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Abstract

A major challenge in cancer research field is to define molecular features that distinguish cancer stem cells from normal
stem cells. In this study, we compared microRNA (miRNA) expression profiles in human glioblastoma stem cells and normal
neural stem cells using combined microarray and deep sequencing analyses. These studies allowed us to identify a set of 10
miRNAs that are considerably up-regulated or down-regulated in glioblastoma stem cells. Among them, 5 miRNAs were
further confirmed to have altered expression in three independent lines of glioblastoma stem cells by real-time RT-PCR
analysis. Moreover, two of the miRNAs with increased expression in glioblastoma stem cells also exhibited elevated
expression in glioblastoma patient tissues examined, while two miRNAs with decreased expression in glioblastoma stem
cells displayed reduced expression in tumor tissues. Furthermore, we identified two oncogenes, NRAS and PIM3, as
downstream targets of miR-124, one of the down-regulated miRNAs; and a tumor suppressor, CSMD1, as a downstream
target of miR-10a and miR-10b, two of the up-regulated miRNAs. In summary, this study led to the identification of a set of
miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. Characterizing the role of
these miRNAs in glioblastoma stem cells may lead to the development of miRNA-based therapies that specifically target
tumor stem cells, but spare normal stem cells.
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Introduction

According to the World Health Organization (WHO) classifi-

cation of tumors, a grading scheme, which represents a

malignancy scale and a key factor influencing the choice of

therapies, has been successfully applied to astrocytomas, the most

common type of glioma [1]. The WHO defines pilocytic

astrocytoma as grade I, diffuse astrocytoma as grade II, anaplastic

astrocytoma as grade III, and glioblastoma as grade IV, the most

malignant grade [1]. Glioblastoma is the most common and

aggressive primary brain tumor with median survival time of 14

months after diagnosis [1]. Until now, no effective treatment has

been developed for glioblastoma patients. The goal of our research

is to identify novel molecular targets for this malignant tumor, and

thus glioblastoma is the main interest of this study. Recent studies

have led to the hypothesis that glioblastomas are maintained by a

small population of cancer stem cells that retain stem cell

properties, are highly tumorigenic, and display increased resis-

tance to radiation and chemotherapy [2–4]. These treatment-

resistant tumor cell subpopulations are the cell populations that

effective therapies must target [4].

miRNAs are short 20–22 nucleotide RNA molecules that are

expressed in a tissue-specific and developmentally-regulated

manner and function as negative regulators of gene expression

in a variety of eukaryotes. miRNAs are involved in numerous

cellular processes including development, proliferation, and

differentiation [5,6,7]. Increasing evidence has linked miRNAs

to cancer [8]. miRNAs are important regulators of many key

pathways implicated in tumor pathogenesis [9]. They can function

as either oncogenes or tumor suppressors in various tumors [10].

Recently, miRNAs have been shown to be differentially

expressed in glioblastoma tissues compared to normal brain
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tissues. For example, miRNA 21 is overexpressed in glioblastoma

tissues, relative to surrounding normal brain tissues [11]. miR-26a

is also amplified in glioblastoma tissues. By targeting the tumor

suppressor Pten, overexpression of miR-26a facilitates tumorigen-

esis and predicts a poor survival [12,13]. On the other hand, miR-

124, miR-137 and miR-451 exhibit reduced expression in

malignant glioblastoma tissues relative to normal brain tissues

[14,15]. The expression of these miRNAs is also reduced in

glioblastoma stem cells relative to bulk tumor cells. Overexpression

of these miRNAs in glioblastoma stem cells inhibits cell

proliferation and induces neural differentiation, suggesting a

tumor suppressor role for these miRNAs. These studies suggest

that some miRNAs may be used as therapeutic agents for targeting

glioblastoma stem cells. However, brain tumor stem cells share a

core developmental program with normal neural stem cells [10].

Optimal therapies should target tumor stem cells, but spare

normal stem cells. Therefore, identifying miRNAs that are

differentially expressed in glioblastoma stem cells and normal

neural stem cells becomes essential for the development of optimal

miRNA-based therapies for glioblastoma patients.

In this study, we present the results of a genome-wide miRNA

expression profiling in human glioblastoma stem cells and normal

neural stem cells using combined miRNA microarray and deep

sequencing analyses. This study led to the identification of eight

miRNAs that are substantially up-regulated and two miRNAs that

are significantly down-regulated in glioblastoma stem cells, relative

to normal neural stem cells. Differential expression of four of these

miRNAs, 2 up-regulated and 2 down-regulated, was further

validated by real-time RT-PCR in both glioblastoma stem cells

and glioblastoma patient tumor tissues. Moreover, we demonstrate

that these up-regulated or down-regulated miRNAs inhibit the

expression of genes that are involved in tumor suppression or

tumorigenesis, respectively.

Results

Differential miRNA expression in glioblastoma stem cells
and normal neural stem cells

In order to identify miRNAs that are differentially expressed in

glioblastoma stem cells and normal neural stem cells, we established

three primary glioblastoma stem cell lines and three normal human

neural stem cell lines to determine if there were significant differences

in miRNA expression in tumor stem cells from normal stem cells.

Human primary glioblastoma stem cells were derived from newly

diagnosed glioblastoma multiforme IV patients and cultured in

DMEM/F12 media supplemented with epithelial growth factor

(EGF), fibroblast growth factor (FGF), and B27 supplement. Human

normal neural stem cells were derived from normal human brain

tissues and cultured in the same media. Both glioblastoma stem cells

and normal neural stem cells grew as neurospheres under the culture

condition (Fig. 1A). Both types of cells are multipotent, having the

ability to differentiate into Tuj1-positive neurons and GFAP-positive

astrocytes when induced into differentiation using fetal bovine serum

and all-trans retinoic acid (Fig. 1B). However, the glioblastoma stem

cells were able to generate tumors when transplanted to the

immunodeficient NSG mice (Fig. 1C), whereas the human neural

stem cells did not (data not shown).

Combined microarray and deep sequencing analyses were

performed to determine the expression profile of miRNAs in

glioblastoma stem cells and normal neural stem cells. Total RNAs

were prepared from both glioblastoma stem cells and neural stem

cells for miRNA microarray analysis. In microarray analysis, we

identified 10 miRNAs that are more than 5-fold up-regulated in

glioblastoma stem cells and 8 miRNAs that are more than 5-fold

down-regulated in glioblastoma stem cells, relative to neural stem

cells (Table 1). The differentially expressed miRNAs that exhibit

more than 1.5-fold difference in the expression between

glioblastoma stem cells and neural stem cells were shown in Table

S1.

Using an Illumina Genome Analyzer II (GAII) sequencing

system, we performed the whole-genome small RNA sequencing

in glioblastoma stem cells and neural stem cells. Significantly more

miRNAs were detected to be differentially expressed in glioblas-

toma stem cells and neural stem cells in deep sequencing analysis.

For example, deep sequencing analysis revealed 105 miRNAs that

were up-regulated more than 5-fold in glioblastoma stem cells.

However, microarray analysis revealed only 10 miRNAs showing

more than 5-fold increase in glioblastoma stem cells. Interestingly,

8 out of the 10 miRNAs that were up-regulated more than 5-fold

in microarray analysis also exhibited significantly increased

expression in deep sequencing analysis (Table 2). Two of the

miRNAs that had more than 5-fold decrease of expression in

microarray analysis also showed more than 5-fold reduction of

expression in deep-sequencing analysis (Table 2). Thus, combined

microarray and deep sequencing analyses allowed us to identify a

set of miRNAs that are differentially expressed in glioblastoma

stem cells and normal neural stem cells.

Validation of the differentially expressed miRNAs using
real-time RT-PCR

The distinct expression of these miRNAs in glioblastoma stem

cells and neural stem cells was further validated using real-time

RT-PCR analysis. RT-PCR results of the top three miRNAs that

are up-regulated in glioblastoma stem cells in both microarray and

deep sequencing analyses (Table 2) are shown in Fig. 2A–C. All

three miRNAs showed a significant up-regulation in the three

primary glioblastoma stem cell lines (GSC1–3) tested, compared to

three lines of normal neural stem cells. miR-10a revealed a

dramatic increase of expression in all three glioblastoma stem cell

lines tested, with more than 100-fold up-regulation of expression in

two of the glioblastoma stem cell lines (Fig. 2A). miR-10b

exhibited even higher expression in glioblastoma stem cell lines

GSC1 and GSC3, with up to 2,505-fold increase of expression in

GSC1 (Fig. 2B). miR-140-5p also displayed significant increase of

expression in all three glioblastoma stem cell lines tested, although

with much lower fold induction (Fig. 2C).

There are two miRNAs that are down-regulated more than 5-

fold in glioblastoma stem cells in both microarray and deep

sequencing analyses. The expression of these two miRNAs was

also validated using real-time RT-PCR assays. Both miR-124 and

miR-874 exhibited reproducible decrease of expression in all three

glioblastoma stem cell lines tested, compared to normal neural

stem cells (Fig. 2D, E). Specifically, the relatively new miRNA

miR-874 that has not been studied extensively exhibited a

significant reduction of expression in all three glioblastoma stem

cell lines, with more than 20-fold reduction in two of the

glioblastoma stem cell lines GSC1 and GSC3 (Fig. 2E).

In addition to cultured cells, we next tested whether the

miRNAs that are differentially expressed in glioblastoma stem cells

and neural stem cells exhibit a distinct expression pattern in

normal and glioblastoma brain tissues. For this purpose, RNAs

were isolated from 9 grade IV glioblatoma multiforme brain tissue

samples and 4 non-tumor normal brain tissue samples. Real-time

RT-PCR analyses were performed to detect the expression of two

up-regulated miRNAs and two down-regulated miRNAs. Consis-

tent with the results from tumor stem cells, miR-10a exhibited a

substantial increase of expression in most glioblastoma tissues

(Fig. 3A). miR-10b also exhibited a dramatic up-regulation of
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expression in all of the glioblastoma tissues tested, with an average

increase of 142-fold (Fig. 3B). For miRNAs that were down-

regulated in glioblastoma stem cells, both miR-124 and miR-874

displayed a significant decrease of expression in most of the

glioblastoma tissues tested, compared to their average expression

in normal brain tissues (Fig. 3C, D).

Target identification of the differentially-expressed
miRNAs

By using Targetscan algorithm [16], we identified CUB and

SUSHI multiple domain protein 1 (CSMD1) as a candidate target

for miR-10a and miR-10b, the most highly up-regulated miRNAs

Figure 1. The morphology, differentiation and growth curve of glioblastoma stem cells (GSCs) and neural stem cells (NSCs). A.
Representative images of neurospheres from normal human neural stem cell lines 1–3 (NSC1–3) and glioblastoma stem cell lines 1–3 (GSC1–3). B. The
multipotency of NSCs and GSCs. When induced into differentiation, both NSCs and GSCs gave rise to Tuj1+ neurons (green) and GFAP+ astrocytes
(red). Representative images of NSC1 and GSC1 differentiation were shown. Nuclear Dapi staining was shown in blue. C. H&E staining of coronal
sections from GSC-transplanted brains. The tumor region was indicated by an arrow, shown in dark purple color.
doi:10.1371/journal.pone.0036248.g001

MicroRNA Signature of Glioblastoma Stem Cells

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e36248



in glioblastoma stem cells in our profiling analyses. CSMD1 is a

tumor suppressor gene that maps to chromosome 8p23, a region

deleted in many tumor types [17]. Sequence analysis revealed that

the seed region of both miR-10a and miR-10b could form

complementary base pairs with the 39 untranslated region (39

UTR) of human and mouse CSMD1 mRNAs (Fig. 4A, B). To

demonstrate a direct interaction between the 39 UTR of CSMD1

and miR-10 (miR10a and miR-10b), we inserted the 39 UTR

region of human CSMD1 that contains the putative miR-10

recognition sites and flanking sequences downstream of a Renilla

luciferase reporter gene into a siCheck vector. RNA duplexes of

mature miR-10a or miR-10b were transfected into human

embryonic kidney HEK293 cells along with the reporter gene.

Significant repression of the reporter gene was observed in both

miR-10a and miR-10b-transfected cells (Fig. 4C, D). Mutation of

the miR-10 targeting sites abolished the repression (Fig. 4C, D).

Furthermore, treatment of the inhibitors of miR-10a and miR-10b

reversed the inhibitory effect of miR-10a and miR-10b on the

luciferase reporter activity, respectively (Fig. 4C, D). These results

suggest that both miR-10a and miR-10b repress CSMD1

expression through the predicted targeting sites in CSMD1 39

UTR.

Since miR-10a and miR-10b are both up-regulated in

glioblastoma stem cells relative to neural stem cells, we next

examined the expression of CSMD1 in both cell types. Dramatic

reduction of CSMD1 mRNA expression was detected in

glioblastoma stem cells by RT-PCR analysis, compared to neural

stem cells (Fig. 4E), consistent with the observation that CSMD1

expression is repressed by miR-10 (Fig. 4C, D). The homeobox

transcription factor HOXD10 was identified as a tumor

suppressor gene targeted by miR-10b in breast cancers recently

[18]. We showed here that the HOXD10 mRNA expression is

also dramatically reduced (.20-fold) in glioblastoma stem cells

examined, compared to normal neural stem cells (Fig. 4F).

Together, these results suggest that miR-10 targets the expression

of tumor suppressor genes, CSMD1 and HOXD10, in glioblas-

toma stem cells.

Furthermore, using the Targetscan algorithm, we predicted

oncogenes NRAS and PIM3 as putative target genes of miR-124,

one of the down-regulated miRNAs in glioblastoma stem cells.

NRAS is a small guanine-nucleotide binding protein and one of

the three RAS (KRAS, NRAS, HRAS) isoforms [19]. The RAS

signaling pathway plays a crucial role in many cancers by

regulating cell proliferation, differentiation, and survival [20].

Using Targetscan algorithm, miR-124 was predicted to have a

targeting site at the 39 UTR of the NRAS gene. This targeting site

is conserved in human, mouse, and dog NRAS (Fig. 5A). To

validate the targeting of NRAS by miR-124, we made a luciferase

reporter construct with human NRAS 39 UTR containing the

predicted miR-124 targeting site and the flanking sequences

inserted into the 39UTR of a Renilla luciferase reporter gene in a

siCHECK vector. Transfection of miR-124 RNA duplexes led to

significant repression of the reporter gene (Fig. 5B). Mutation of

the putative miR-124 targeting site abolished the repression

(Fig. 5B). Furthermore, treatment with a miR-124 inhibitor

reversed the inhibitory effect of miR-124 on the luciferase reporter

activity (Fig. 5B). These results suggest that miR-124 represses

NRAS expression through the predicted targeting site in NRAS

39UTR.

Next, we tested whether miR-124 targets NRAS expression in

glioblastoma stem cells. Mature miR-124 RNA duplexes were

introduced into GSC1 cells using a cationic triethanolamine-core

polyamidoamine (PAMAM) dendrimer-mediated small RNA

delivery system [21,22]. A control RNA duplex was included as

a negative control. NRAS expression levels were examined by

Western blot analysis. Reduction of NRAS protein level was

detected in miR-124-transfected cells. Co-transfection of a miR-

124 RNA inhibitor abolished the inhibitory effect of miR-124 on

NRAS expression (Fig. 5C). This result indicates that miR-124

Table 1. Up-regulated and down-regulated miRNAs in
human glioblastoma stem cells, compared to human neural
stem cells.

miRNA
Chromosomal
location Fold-Change p-value

up-regulated

hsa-miR-10a 17q21.32 93.65 3.28E-10

hsa-miR-10b 2q31.1 90.38 2.06E-09

hsa-miR-140-3p 16q22.1 14.10 1.62E-10

hsa-miR-140-5p 16q22.1 12.19 5.56E-09

hsa-miR-204 9q21.12 9.05 4.08E-08

hsa-miR-424 Xq26.3 8.38 2.53E-08

hsa-miR-455-5p 9q32 5.87 1.48E-05

hsa-miR-455-3p 9q32 5.41 9.32E-05

down-regulated

hsa-miR-371-5p 19q13.42 215.27 8.52E-11

hsa-miR-124-1* 8p23.1 213.37 8.33E-05

hsa-miR-124-2* 8q12.3

hsa-miR-124-3* 20q13.33

hsa-miR-335 7q32.2 213.24 1.43E-09

hsa-miR-492 12q22 27.77 5.38E-08

hsa-miR-874 5q31.2 26.76 1.53E-08

hsa-miR-30b* 8q24.22 26.54 2.73E-09

hsa-miR-602 9q34.3 25.75 2.63E-08

*hsa-miR-124 is transcribed from three chromosomal locations, but the mature
sequences are the same.
doi:10.1371/journal.pone.0036248.t001

Table 2. The miRNA signature of glioblastoma stem cells
identified using both microarray and deep sequencing
analyses.

Microarray
Deep
sequencing

Up-regulated Fold change p value Fold change p value

hsa-miR-10a 93.65 ,1E-07 35,949 0.00E+00

hsa-miR-10b 90.38 ,1E-07 4,128 0.00E+00

hsa-miR-140-5p 12.19 ,1E-07 7.2 0.00E+00

has-miR-204 9.05 ,1E-07 5 0.00E+00

hsa-miR-424 8.38 ,1E-07 66 0.00E+00

hsa-miR-34a 7.73 2.00E-07 2.5 4.00E-240

hsa-miR-193a-3p 6.4 8.00E-06 93 9.00E-21

hsa-miR-455-5p 5.87 1.00E-05 5.3 5.00E-214

Down-regulated

hsa-miR-124 213.37 8.00E-05 210 5.00E-80

hsa-miR-874 26.76 ,1E-07 233 1.50E-98

doi:10.1371/journal.pone.0036248.t002
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down-regulates endogenous NRAS expression in glioblastoma

stem cells.

We also examined the expression of NRAS in glioblastoma stem

cells and neural stem cells, where miR-124 exhibits differential

expression. A significant increase of NRAS mRNA expression was

detected in glioblastoma stem cells, compared to neural stem cells

(Fig. 5D). The inverse expression pattern of NRAS and miR-124 is

consistent with the observation that NRAS expression is repressed

by miR-124 (Fig. 5B, C).

A putative targeting site of miR-124 was also identified in the 39

UTR of both human and mouse PIM3, a proto-oncogene with

serine/threonine kinase activity (Fig. 5E). PIM3 has been shown to

Figure 2. Real-time RT-PCR validation of miRNA expression in glioblastoma stem cells. The expression levels of miR-10a (A), miR-10b (B),
miR-140-5p (C), miR-124 (D), and miR-874 (E) in three glioblastoma stem cell (GSC) lines were measured by real-time RT-PCR, and compared to their
expression in three neural stem cell (NSC) lines. The expression shown in each cell line is relative to the expression in NSC1, with the expression in
NSC1 as 1. Error bars are standard deviation of the mean. * p,0.001, ** p,0.005 by one way Anova test.
doi:10.1371/journal.pone.0036248.g002
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promote tumor cell growth through modulating cell cycle

regulators [23,24]. To validate the targeting of PIM3 by miR-

124, we made a luciferase reporter construct with human PIM3 39

UTR containing the predicted miR-124 targeting site and the

flanking sequences inserted into the 39UTR of a Renilla luciferase

reporter gene. Transfection of miR-124 led to significant

repression of the reporter gene and mutation of the putative

miR-124 targeting site abolished the repression (Fig. 5F). Further-

more, treatment with a miR-124 inhibitor reversed the inhibitory

effect of miR-124 on the luciferase reporter activity (Fig. 5F).

These results suggest that miR-124 represses PIM3 expression

through the predicted targeting site in its 39 UTR.

To test whether miR-124 targets PIM3 expression in glioblas-

toma stem cells, mature miR-124 RNA duplexes were introduced

into GSC1 cells using the dendrimer-mediated delivery system

[21,22]. A control RNA duplex was included as a negative control.

Reduction of PIM3 protein level was detected in miR-124-

transfected cells by Western blot analysis. Co-transfection of a

miR-124 RNA inhibitor abolished the inhibitory effect of miR-124

on PIM3 expression (Fig. 5G). This result indicates that miR-124

down-regulates endogenous PIM3 expression in glioblastoma stem

cells. Moreover, a significant increase of PIM3 mRNA expression

was detected in the glioblastoma stem cells tested, compared to

neural stem cells (Fig. 5H), further supporting the idea that miR-

124 represses PIM3 expression.

It is increasingly clear that miRNAs are important regulators of

key signaling pathways implicated in tumorigenesis. Using Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis,

we compared the predicted targets of miRNAs that showed more

than 5-fold up-regulation or down-regulation in glioblastoma stem

cells in our microarray analysis. Seven of the ten miRNAs that

were up-regulated more than 5-fold in glioblastoma stem cells are

predicted to have components of the p53 pathway as common

targets (Fig. 6A). The p53 pathway has been shown to be involved

in cell cycle arrest, apoptosis, inhibition of cell migration,

inhibition of angiogenesis, and affect genomic stability [25]. In

contrast, five out of eight miRNAs that exhibited more than 5-fold

down-regulation in glioblastoma stem cells were predicted to

target components of the IGF pathway (Fig. 6B) that has been

implicated in promoting cell growth, survival and migration [26].

Discussion

In the present study, we investigated genome-wide miRNA

expression in tumor stem cell populations of glioblastoma, the

most frequent and malignant primary brain tumor. In spite of

recent improvement of surgical and radiotherapeutic techniques,

the prognosis for glioblastoma patients is still very poor. The

search for molecular targets is fundamental to develop effective

treatments for glioblastoma.

Global profiling is one of the most effective approaches to

identify abnormally expressed miRNAs in tumor genomes. In this

study, we used three different technical platforms to determine the

differential expression of miRNAs in glioblastoma stem cells and

Figure 3. Real-time RT-PCR analysis of miRNA expression in glioblastoma tissues. The expression levels of miR-10a (A), miR-10b (B), miR-
124 (C), and miR-874 (D) in 9 glioblastoma tissues and 4 normal brain tissues were determine by real-time RT-PCR analysis, shown in scatted graph
and bar graph. Error bars are standard error of the mean. p value was obtained by student’s t-test.
doi:10.1371/journal.pone.0036248.g003
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Figure 4. Expression of miR-10b targets in glioblastoma stem cells. A, B. The base-pairing of hsa-miR-10a and hsa-miR-10b with the 39 UTR
of CSMD1 gene. C. miR-10a-mediated repression of luciferase reporter gene downstream of 39 UTR of CSMD1. Luciferase reporter gene under the
control of wild type (WT) or mutant (MT) CSMD1 39 UTR was transfected into HEK 293 cells along with control, miR-10a RNA duplexes, or the
combination of miR-10a RNA duplexes and a miR-10a inhibitor. * p,0.001 by student’s t-test. D. miR-10b-mediated repression of luciferase reporter

MicroRNA Signature of Glioblastoma Stem Cells
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neural stem cells. We combined the microarray platform with the

newly emerged small RNA deep sequencing technology to profile

miRNA expression in glioblastoma stem cells and normal neural

stem cells and validated the profiling results using quantitative RT-

PCR. Although the absolute fold change obtained from each

platform is different due to the different sensitivity of the

techniques, the trend of the change for the miRNAs studied is

consistent. The miRNA expression profile could clearly distinguish

glioblastoma stem cells from normal neural stem cells, allowing us

to identify a miRNA signature of glioblastoma stem cells that were

significantly up-regulated or down-regulated in glioblastoma stem

cells, relative to neural stem cells.

In line with our findings that a set of miRNAs are differentially

expressed in glioblastoma stem cells and normal neural stem cells,

certain miRNAs also exhibit distinct expression profiles in

glioblastoma tissues and normal brain tissues. For example, we

demonstrate for the first time in this study that the expression of

miR-874 is dramatically reduced in glioblastoma tissues, com-

pared to normal brain tissues. miR-124, another miRNA that was

down-regulated in glioblastoma stem cells, also exhibited reduced

expression in glioblastoma tissues in this study, consistent with the

results of previous glioblastoma tumor tissue profiling [12,14,27–

31].

In this study, we show that miR-10b is highly expressed in both

glioblastoma stem cells and in glioblastoma tumor tissues. Up-

regulation of miR-10b was also observed in other glioblastoma

samples [12,27,28], suggesting an important role for miR-10b in

glioblastoma tumorigenesis. Moreover, a recent study revealed

that miR-10b expression is inversely correlated with glioblastoma

patient survival [32]. Interestingly, miR-10b was also found to be

up-regulated in breast cancer, leukemia, and pancreatic cancer

and promote tumor invasion and metastasis in breast cancer

[18,33,34]. Together, these results suggest that some miRNAs,

such as miR-10b, may function as a global oncogene to stimulate

tumorigenesis in multiple tissues. Likewise, miR-124 is also

frequently down-regulated in other cancers, such as medulloblas-

toma, hepatocellular carcinoma, and oral squamous carcinoma

[35–37], suggesting that it may function as a general tumor

suppressor. Therefore the knowledge of miRNAs that we have

obtained for glioblastoma stem cells may shed lights to other

cancer stem cells.

Pathway analysis revealed that most of the significantly up-

regulated miRNAs, with more than 5-fold increase in glioblastoma

stem cells as shown in our microarray analysis, have putative

targets in a common pathway, the p53 pathway. The dysregula-

tion of the p53 pathway has been shown to be an underlying

mechanism for tumorigenesis [25], thus the up-regulated miRNAs

may function as oncomiRs by targeting the p53 pathway if their

role in regulating the p53 pathway is confirmed. On the other

hand, most of the down-regulated miRNAs, with more than 5-fold

decrease in glioblastoma stem cells, share their predicted targets in

the IGF signaling. Repression of the IGF signaling has been shown

to inhibit tumorigenesis [26]. Thus, these down-regulated

miRNAs may assume a role of tumor suppressors by targeting

components of the IGF pathway if their role in regulating the IGF

signaling is confirmed. The identification of miRNAs as oncogenes

or tumor suppressors holds the promise of identifying novel

diagnostic markers or molecular targets for antitumor therapies.

The prediction that the differentially expressed miRNAs have the

ability to target multiple components in one or more pathways

makes them potential molecular targets for cancer therapy.

Glioblastoma stem cells represent a subpopulation of cancer

cells with extraordinary capacities to promote tumor growth,

invasion and therapeutic resistance, making them an ideal target

cell population for anti-glioblastoma therapies. However, a major

challenge is to define functional and molecular features that can

distinguish cancer stem cells from normal stem cells in order to

develop therapeutic strategies that specifically target the tumor

population, but leave normal stem cells intact. Therefore

comparing miRNA expression between glioblastoma stem cells

and normal neural stem cells is highly relevant in that it may lead

to the identification of glioblastoma stem cell-specific miRNAs,

thus resulting in the development of novel glioblastoma therapies

by targeting only tumor stem cells. We performed the comparison

of miRNA expression between glioblastoma stem cells from adult

glioblastoma patients and normal neural stem cells from human

fetal brains instead of human adult brains due to the inaccessibility

of normal human adult brain tissues containing neural stem cells.

Although differences do exist between embryonic neural stem cells

and adult neural stem cells, it has been proposed that embryonic

neural stem cells resemble adult neural stem cells in many ways

[38]. Therefore this comparison will provide useful information

regarding glioblastoma stem cell-specific miRNA expression and

provide a basis for strategic targeting glioblastoma stem cells

through modulation of tumor stem cell-specific miRNA expres-

sion.

miRNAs have been shown to be involved in tumor initiation

and progression, functioning as oncogenes or tumor suppressor

[9,10]. Therefore, modulation of miRNA expression provides

great hope for potential cancer therapy [39]. Furthermore, since

each miRNA may have more than one targets, miRNA-based

gene therapy offers the therapeutic appeal of targeting multiple

gene networks that are controlled by a single miRNA [9].

Strategies for miRNA-based cancer therapy include overexpres-

sion of tumor suppressor miRNAs and targeting oncogenic

miRNAs using their antagonists. Based on the miRNA signature

that we have identified in glioblastoma stem cells, we may be able

to develop targeted glioblastoma therapies by inhibiting the up-

regulated miR-10a or miR-10b function using miR-10 antogonists

or overexpressing the down-regulated miR-124 or miR-874. Of

note,16 miRNAs that are up-regulated in glioblastoma stem cells

(.1.5-fold, Table S1) in our study, including miR-10a and miR-

10b, are also up-regulated in malignant astrocytomas (glioblasto-

mas and anaplastic astrocytomas) in a genome-wide miRNA

expression profiling between malignant astrocytomas and normal

brain samples [40]. Eleven miRNAs that are down-regulated in

glioblastoma stem cells (.1.5-fold, Table S1) in our study,

including miR-124, are also down-regulated in malignant

astrocytomas.

Moreover, the prognosis of glioblastoma patients remains poor.

Biomarkers for this disease are needed for early detection of tumor

progression [41]. The miRNA signature that we identified here

may be used as biomarkers to differentiate glioblastoma stem cells

from normal neural stem cells. Recently, a miRNA signature was

gene downstream of 39 UTR of CSMD1. WT or MT CSMD1 39 UTR luciferase reporter was transfected into HEK 293 cells along with control, miR-10b
RNA duplexes, or the combination of miR-10b RNA duplexes and a miR-10b inhibitor. * p,0.005 by student’s t-test. E. Expression of CSMD1 in
glioblastoma stem cell line 1 (GSC) and neural stem cell line 1 (NSC) determined by real-time RT-PCR analysis. F. Expression of HOXD10 in GSC and
NSC determined by real-time RT-PCR analysis. For all panels, data shown are mean 6 standard deviation of three replicates. ** p,0.01 by student’s t-
test for both panels E and F.
doi:10.1371/journal.pone.0036248.g004
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Figure 5. miR-124 targets NRAS and PIM3 expression. A. The base-pairing of hsa-miR-124 with the 39 UTR of NRAS gene. B. miR-124-mediated
repression of luciferase reporter gene downstream of 39 UTR of NRAS. Luciferase reporter gene under the control of wild type (WT) or mutant (MT)
NRAS 39 UTR was transfected into HEK 293 cells along with control, miR-124 RNA duplexes, or the combination of miR-124 RNA duplexes and a miR-
124 inhibitor. *p,0.001 by student’s t-test. C. Western blot analysis of NRAS expression in control RNA, miR-124 RNA duplexes, or the combination of
miR-124 RNA duplexes and a miR-124 inhibitor-transfected GSC1 cells. D. Expression of NRAS in GSC1 and NSC1 determined by real-time RT-PCR
analysis. *p,0.05 by student’s t-test. E. The base-pairing of hsa-miR-124 with the 39 UTR of PIM3 gene. F. miR-124-mediated repression of luciferase
reporter gene downstream of 39 UTR of PIM3. Luciferase reporter gene under the control of wild type (WT) or mutant (MT) PIM3 39 UTR was
transfected into HEK 293 cells along with control, miR-124 RNA duplexes, or the combination of miR-124 RNA duplexes and a miR-124 inhibitor.
*p,0.001 by student’s t-test. G. Western blot analysis of PIM3 expression in control RNA, miR-124 RNA duplexes, or the combination of miR-124 RNA
duplexes and a miR-124 inhibitor-transfected GSC1 cells. H. Expression of PIM3 in GSC1 and NSC1 determined by real-time RT-PCR analysis.
**p,0.001 by student’s t-test. For all panels, data shown are mean 6 standard deviation of three replicates.
doi:10.1371/journal.pone.0036248.g005
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identified in the peripheral blood of glioblastoma patients [41].

Interestingly, several of the miRNAs that showed elevated

expression in the blood samples of glioblastoma patients (vs

healthy control) also exhibited increased expression in glioblasto-

ma stem cells (vs normal neural stem cells) in our study (Table S1),

including miR-424, miR-148a, miR-362-3p, miR-30d, miR-128.

These miRNAs may therefore represent easily accessible bio-

markers that can be used for diagnostic purposes in glioblastoma

patients.

Materials and Methods

Ethics statement
The derivation of PBT003 (GSC1) and PBT017 (GSC2) has

been described by Brown et al [42]. PBT707 (GSC3) is a de novo

cell line derived from anonymized leftover tissues with the

approval of the City of Hope Institutional Review Board. The

study involves the use of completely anonymized specimens. No

informed consent is involved. NOD-scid IL2Rgammanull (NSG)

mice (6–8weeks) were used for glioblastoma stem cell transplan-

tation. Tumor cell transplantation was performed under the

Figure 6. Pathways targeted by deregulated miRNAs in glioblastoma stem cells. Common miRNA targets were subjected to DAVID
functional annotation with KEGG pathway analysis. A. The up-regulated miRNAs in glioblastoma stem cells were predicted to target the p53
pathway. The p53-centered pathway has been shown to regulate cell cycle, apoptosis, angiogenesis, metastasis, and genome stability. B. The down-
regulated miRNAs were predicted to target components of the IGF pathway. Various components of the IGF signaling pathways were targeted by
down-regulated miRNAs. The IGF pathway has been shown to enhance cell growth, survival, and migration.
doi:10.1371/journal.pone.0036248.g006
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IACUC protocol 05050 approved by the City of Hope

Institutional Animal Care and Use Committee.

Glioblastoma stem cell and neural stem cell culture
Glioblastoma stem cells were derived from newly diagnosed

WHO grade IV glioblastoma tissues. Specifically, freshly isolated

glioblastoma tissues were minced with sterile scissors and

dissociated into single cells using 400 units/ml of collagenase III

in DMEM/F12 medium supplemented with 5 mg/ml heparin, 16
B27 (GIBCO/BRL), and 2 mM L-glutamine. Dissociated cells

were then centrifuged at 1,200 rpm for 5 min and the supernatant

was discarded. To eliminate red blood cells, the resultant cells

were incubated in 10 ml red blood cell lysis buffer (Invitrogen) for

10 min. Cells were centrifuged again at 1,200 rpm for 5 min and

supernatant was discarded. The resultant cells were resuspended

in DMEM/F12 medium supplemented with 20 ng/ml EGF,

20 ng/ml FGF, 5 mg/ml heparin, 16 B27 (GIBCO/BRL), and

2 mM L-glutamine and cultured in this medium thereafter.

Tumor spheres appeared around one week in culture. Normal

human neural stem cells were derived from primary human brain

tissues and maintained in the same culture media. Specifically,

human fetal brain tissues (Biosciences Resources) were dissociated

in cold Hanks balance salt solution (HBSS) using polished glass

pipette. The resultant cells were centrifuged and resuspended in

DMEM/F12 medium supplemented with 0.56 B27, 25 mg/ml

insulin, 20 mg/ml apo-transferrin, 30 nM sodium selenite, 20 nM

progesterone, 100 mM putrescine, 20 ng/ml FGF and 10 ng/ml

LIF. The initial culture was split at 1:2 each day for 4 days,

followed by media change every other day till day 21. Human

neurospheres started to appear around day 14. The spheres were

split around day 21 with Accutase (Sigma) and cultured in

DMEM/F12 medium supplemented with 20 ng/ml EGF, 20 ng/

ml FGF, 5 mg/ml heparin, 16B27 (GIBCO/BRL), and 2 mM L-

glutamine thereafter. Both tumor spheres and normal neuro-

spheres were characterized for their self-renewal and multi-

potency. Glioblastoma stem cell spheres were also characterized

for their ability to derive brain tumors.

For differentiation, both glioblastoma stem cells and neural stem

cells were induced into differentiation using 0.5% fetal bovine

serum and 1 mM all-trans retinoic acid. For in vivo tumor

formation assays, 26105 dissociated glioblastoma stem cells were

injected into cerebral cortex of NSG mice by stereotaxic injection.

The coordinates for the injection were AP 0.6 mm, ML +1.6 mm

and DV 22.6 mm. Brains were harvested 5 weeks after cell

transplantation. Frozen brains were cut into 20 mm coronal

sections, followed by Hematoxylin & Eosin (H&E) staining.

Glioblastoma stem cell transfection using a dendrimer-
based delivery system

Spheres of glioblastoma stem cells were dissociated and seeded

into 24-well plates at 26105 cells per well in 300 ml of medium.

The generation-5 (G5) dendrimers and Opti-MEM solution were

mixed by vortex for 10 seconds, and incubated at room

temperature (RT) for 10 min. The miRNA duplexes or the

combination of miRNAs and their short hairpin RNA inhibitors

were added into dendrimer/Opti-MEM solution in a total volume

of 100 ml, mixed gently for 10 sec, and incubated at RT for

25 min. The nitrogen-to-phosphorus (N/P) ratio of the dendri-

mer/RNA complex is 5. The 100 ml dendrimer/RNA complex

was added into 300 ml cell suspension in each well of 24-well

plates, shake gently and put back to CO2 incubator. Forty-eight hr

after transfection, cells were collected and subjected to Western

blot analysis.

Western blot analysis
Whole cell extracts of glioblastoma stem cells were prepared

using RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1%

NP40, 0.5% deoxycholate and 0.1% SDS) containing protease

inhibitor cocktail (Roche). Western blotting was performed with

anti-NRAS (sc-31, 1:100) and anti-PIM3 (sc-98959, 1:100)

antibodies from Santa Cruz.

Glioblastoma stem cell transplantation
NSG mice (6–8weeks) were used for glioblastoma stem cell

transplantation. Tumor cell transplantation was performed under

the IACUC protocol 05050 approved by the City of Hope

Institutional Animal Care and Use Committee. 56104 dissociated

glioblastoma stem cells were injected into the front lobe of

forebrains by stereotaxic injection. The coordinates for the

injection were AP 0.6 mm, ML +1.6 mm and DV 22.6 mm.

Reporter construct preparation
DNA fragments encoding the 39 UTR of putative miRNA

targets were cloned into psiCHECK 2 (Promega), downstream of a

Renilla luciferase reporter gene. The PCR primers that were used

for 39 UTR cloning of each gene are as follows: CSMD1 forward:

59 GAT CCT CGA GCT GTT CTG TCG CAG AAT G 39 and

CSMD1 reverse: 59 GAT CGC GGC CGC GTC AGC ATT

TTG CAC CTA G39; PIM3 forward: 59 GAT CCT CGA GGC

TTG TGA GGA GCT GCA C 39 and PIM3 reverse: 59 GAT

CGC GGC CGC GGA AAC TTG TCA GGT CAC C 39; NRAS

forward: 59 GAT CCT CGA GCT GGA GGA GAA GTA TTC

CTG 39 and NRAS reverse: 59 GAT CGC GGC CGC TGC

AAA TGT AGA GCT TTC TGG 39. Corresponding miRNA

binding sites on the 39 UTRs were mutated by site-directed

mutagenesis according to the manufacturer’s instructions (Strata-

gene). The binding site of hsa-miR-124 on the 39 UTR of PIM3

and NRAS was mutated from GTGCCTT to GTGGACA; the

binding site of hsa-miR-10b on the 39 UTR of CSMD1 was

mutated from ACAGGGT to ACAGTCC.

Transfection and reporter assay
We transfected plasmid DNA or DNA-miRNA mixture into

HEK293 cells using Transfectin (Bio-Rad) as described [43–45].

miR-10a, miR-10b or miR-124 RNA duplexes and/ or their

correspondent RNA inhibitors (Dharmacon) were mixed in 50 ml

serum free media with Transfectin, incubated at RT for 20 min.

Negative controls for miRNA and their hairpin inhibitors were

included. The final concentration of miRNAs or their inhibitors

was 20 nM. The resultant mixture was added dropwise to

HEK293 cells in a 24-well plate with 450 ml medium per well to

a total volume of 500 ml per well. The transfected cells were

harvested 48 h after transfection and subjected to subsequent

reporter assays as described [46]. Reporter Renilla luciferase

activity was measured 48 hrs after transfection using Dual

Luciferase Assay kit (Promega). The Renilla luciferase activity was

normalized by firefly luciferase internal control and expressed as

relative luciferase activity. The miR-10a RNA duplex sense

sequence is 59 TAC CCT GTA GAT CCG AAT TTG TG 39.

The miR-10b RNA duplex sense sequence is 59 TAC CCT GTA

GAA CCG AAT TTG TG 39. The miR-124 RNA duplex sense

sequence is 59 TAA GGC ACG CGG TGA ATG CC 39. And the

control RNA duplex sense sequence is 59 UCA CAA CCU CCU

AGA AAG AGU AGA 39.
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Real-time RT-PCR analysis
For miRNA expression, total RNAs were reversely transcribed

and quantified by real-time RT-PCR with TaqMan MicroRNA

Assay kit (Applied Biosystems). The expression of specific miRNAs

was normalized using human U18 snRNA. For mRNA expres-

sion, putative miRNA targets were quantified by iTaq SYBR

Green Supermix with ROX (Bio-Rad). Primers used for RT-PCR

include PIM3 forward: 59 AGC TCA AGC TCA TCG ACT TC

39 and PIM3 reverse: 59 TAG CGG TGG TAG CGG ATC 39;

NRAS forward: 59 CCA TGA GAG ACC AAT ACA TGA G 39

and NRAS reverse: 59 GCT TAA TCT GCT CCC TGT AG 39;

HOXD10 forward: 59 TTC CCG AAG AGA GGA GCT G 39

and HOXD10 reverse: 59 CTG CCA CTC TTT GCA GTG AG

39; CSMD1 forward: 59 GCA GAA ATG CTT ACT GAG GAT

G 39 and CSMD1 reverse: 59 AGA ACC CTC AAA CTG CAA

CTG 39; GAPDH forward: 59 ATC ACC ATC TTC CAG GAG

C 39 and GAPDH reverse 59 CCT TCT CCA TGG TGG TGA

AG 39.

miRNA microarray and deep sequencing analysis
Total RNAs were extracted from glioblastoma stem cells or

human neural stem cells by TRIzol (Invitrogen) method according

to manufacturer’s protocol. Ten mg of RNA was used for miRNA

microarray using Exiqon platform. One mg of RNA was used for

deep sequencing using Illumina Genome Analyser II (GAII). All

data are MIAME compliant.

Pathway analysis
Common putative targets of either the down-regulated or the

up-regulated miRNAs were uploaded onto the Database for

Annotation, Visualization and Integrated Discovery (DAVID)

Functional Annotation Bioinformatics Microarray Analysis

(http://david.abcc.ncifcrf.gov/). Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway in DAVID was used to depict the

biological meanings of the common miRNA targets.

Supporting Information

Table S1 Up-regulated and down-regulated miRNAs
(.1.5 fold) in human glioblastoma stem cells, compared
to human neural stem cells.

(DOC)
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