sensorimotor integration, or identifying

motor circuitry responsible for pathological movement. In such

cases, the model must incorporate experiment information in order

to discriminate between actual movement and stimuli presentation.

We used two types of linear Gaussian models to input glove

recordings with hemodynamic modeling and compared this

approach with generic analysis commonly used in PD motor

studies, where no quantitative analysis of movement performance

is usually reported. In investigating motor abnormalities with task-

related fMRI, experimental set-up and timing do not provide

sufficient information for modeling the hemodynamic response

adequately, resulting in sensitivity decrease. All formerly described

kinematic models yielded better fits than the standard analysis. We

favor the eigenvariate approach as being theoretically more

sensitive in reducing the dimensionality of high-dimensional data

as compared to simple averaging. It preserves the dominant task-

related movement pattern by assigning higher weights to inputs

contributing to it while eliminating components likely correspond-

ing to noise. On the other hand, the mean model accounts for

every single input (sensor) to the same degree, which may result in

detecting movement deviations specific to the disease, with the

penalty of a higher probability for introducing noise. In fact, both

approaches are often correlated and result in a similar outcome,

especially if the input data are pre-smoothed (i.e., low-pass

Table 2. Main effect of ‘Modeling approach’: percent signal change in anatomical ROI (left, right precentral gyrus) as F-statistics
obtained by comparing particular modeling approaches in levodopa OFF and levodopa ON conditions.

Modeling approaches compared F-statistic Significance level

OFF ON OFF ON

Standard – Kinematic, mean F(1, 11) = 55.86 F(1, 11) = 108.20 p,0.001 p,0.001

Standard – Kinematic, mean AI{ F(1, 11) = 59.77 F(1, 11) = 85.43 p,0.001 p,0.001

Standard – Kinematic, eigenvariate F(1, 11) = 63.75 F(1, 11) = 68.21 p,0.001 p,0.001

Standard – Kinematic, eigenvariate AI{ F(1, 11) = 52.97 F(1, 11) = 77.46 p,0.001 p,0.001

Kinematic, mean – Kinematic, mean AI{ F(1, 11) = 23.26 F(1, 11) = 37.86 p = 0.001 p,0.001

Kinematic, eigenvariate – Kinematic, eigenvariate AI{ F(1, 11) = 3.64 F(1, 11) = 18.15 p = 0.083 p = 0.001

AI{ - amplitude invariant.
doi:10.1371/journal.pone.0036271.t002

Figure 5. Group-level response (ON-OFF) of PD patients to levodopa treatment. Uncorrected threshold of p,0.001 was adopted and maps
were overlaid on coronal and axial slices (left, blue: group maps obtained by standard first-level modeling without further assumptions on motor
performance; right, orange: improvement of group-level maps obtained using various kinematic modeling techniques taking movement
performance into account). AI{ - amplitude invariant.
doi:10.1371/journal.pone.0036271.g005
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filtered). Then the input variables have a higher likelihood of co-

varying and reflect to similar extents on the first principal

component, which roughly speaking, is a process of averaging.

Both of the approaches presented provided a clear increase in

sensitivity and we recommend them both for merging multi-

dimensional movement recordings such as those presented here.

A clear sensitivity increase was gained by using all variations of

kinematic approaches, as they accounted for undesired movement

variations of participants in hemodynamic modeling. This

increased the sensitivity in detecting correlations of kinematic

models’ predictors with measured brain responses and contributed

to the reduction of ‘type II’ errors on the individual level. With the

repetitive nature of the experiment and the experimental

intervention altering the motor outcome significantly, an additive

character of the sensitivity increase was also demonstrated on the

group level by treating both conditions of dopaminergic treatment

separately and by contrasting their difference. Besides conspicuous

and dominant increase of sensitivity caused by accurate timing of

the HRF, a beneficial effect of considering the amplitude of

movement using amplitude-sensitive kinematic approaches in

forming the HRF is also evident. Waldvogel et al. [26] stated

that an increased neuronal firing rate resulting from healthy

subjects tapping with a larger amplitude leads to higher synaptic

activity, higher metabolic demand, and therefore an increased

BOLD signal. Their alternative explanation is based on the fact

that the observed BOLD increase is caused by subjects using

additional muscles needed to stabilize the hand during large-

amplitude movements. However, they did not provide an account

of the quantitative reciprocal relationship between the two. With

one exception (eigenvariate kinematic approach, levodopa OFF),

we detected significant increases of percent signal change using

amplitude-sensitive versions compared to amplitude-invariant

versions of both linear Gaussian kinematic approaches. Consid-

ering the conclusions by Waldvogel et al. [26] and our results, we

conclude that there is a mutual relationship between an increase in

movement amplitude and HR in PD patients, too. In addition to

ensuring that timing is correct, amplitude of movement in PD

fMRI motor experiments must also be controlled.

Conclusions
The approach presented here used an fMRI design of

alternating movement/rest blocks, but might be also suitable for

event-related designs. In comparison to block designs, event-

related designs require more variable tasks in terms of motor

performance (to preserve the design efficient) and where a precise

knowledge of behavioral information such as subjects’ motor

performance is of greater importance according to numerical

Table 3. List of performance measures revealed by all modeling approaches.

Modeling approach Cluster p-value Number of activated voxels Peak t-value

Left cluster Right cluster Left cluster Right cluster Left cluster Right cluster

Standard 0.021 0.073 64 34 4.27 4.21

Kinematic, mean 0.017 0.007 68 91 4.37 4.59

Kinematic, mean AI{ 0.012 0.025 79 59 4.22 4.28

Kinematic, eigenvariate 0.010 0.014 80 71 4.20 4.75

Kinematic, eigenvariate AI{ 0.029 0.011 80 55 4.21 4.30

Showed items include p-values of clusters, numbers of activated voxels and peak t-values. Cluster p-value is FWE (Family Wise Error) corrected for multiple comparisons
at p,0.05. Number of activated voxels are at the threshold of p,0.001 (uncorrected). AI{ - amplitude invariant.
doi:10.1371/journal.pone.0036271.t003

Figure 6. Comparison of modeling approaches as average
effect size in anatomical ROI (left and right pallidum). Each bar
represents the average value from ROI for the ‘group-level mean’ PSC
image, and each error bar the average of the ‘group-level standard
error’ PSC image. A: Percent signal change for the Levodopa OFF
condition and all modeling approaches. In contrast to the ON condition,
in the OFF condition, the basal ganglia were not activated so the data
corresponds to noise. B: Percent signal change for the Levodopa ON
condition and all modeling approaches. AI{ - amplitude invariant.
doi:10.1371/journal.pone.0036271.g006
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simulations by MacIntosh et al. [33]. In PD patients, with

increasing demands and task difficulty, and with a wide spectrum

of possible experimental manipulations such as medication,

without controlling for movement, one can barely detect

undesirable movement deviations. Our results demonstrate the

importance of controlling movements when investigating PD

patients using fMRI. We strongly advocate quantitatively control-

ling for motor performance in order to increase the sensitivity by

taking the patient’s behavior into account.
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