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Abstract

Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent
neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However,
these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally
relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented
with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and
neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the
Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle
temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for
low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial
prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate
cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition
correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated
inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-
responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to
pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social
cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic
processing. Differences in motivational tendencies may modulate neural responses to infant cues.
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Introduction

During early development, pre-linguistic vocalizations, such as

cries, and facial expressions are the primary means of infant

communication. Both cries and facial expressions from the infant

communicate salient information regarding their emotional states

and needs and may elicit affection and nurturing from adults [1].

The interpretation and response to needs underlying infants’

sensory cues may significantly influence the infant’s development

[2]; thus, the processing of the emotional content of infant stimuli

is of developmental significance.

Utilizing auditory and visual sensory cues, functional magnetic

resonance imaging (fMRI) studies have begun to examine mothers’

neural responses to emotional infant stimuli (e.g.,

[3,4,5,6,7,8,9,10,11,12,13,14,15]). Although auditory stimuli, like

cries, may be experienced behaviorally differently than images of

infants, considerable overlap is found in neural activation patterns

[16,17]. Specifically, regions such as the midbrain, hypothalamus,

thalamus, basal ganglia, anterior cingulate cortex (ACC), and

prefrontal cortex are commonly activated in fMRI studies of

parental responses to infant cues, suggesting the involvement of

motivation and reward circuitry [16,17].
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As individual differences in motivational tendencies may

influence sensitivity to emotional stimuli and/or attachment

processes, an exploratory examination of the relationship between

brain activation patterns and individual differences in behavioral

tendencies may be helpful in characterizing the neural responses to

emotional infant stimuli. A prominent theory of behavioral

tendencies predicts individual differences to engage or withdraw

from emotionally or motivationally relevant stimuli [18,19]. In this

model, a behavioral activation system (BAS) exists to govern

approach behavior toward rewarding stimuli, operating orthogo-

nally to a behavioral inhibition system (BIS) that mediates

withdrawal behavior from punishing stimuli. Measures such as

the BIS/BAS scale [20] can be used to assess these tendencies. An

improved understanding of how individual differences in behav-

ioral inhibition and activation might relate to neural correlates of

infant emotion processing could prove important in identifying

features influencing adult-infant interactions.

In addition to BIS/BAS, evidence suggests that other factors

may influence neural responding to infant stimuli. For example,

comparisons of different stages in parenting (e.g., two to four weeks

postpartum versus three to four months postpartum) have revealed

differential patterns of brain activation, suggesting that experience

with an infant over the initial months postpartum likely involves

significant changes in responsivity to infant cues [13,14]. As the

experience of parenting may influence responses to infant stimuli,

it is necessary to investigate the neural responses to infant stimuli

in nulliparous women. Such investigations are important as they

will not only inform studies of maternal responses to infant stimuli

and help characterize shifts in maternal brain function, but also

provide insight into a large group of women with more variable

experiences with, and propensities towards, infants.

Therefore, in the current study, we sought to examine neural

responses of nulliparous women to infant cries and faces of varying

intensity and valence, respectively. Specifically, we investigated

infant cries of differing distress (high, low) levels and infant faces of

varying affect (happy, sad, neutral) in nulliparous women using

fMRI. We hypothesized that both cry types, relative to a neutral

auditory stimulus, would recruit regions previously implicated in

response to cries, including the superior temporal gyrus (STG),

insula, and cingulate cortices. Moreover, based on the perceived

aversiveness of the cries, we predicted that high-distress cries,

compared to low-distress cries, would be associated with relatively

increased activity in these same regions. With regard to infant

facial stimuli, we predicted that happy faces, compared to neutral

ones, would activate regions associated with positive emotion and

reward processing, including the ventral striatum and orbitofrontal

cortex (OFC) [21,22,23,24,25,26]. Sad faces, compared to neutral

ones, were hypothesized to activate brain areas implicated in

dysphoric and/or empathic responses such as the amygdala and

cingulate cortex [27]. Using a BIS/BAS measure, we predicted

that behavioral activation, which reflects responses to stimuli of

reward and non-punishment [28], would correlate with activations

related to rewarding stimuli such as happy infant faces. We further

predicted that behavioral inhibition, which is associated with

heightened arousal, passive avoidance, and anxiety [28], would

correlate with regional brain activations related to more aversive

stimuli, such as high- and low-distress cries.

Methods

Subjects
Nineteen native-English-speaking, right-handed nulliparous

women gave informed written consent and participated in this

study approved by the Yale Human Investigation Committee. All

research was conducted in accordance with the Declaration of

Helsinki. One subject had excessive motion in multiple fMRI runs

and was excluded from analyses; another subject completed only

four of seven functional runs and was also excluded. The

remaining 17 subjects were between the ages of 19 and 29

(M=22.7, SD=2.9) years and were in good health with no history

of psychiatric or neurological disorders, and had normal or

corrected-to-normal vision. Racial and ethnic composition con-

sisted of ten Caucasian, two Asian-American, two African-

American, one Pacific-Islander, and two Hispanic women.

All subjects completed the BIS/BAS scale [20], a 24-item valid

and reliable self-report questionnaire rated on a 4-point scale

(strong agreement to strong disagreement) measuring behaviorally

aversive (i.e., behavioral inhibition) and appetitive (i.e., behavioral

activation) motivations. The BIS/BAS factors into four subscales,

with one factor assessing inhibition (BIS) and three factors

assessing activation. The three BAS subscales assess the pursuit

of appetitive goals (BAS drive), tendency to seek rewarding

experiences (BAS fun-seeking), and responsiveness to reward (BAS

reward-responsiveness).

Auditory Stimuli – Infant Cries
Cry stimuli were generated from stimuli described previously

[29]. Cries were elicited from infants between the ages of 27 and

32 days who were without serious illness at birth and during their

one-month checkup. Cries were recorded in the infants’ homes

before the infants were fed and required no additional external

stimulation. Detailed information about the recording procedure is

reported elsewhere [29]. We used four two-second segments

generated by two infants. The cries were categorized as either

high- or low-distress, resulting in both a high- and low-distress

exemplar from both infants. We used two exemplars for each level

of distress to avoid measuring differences associated with the

physical properties of one particular cry. Prior to imaging, the

distress level of the cries was verified by an independent group of

ten nulliparous female participants (ages 19 to 24 years) who rated

the cries on a scale of 1 (calm) to 10 (distressed). High-distress cries

were rated as significantly more distressed (M=8.06, SD=1.3)

than low-distress cries (M=3.54, SD= .82) (t=11.52, p,.0001).

In addition to cries, subjects heard a ‘‘neutral’’ auditory

stimulus, which consisted of a two-second segment of 1/f, or

‘‘pink’’ noise. Pink noise has a frequency of 1/f, indicating that the

power spectral density is inversely proportional to the frequency.

Pink noise was used as a neutral stimulus because it is not

produced by a human and, as compared to white noise, is

considered more naturalistic as it occurs in natural systems,

speech, and music [30]. Additional information on the acoustic

properties of the cries and neutral stimulus has been previously

reported [4].

Visual Stimuli
Photographs of infant faces between the ages of five and ten

months were adapted from Strathearn and McClure [31] and

were previously used by our group [4]. Twenty-one images from

each of the six infants, resulting in a total of 126 images, were

balanced for both gender and race (Caucasian and African

American). The infant-face images displayed happy, neutral, and

sad affective states. The size, luminance, and contrast for all face

stimuli were standardized, and faces were presented on a black

background. Prior to imaging, face stimuli were rated by an

independent group of 11 participants on a scale of 1 (happy) to 10

(distressed) to assess the perceived affect level. A repeated measures

ANOVA of the infant-face ratings on the three emotions (happy,

neutral, sad) was significant (F(2, 20) = 146.43, p,.001). Pairwise

Neural Responses to Infant Cues
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comparisons showed that happy faces (M=2.19, SD=0.75) were

rated as significantly less distressed (Mean difference =21.55,

SD=1.15, p= .006) than neutral faces (M=3.74, SD=1.43).

Neutral faces were rated as significantly less distressed (Mean

difference =24.16, SD=1.28, p,.001) than sad faces (M=7.90,

SD=0.34).

Design
Stimuli were presented using E-Prime software (Version 1.2;

Psychology Software Tools Inc., Pittsburgh, PA). The auditory

stimuli were delivered via headphones with no visual display. The

visual stimuli were displayed foveally at the fixation point for

1000 ms and followed by a fixation cross. Subjects received seven

functional runs, each consisting of 42 trials (six trials of each

condition of interest and six one-back memory trials). The

conditions of interest were high-distress cry, low-distress cry, pink

noise, happy face, sad face, and neutral face. Trials of all

conditions were presented in a counter-balanced succession. The

duration of the inter-trial-interval (ITI) was jittered (4000–

14000 ms) to allow event-related analysis and to minimize stimulus

expectation.

During each run, subjects were asked to attend to the stimulus

sequence of faces and cries. A one-back memory task was included

to maintain and assess subjects’ attention during the task and were

modeled but not included in further analyses. On a small

proportion of trials (14%), subjects were presented with a row of

question marks and either a visual stimulus (infant face) was

presented above the question marks or an auditory stimulus (cry or

pink noise) was delivered via the headphones. The question marks

cued the subject to make a yes/no decision via a stimulus response

box as to whether the current stimulus was identical to the stimulus

of the preceding trial (i.e., a one-back memory task). Analysis of

catch trial data revealed a mean accuracy rate of 91.2760.05%

(mean 6 SD).

Data Acquisition
Data were acquired with a Siemens Trio 3T magnetic

resonance imaging system (Siemens AG, Erlangen, Germany)

using a standard 12-channel head coil. Localizer images were

acquired for prescribing the functional image volumes, aligning

the eighth slice parallel to the plane transecting the anterior and

posterior commissures. Functional images were collected using

a gradient echo, echoplanar sequence (repetition time

[TR]= 2000 ms; echo time [TE]= 30 ms; flip angle [FA]= 80u,
field of view [FOV] 20 cm620 cm, 64664 matrix, 3.4 mm

3.4 mm in-plane resolution, 4 mm slice thickness, 32 slices). Each

stimulus run consisted of 163 volumes, including an initial rest

period of 12 seconds (to achieve signal stability) that was removed

from analyses. High-resolution structural images were also

collected (sagittal MPRAGE acquisition, TR=2530 ms;

TE= 3.66 ms; FA= 7u; FOV=25.6 cm625.6 cm; number of

excitations [NEX]= 256625661; 1 mm slice thickness, no gap;

176 slices).

Image Analysis
Following prior published protocols [32], functional data were

preprocessed using SPM5 (Wellcome Functional Imaging Labo-

ratory, London, United Kingdom). Preprocessing included slice-

time correction to the first slice of each volume; SPM5’s two-pass

realign-to-mean strategy, which ultimately realigns all functional

images to a mean functional image; coregistration of the

anatomical image and the average of these realigned functional

images; coregistration of all functional images using the param-

eters obtained from coregistration of the mean image; application

of the SPM Unified Segmentation process to the anatomical scan,

using prior information from the International Consortium for

Brain Mapping (ICBM) Tissue Probabilistic Atlas and estimation

of non-linear warping parameters [33]; warping the functional

images to the Montreal Neurological Institute (MNI) template

space; reslicing into isometric 3 mm63 mm63 mm voxels; and

subsequent smoothing of functional images using a 6 mm

Gaussian kernel. All functional runs were inspected for motion

in excess of one voxel, for which one participant was excluded

from the analysis.

Once the functional images were preprocessed, first-level robust

regression was performed using the standard general linear model

but with iteratively reweighted least squares using the bisquare

weighting function for robustness [32,34], as implemented in

MATLAB 7.3 (Mathworks, Natick, MA; robust.m). Motion

parameters and high-pass filter parameters were added as

additional regressors of no interest. Once conditions were

estimated using percent signal change for each participant,

a second-level, random effects analysis was performed to estimate

contrasts between conditions using NeuroElf (NeuroElf.net) and

following our prior methods. To correct for multiple comparisons

we then used a Monte Carlo simulation, which takes into account

the voxel-wise and cluster-volume thresholds to establish family-

wise error (FWE) correction. Only regions with corrected p,.05

(i.e., a,.05) threshold at an uncorrected voxel-level threshold of

p,.01 at each tail and a cluster of 45 were considered to be

significantly activated or deactivated in the whole-brain analysis.

Whole-brain correlations were computed to assess the relationship

between brain activation and behavioral inhibition and activation

as assessed by the BIS/BAS. To adequately correct for the

multiple comparisons conducted in the correlation analysis with

multiple measures, we employed a conservative Bonferroni

correction to both height and whole-brain level thresholds across

24 exploratory correlations. Clusters were considered significant at

a FWE corrected p,.05 threshold and subsequently Bonferroni-

corrected with a corrected p,.002 threshold (at an uncorrected

voxel-level threshold of p,.0005 at each tail and a cluster of 17).

Anatomical labels of all results were confirmed using the Talairach

Daemon toolbox as well as manually, using a human brain atlas

[35].

Results

Brain Activations to Infant Cries
When comparing low-distress cries to pink noise, increased

activation was observed in bilateral STG, right middle temporal

gyrus (MTG), bilateral precentral and postcentral gyri, right

inferior parietal lobe (IPL), left superior and medial frontal gyri

(SFG and MFG), left putamen and left claustrum. Relatively

diminished activation was observed in left caudate and right

MFG/OFC. When comparing high-distress cries to pink noise,

increased activation was observed in bilateral STG, right MTG,

right precentral and postcentral gyri, right SFG, right MFG, right

inferior frontal gyrus (IFG), bilateral amygdala, and left culmen.

Relatively diminished activation was observed in the right STG

and right insula. When comparing high-distress cries to low-

distress cries, diminished activation was observed in bilateral STG,

right MTG, left IPL, right superior occipital gyrus, and left

precuneus; no regions showed increased activation (Table 1;

Figure 1).

Brain Activations to Infant Faces
For happy versus neutral infant faces, greater activation was

observed in left ventral striatum, left caudate head, left ventrome-

Neural Responses to Infant Cues
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dial prefrontal cortex (vmPFC)/OFC, and right IFG. Relatively

diminished activation was observed in left cingulate gyrus, bilateral

precentral gyrus, right SFG, right STG, left supramarginal gyrus,

and left insula. For sad versus neutral infant faces, greater

activation was observed in bilateral precuneus, left cingulate gyrus,

right MTG, bilateral middle and inferior occipital gyri, right

fusiform gyrus (FG), left precentral gyrus, left IPL, left lingual

gyrus, right SFG, bilateral MFG, right IFG/OFC, and left ACC.

Relatively reduced activation was observed in the left insula, left

transverse temporal gyrus, and right STG. For happy versus sad

faces, relatively greater activation during the presentation of sad

faces was observed in the right IFG, bilateral FG, right STG, right

supramarginal gyrus, right cuneus, left MTG, left middle occipital

gyrus, right precentral gyrus, and right MFG; no regions

demonstrated greater activation for the presentation of happy

faces relative to sad faces (Table 2; Figure 2).

BIS/BAS Scores and Correlations with Brain Activity
The mean 6 SD scores of the 17 subjects on the BIS/BAS scale

components were 22.1262.76 for the BIS, 10.7662.22 for BAS

drive, 11.2961.93 for BAS fun seeking, and 17.3561.54 for BAS

reward-responsiveness. These scores fall within the standard mean

score range for healthy subjects [36].

The scores on the BIS and two BAS subscales (drive and

reward-responsiveness) were correlated with brain activation

contrasts. BIS scores positively correlated with right STG activity

in both the comparisons of high-distress cries versus pink noise and

low-distress cry versus pink noise. The BAS drive subscale scores

inversely correlated with activations in the: 1) right putamen, right

caudate extending into the thalamus, right lateral globus pallidus,

and left medial globus pallidus in the contrast between high-

distress cries and pink noise; and 2) left angular gyrus in the

contrast between high-distress cries and low-distress cries. The

BAS drive subscale scores positively correlated with right superior

occipital gyrus in the contrast between sad and neutral faces. BAS

reward-responsiveness scores inversely correlated with left pre-

central gyral activation in the contrast between low-distress cries

and pink noise (Table 3; Figure 3).

Discussion

The current study used fMRI to examine the neural correlates

of how nulliparous women respond to emotional infant stimuli,

specifically cries of varying distress levels and facial expressions of

varying affect. Overall, regions activated in response to cries in

nulliparous women (e.g., the STG and MTG) are consistent with

those identified in cry processing in previous studies of both non-

parents and parents [6,11,37]. For the face stimuli, we observed

different regional brain activations in response to sad and happy

infant faces. Regions such as the vmPFC, OFC, and ACC, which

are commonly activated in fMRI studies of parental responses to

infant cues, demonstrated activation during the presentation of

infant faces [16,17]. Furthermore, neural responses to the cry and

Table 1. Regional Brain Activations during the Perception of Infant Cries.

Contrast Region k max x y z

Low Distress Cry . Pink Noise

L. Superior Temporal Gyrus (BA 42) 979 11.75 264 229 7

R. Middle Temporal Gyrus 1507 10.26 58 232 2

L. Postcentral Gyrus (BA 3) 248 5.21 253 212 49

L. Medial frontal gyrus (BA 6) 203 4.56 27 23 50

L. Lentiform Nucleus (Putamen) 72 4.38 222 1 10

Pink Noise . Low Distress Cry

L. Caudate (Caudate Body) 84 4.76 225 215 27

R. Middle Frontal Gyrus/Orbitofrontal gyrus (BA 11) 77 4.40 38 45 217

High Distress Cry . Pink Noise

R. Superior Temporal Gyrus (BA 22) 1083 10.11 57 28 1

L. Superior Temporal Gyrus (BA 22) 665 9.01 254 29 3

L. Culmen 45 4.35 217 251 217

R. Precentral Gyrus (BA 6) 155 4.15 46 29 37

R. Superior Frontal Gyrus (BA 6) 120 3.98 7 11 49

L. Superior Temporal Gyrus (BA 38) 45 3.95 234 5 216

R. Medial Frontal Gyrus (BA 6) 60 3.65 7 218 53

Pink Noise . High Distress Cry

R. Superior Temporal Gyrus (BA 39) 128 5.22 51 255 24

Low Distress Cry . High Distress Cry

L. Superior Temporal Gyrus 239 5.91 264 220 1

R. Superior Temporal Gyrus (BA 22) 406 5.44 67 233 13

R. Middle Temporal Gyrus (BA 39) 93 5.32 50 276 28

L. Precuneus (BA 7) 46 3.49 29 252 38

All clusters in this table were generated at FWE corrected p,.05 threshold at an uncorrected voxel-level threshold of p,.01 at each tail and a cluster of 45.
Abbreviations: BA: Brodmann area; L: left; R: right, k: number of voxels in the cluster.
doi:10.1371/journal.pone.0036270.t001
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face contrasts correlated with self-reported measures of behavioral

inhibition and activation suggesting that neural responses to infant

stimuli vary as a function of motivational approach and avoidance

tendencies.

Regional Brain Activations during the Perception of Low-
and High-Distress Cries Relative to the Control Stimulus
We found increased activation to low-distress cries relative to

the control stimulus in bilateral STG, right MTG, right IPL, and

bilateral precentral and postcentral gyri. Similarly, high-distress

cries relative to pink noise identified increased activation in

bilateral STG, right MTG, and bilateral precentral and post-

central gyri. Findings in STG and frontal cortices are common in

fMRI paradigms utilizing infant cry stimuli and may reflect

auditory processing and social cognition [38,39]. Several fMRI

studies have linked activations of STG and IPL to representations

of others’ intentions and mental states [40,41]. Thus, activation in

these areas during the perception of cries may reflect an attempt to

understand the emotional states associated with cries of varying

distress levels. The STG has also demonstrated increased activity

in response to angry speech relative to neutral speech [42,43].

Therefore, activation in STG may reflect the aversive nature of the

cries.

Regional Brain Activations during the Perception of Low-
Relative to High-Distress Cries
Nulliparous women demonstrated greater activation for low-

distress relative to high-distress cries in bilateral STG, right MTG

and left IPL. Increased activation in auditory-processing regions

for low- relative to high-distress cries may reflect the greater

acoustic variability in the low-distress cries. Specifically, low-

distress cries tend to have more numerous shorter bouts whereas

high-distress cries tend to have fewer bouts and fewer breaths (see

Appendix for cry characteristics). Accordingly, low-distress cries

might be considered more complex and may generate relatively

increased STG and MTG activation. From a behavioral perspec-

tive, high-distress cries may produce more unequivocal responses

in adults (e.g., ‘‘The infant is clearly distressed and needs

immediate attention.’’), whereas low-distress cries may produce

more complex, and potentially ambiguous, behavioral responses as

the adult attempts to understand the cries’ meanings (e.g., ‘‘How

greatly distressed is the infant? Will the cries cease without my

attention?’’). The potentially equivocal nature of these responses

may relate to the observed increased insular activation, which has

been associated with decision-making processes and empathy

[44,45]. Additionally, the greater recruitment of brain regions

during low-distress cries relative to high-distress cries may stem

from differential previous experiences of the nulliparous women

with infants, which was not assessed in this study. Further research

on the relationship between specific acoustic properties of cries

and the neural and emotional responses they generate is necessary

for understanding the differential responses to cries of varying

properties.

Regional Brain Activations during Viewing of Happy
Faces
Consistent with our hypothesis and findings from previous

studies involving the processing of infant visual stimuli [3,7,8,12],

viewing of happy infant faces compared to neutral ones engaged

the OFC. The OFC contributes importantly to maternal ‘‘reward’’

circuitry [3,12], and increased activation in this region may reflect

the rewarding nature of a happy infant face, which may help elicit

care-giving behaviors. Considered a component of the brain’s

‘‘reward system,’’ the OFC receives ascending dopamine projec-

tions from the ventral tegmental area (VTA) [23,46]. Studies with

pleasant visual, tactile, and olfactory stimuli have found increased

activation in the OFC that depends on the pleasantness rather

than the intensity of stimulation [47,48]. The OFC is therefore

Figure 1. Regional Brain Activations during the Perception of
Infant Cries. Axial slices of regional brain activations for a) low-distress
cries versus pink noise, b) high-distress cries versus pink noise, c) and
high-distress cries versus low-distress cries. Color on T1 template
images from SPM5 indicates significant increases (red color) and
decreases (blue color) in BOLD signal. The right side of the brain is on
the right. The number under each brain image indicates z-axis
coordinates of the image in the MNI (Montreal Neurological Institute)
template space. The only voxels displayed on the brain images are
regions with corrected p,.05 threshold at an uncorrected voxel-level
threshold of p,.01 at each tail and a cluster of 45.
doi:10.1371/journal.pone.0036270.g001
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considered to have a critical role in representing the reward value

of a stimulus. Greater activation for happy faces was also seen in

the striatum, a structure receiving projections from the VTA and

OFC [49] and implicated in reward-related learning and

motivated behaviors [22,50,51]. The increased striatal activation

in nulliparous women may relate to the coding of happy infant

affect as a positive sensory cue.

Regional Brain Activations during Viewing of Sad Faces
For the sad versus neutral face contrast, activation was observed

in the precuneus, cuneus, and left posterior cingulate cortex

(PCC). Both the precuneus and PCC have been implicated in the

processing of sad adult faces [27] and show greater activation

when adults evaluate their own or other’s emotional states [52]. A

longitudinal neuroimaging study of depressed patients found

differential brain activations according to depression status [27],

suggesting that areas involved in the discernment of negative

affective facial expressions may relate to dysphoric response

patterns. The PCC has also been implicated in stress responses

[53], suggesting that stress neurocircuitry may be activated by sad

faces. Alternatively, the activation of the precuneus and PCC may

indicate that nulliparous women engage in the attribution of

emotion while viewing sad infant visual stimuli, as the PCC has

been associated with evaluating the affective valence of external

stimuli [54], and the precuneus has been implicated in empathic

processes [55].

Sad faces also activated the ACC, a region involved in the

processing of emotional information [56]. Data implicate the ACC

in attending to, and regulating, arousal associated with affective

states [56], as increased blood flow has been reported in dorsal and

rostral regions of the ACC when attending to subjective emotional

states and experiences [57,58]. Regions along the border between

the rostral ACC and the mPFC have been associated with theory

of mind tasks, such as the ability to infer mental states of others

[59]. The increased activation in ACC therefore suggests that the

nulliparous women in this study may have engaged in social and

emotive processing while viewing the sad infant facial stimuli.

Table 2. Regional Brain Activations during the Perception of Infant Faces.

Contrast Region k max x y z

Happy Face . Neutral Face

L. Ventral striatum (BA 25) 72 4.80 23 3 26

L. Ventromedial Prefrontal Cortex/Orbitofrontal Gyrus (BA 11) 45 4.69 225 43 221

R. Inferior Frontal Gyrus (BA 47) 45 3.90 30 23 213

Neutral Face . Happy Face

L. Cingulate Gyrus (BA 24) 77 4.47 23 214 41

R. Superior Temporal Gyrus (BA 22) 98 4.40 53 247 15

L. Supramarginal Gyrus (BA 40) 49 4.31 252 243 33

L. Insula (BA 13) 58 4.28 240 241 18

L. Precentral Gyrus (BA 4) 50 3.78 231 218 56

Sad Face . Neutral Face

R. Precuneus (BA 31) 396 5.95 13 267 20

R. Middle Temporal Gyrus (BA 39) 84 4.91 53 263 19

R. Middle Occipital Gyrus (BA 18) 157 4.62 33 284 5

L. Precentral Gyrus (BA 6) 50 4.54 265 25 35

L. Middle Occipital Gyrus (BA 19) 313 4.44 228 285 13

R. Superior Frontal Gyrus (BA 10) 51 4.14 25 51 0

R. Inferior Frontal Gyrus/Orbitofronal gyrus (BA 11) 79 3.99 11 42 215

Neutral Face . Sad Face

L. Insula (BA 13) 62 4.95 253 238 14

R. Superior Temporal Gyrus 48 3.71 62 221 5

Sad Face . Happy Face

R. Inferior Frontal Gyrus (BA 45) 64 5.88 55 27 13

R. Fusiform gyrus (BA 19) 47 5.06 37 262 24

R. Superior Temporal Gyrus (BA 39) 89 4.82 43 252 15

R. Cuneus (BA 18) 83 4.69 19 272 15

L. Middle Temporal Gyrus (BA 37) 87 4.35 240 263 21

L. Middle Occipital Gyrus (BA 19) 64 4.11 231 282 6

R. Precentral Gyrus (BA 6) 50 3.88 10 224 64

All clusters in this table were generated at FWE corrected p,.05 threshold at an uncorrected voxel-level threshold of p,.01 at each tail and a cluster of 45.
Abbreviations: BA: Brodmann area; L: left; R: right, k: number of voxels in the cluster.
doi:10.1371/journal.pone.0036270.t002
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Regional Brain Activations during Viewing of Sad-
Relative-to-Happy Faces
For the comparison of sad versus happy faces, the right IFG,

bilateral FG, and right cuneus demonstrated increased activity.

Both the IFG and FG have been widely implicated within circuitry

involved in the processing of adult emotional faces and are

considered as ‘‘core’’ regions of emotional face processing [60,61].

The FG has been implicated in the processing of facial stimuli

[62], including in learning affective values of faces [63], with

greater FG activation observed to faces of negative affect [64]. The

precuneus has also been implicated in the processing of adult

emotional faces, particularly in response to sad faces [65].

Precuneus response to emotional faces appears influenced by

individual genetic variation [66] suggesting the value of face

perception investigations of individual differences. Together, the

findings suggest that the neural underpinnings of infant emotional

face processing share similarities with those underlying adult

emotional face processing and that that individual differences are

important to consider in the processing of facial stimuli.

Regional Brain Activations and Individual Differences in
Behavioral Inhibition and Activation
Our findings suggest that individual differences in motivational

tendencies may influence neural correlates underlying the

processing of infant emotional cues. Specifically, higher self-

reported behavioral inhibition was related to greater activation in

right STG during the perception of low-distress cries relative to

pink noise, as well as high-distress cries relative to pink noise. The

BIS measure assesses responsiveness to signals of negative

outcomes, particularly tendencies to inhibit behavior that may

result in undesirable consequences (e.g., ‘‘If I think something

unpleasant is going to happen, I usually get pretty worked up.’’).

The recruitment of right STG during the perception of low- and

high-distress cries preferentially in women with high BIS scores

may therefore relate to the aversive nature of cries, with

individuals more prone to behavioral inhibition demonstrating

a greater STG response.

Higher self-reported behavioral drive was associated with

greater activation in the right superior occipital gyrus when

viewing sad versus neutral faces. The occipital cortex, including

the superior occipital gyrus, has been linked to affective processing,

with occipital cortical activity correlating with poor social

adjustment and impaired social cognition in individuals with

Figure 2. Regional Brain Activations during the Perception of Infant Faces. Axial slices of regional brain activations for a) happy versus
neutral infant faces and b) sad versus neutral infant faces. Color on T1 template images from SPM5 indicates significant increases (red color) and
decreases (blue color) in BOLD signal. The right side of the brain is on the right. The number under each brain image indicates z-axis coordinates of
the image in the MNI (Montreal Neurological Institute) template space. The only voxels displayed on the brain images are regions with corrected
p,.05 threshold at an uncorrected voxel-level threshold of p,.01 at each tail and a cluster of 45.
doi:10.1371/journal.pone.0036270.g002
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psychotic disorders [67]. Thus, the current findings relating

behavioral drive to superior occipital gyral activation during

viewing of sad faces not only implicates a region implicated in

social processing in a population often characterized by poor

motivation drive and interpersonal difficulties, but also suggests

that early visual processing may be particularly relevant to

responses to sad infant facial cues in behaviorally driven

individuals.

In the current study, individuals with higher reward-respon-

siveness showed lower activity in the left precentral gyrus when

listening to low-distress cries compared to pink noise. The

precentral gyrus, involved in motoric responding, has been

implicated in the processing of rewarding and aversive stimuli.

For example, healthy subjects as compared to individuals with

borderline personality disorder, a condition characterized by

emotional dysregulation, showed greater recruitment of the

precentral gyrus during responses to aversive as compared to

neutral stimuli [68]. Healthy women but not those with bulimia

nervosa showed increased activation of the precentral gyrus in

anticipation and receipt of a milkshake reward [69]. Thus, these

findings suggest that individual differences in precentral gyral

activations to aversive and rewarding cues may have important

clinical implications. The current findings suggest that individual

differences in both approach and avoidance motivational tenden-

cies are related to neural activations involved in attentional and

emotional processing. The extent to which these behavioral and

neural measures relate to specific aspects of adult-infant interac-

tions requires additional investigation.

Limitations, Strengths, and Future Directions
Several limitations exist. First, the facial stimuli were derived

solely from infants. Future investigations involving facial stimuli

from individuals of varying ages may be helpful in elucidating how

brain responses may be modulated by the physical maturity of

facial features being viewed. Furthermore, the cries were gathered

solely from newborn infants, limiting the possibility of having

a comparable happy auditory condition such as laughter.

Additionally, the age difference of the infants used for the cry

and face stimuli makes comparisons between the two sensory

domains difficult. However, we did find increased activation in

precuneus, right MTG, left precentral gyrus, and left IPL for sad

faces relative to neutral ones, as well as for cries relative to pink

noise. Future fMRI investigations are needed to continue

identifying regions activated across these sensory modalities.

Second, the subjects in the study were healthy nulliparous women

of childbearing age. Information regarding subjects’ desire and

plans to be in a caretaker role, as well as the degree of their present

interaction with infants, may help to further account for individual

differences in the processing of infant stimuli. Additionally, studies

of childbearing women could examine how neural responses to

infant affective cues may change in healthy mothers at varying

times postpartum. Third, the study excluded men. Examination of

similarly aged men and parents of both sexes could investigate

potential influences of sex and parenthood, respectively. Fourth,

the study involved healthy subjects. Future studies of mothers and

nulliparous women in whom parent-child interactions may

become impaired, such as during maternal depression and

substance abuse, could help investigate processes of particular

relevance to the health of vulnerable youth. Despite these

limitations, the findings provide initial insight into the neural

processing of infant cues in nulliparous women and how individual

differences in motivational tendencies relate to brain responses to

infant stimuli.

In summary, the current study provides an initial examination

of how emotional infant stimuli are perceived by healthy,

nulliparous women. Cries of varying distress levels differentially

recruited regions associated with auditory and empathic proces-

sing. With regard to the visual infant stimuli, our findings suggest

that happy faces are encoded as rewarding stimuli in the brain,

whereas sad faces induce increased activation in regions associated

with empathic processing. The study is also the first to investigate

appetitive and aversive motivational tendencies in relationship to

Table 3. Regional Brain Activations during the Perception of Infant Cries and Faces Correlated with Behavioral Measures of
Motivation as Assessed by BIS/BAS Subscales.

Contrast Region k max x y z

High Distress Cry . Pink Noise Correlated with BIS

R. Superior Temporal Gyrus (BA 41) 25 0.83 45 -37 4

Low Distress Cry . Pink Noise Correlated with BIS

R. Superior Temporal Gyrus (BA 41) 17 0.81 48 -34 7

High Distress Cry . Pink Noise Correlated with BAS Drive

R. Lentiform Nucleus (Putamen) 19 -0.86 19 0 8

R. Caudate (Caudate Body) 33 -0.85 10 14 16

R. Lentiform Nucleus (Lateral Globus Pallidus) 18 -0.83 19 0 -4

L. Lentiform Nucleus (Medial Globus Pallidus) 17 -0.83 -9 1 3

High Distress Cry . Low Distress Cry Correlated with BAS Drive

L. Angular Gyrus (BA 39) 19 -0.83 -55 -65 37

Sad Face . Neutral Face Correlated with BAS Drive

R. Superior Occipital Gyrus (BA 19) 20 0.87 45 -77 28

Low Distress Cry . Pink Noise Correlated with BAS Reward

L. Precentral Gyrus (BA 6) 37 -0.84 -51 -5 30

All clusters in this table were generated at FWE corrected p,.002 threshold at an uncorrected voxel-level threshold of p,.0005 at each tail and a cluster of 17.
Abbreviations: BA: Brodmann area; L: left; R: right, k: number of voxels in the cluster.
doi:10.1371/journal.pone.0036270.t003
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Figure 3. Regional Brain Activations during the Perception of Infant Cries and Faces Correlated with Behavioral Measures of
Motivation as Assessed by BIS/BAS Subscales. a) Axial slice of regional brain response for low-distress cry versus pink noise that correlates with
scores on the BIS scale. b) Axial slice of regional brain response for high-distress cry versus pink noise that correlates with scores on the BIS scale. c)
Axial slice of regional brain response for high-distress cry versus pink noise that correlates with scores on the BAS drive scale d) Axial slice of regional
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the processing of infant emotional cues, and the findings suggest

a relationship between individual differences in motivational

tendencies and brain response patterns to infant cues. These

findings also indicate the utility of this approach to investigate

a broader range of individual differences with respect to neural

activations and their clinical correlates in response to infant

stimuli.

Author Contributions

Conceived and designed the experiments: NL WEM LCM MNP.

Performed the experiments: JLM NL LCM. Analyzed the data: JLM

HK PDW. Contributed reagents/materials/analysis tools: LCM MNP.

Wrote the paper: JLM NL HK PDW HJVR WEM LCM MNP.

References

1. Lorenz K (1943) Die angeborenen formen möglicher erfahrung. Zeitschrift für
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