
Noise Propagation in Two-Step Series MAPK Cascade
Venkata Dhananjaneyulu.¤a, Vidya Nanda Sagar P.¤b, Gopalakrishnan Kumar., Ganesh A. Viswanathan*

Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India

Abstract

Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in
processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to
occur and thereby strongly affects the cellular response. Commonly used linearization method (LM) applied to Langevin
type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove
this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact
that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise
propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least
one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the
underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA)
and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA
predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the
total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach
proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.
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Introduction

Biological signaling networks in stimulated cells often transfer

information via enzymatic cascades such as Mitogen Activated

Protein Kinase (MAPK) cascades. These cascades, ubiquitously

found in eukaryotic signaling networks [1,2] act as key signal

amplifiers in many regulatory processes [3–6] such as cell

proliferation, apoptosis [7]. Proteins involved in MAPK cascades

are therefore considered potential targets for multiple diseases [8].

Cells constantly encounter inevitable noise or fluctuations

arising due to extrinsic – sources external to cell – and intrinsic

– sources internal to the cells – factors. These two types of noise

may be correlated under certain conditions [9]. This cell-to-cell

variability is a feature that has been observed during many cell-fate

processes such as cell division, apoptosis [10]. Fluctuation or cell-

to-cell variability or noise flows, along with the signal, into the

signaling pathway. While flowing, noise can get amplified/

attenuated and therefore, may strongly affect cell’s normal

functioning [11–13]. In order to maintain normal function, cells

must either minimize or take advantage of noise. Propagation and

amplification of noise can be beneficial [14–21] to cells when it

incorporates noise into its functions. Noise propagation has also

been reported to be deleterious [22–25] in many situations. Thatai

and van Oudenaarden [26] showed that, under certain conditions,

intrinsic noise attenuates with the number of steps in the

transcriptional cascade when the degradation step is a first order

process. Shibata and Fujimoto [27] showed using linearization of

the Langevin equation formulation that the ultrasensitive signal

transduction cascades can result in high amplification of input

noise to the cascade.

Undesired attenuation or amplification of fluctuations propa-

gating through MAPK cascade can have a significant impact on

the fidelity of the signal and therefore, on the cellular outcome. An

understanding of the noise propagation through the cascade can

provide vital insights into the conditions under which noise may

attenuate or amplify. Such insights can provide clues on the

functioning of the cell in the presence of noise. Moreover, it can

help devise strategies to control noise propagation in a way that

will be beneficial to the cell.

Basic assembly of MAPK cascades consists of several cascade

motifs or building blocks [28] such as single-step, series and

parallel cascades. Recently, attempts have been made to charac-

terize noise propagation in a few enzymatic building blocks such as

single-step [29] and parallel [30] enzymatic cascade. However,

noise propagation through series MAPK cascade, an important

building block in signaling networks [28] has not yet been

characterized systematically. In this study, we consider noise

propagation via a two-step series MAPK enzymatic cascade.

Conventionally, linearization method applied to appropriate

stochastic model of the Langevin type is used for estimating noise

in protein cascades [27,29–31]. Using the chosen cascade, we

prove that the linearization method (LM) fails to predict the

intrinsic noise propagation in MAPK enzymatic cascades. Using
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global sensitivity analysis, we identify the parameters that have a

strong effect on the noise propagation through the cascade.

Results

Mathematical model formulation
A two step series MAPK enzymatic cascade that appears in

Ras/MEK/ERK MAPK cascade [2] is modeled as a sequence of

two futile enzymatic steps triggered by an upstream enzyme

(Fig. 1). In the first cascade, an upstream enzyme, E phosphor-

ylates a substrate X to X* and thereby switches it from an inactive

state to an active state. Phosphatase P1, on the other hand

dephosphorylates the substrate X* to its inactive state X. In the

second cascade, X* acts as the enzyme for the phosphorylation of Y

and P2 the corresponding phosphatase. The biochemical reactions

involved in these four enzymatic actions are

XzE /?
k1

k2

XE DA
k3

X �zE ð1Þ

X �zP1 /?
k4

k5

X �P1 DA
k6

XzP1 ð2Þ

YzX �/?
a1

a2

YX � DA
a3

Y �zX � ð3Þ

Y �zP2 /?
a4

a5

Y �P2 DA
a6

YzP2 ð4Þ

where, X �and Y � are the phosphorylated substrates. XE,X �P1,

YX � and Y �P2 are the reaction intermediates. ki and ai, i = 1 to 6,

are the rate constants of biochemical reactions corresponding to

the first and second cascades, respectively. The chemical reactions

that govern the phosphorylation/dephosphorylation steps in a cell

are stochastic in nature [32] and hence we formulate a stochastic

model, details of which are presented in Methods section.

We represent the number of molecules of each of the species by

the vector M(t)~(X ,Y ,XE,X �P1,YX �,X �P2)t. We use smaller

case for each of the species to represent the number of that species

present in the system. We define the joint probability mass

function P(,t), which is the probability that at the instant t,

M~m~(xt,yt,xe,x�p1,yx�,x�p2)t, where xt and yt are the total

number of molecules of unphosphorylated substrate present in the

system at any time t, with the initial condition M(t~0)~m0. We

write the chemical master equation (CME) (Eq. 17 in Methods) to

capture the dynamics of P(m,t). We introduce the Michaelis-

Menten type quasi-steady state approximation (QSSA) [33] into

the CME (Methods) by assuming the intermediates XE,X �P1,

YX � and Y �P2 to be fast variables. We then eliminate [31,33] the

fast variables to obtain a reduced CME (rCME) (Eq. 18 in

Methods).

Model predictions
We first consider the linear noise approximation [27,31] of the

rCME obtained using the V-expansion [34] (see methods), where

V is the volume of a cell. Using V-expansion of the rCME, we

obtain the Langevin type stochastic differential equations (SDEs).

dx�t
dt

~R1(x�t )zg1(t) ð5Þ

dy�t
dt

~R2(x�t ,y�t )zg2(t) ð6Þ

where, R1(x�t ) and R2(x�t ,y�t ) are the rate of formation of the

phosphorylated substrates (Eqs (19) and (20) in Methods), and

g1(t)and g2(t) are independent Gaussian white noise terms that

have zero mean, that is, Sg1(t)T~Sg2(t)T~0 and satisfy Eqs (21)

and (22), respectively in Methods. (Note that Eqs (5) and (6) are

nonlinear with respect to the number of molecules of the substrates

X and Y.) While rCME permits estimation of only the intrinsic

noise, SDEs can be used to estimate both extrinsic and intrinsic

noise in the cascade. In the forthcoming sections, we estimate

noise using both SDEs and rCME.

Noise estimation using linearization method (LM)
Linearization of the SDEs, called the linearization method

(LM), around a stationary state is a conventional method used to

obtain analytical expression for fluctuations [26,27,29–31] in

biological systems. The stationary state (�xx�t ,�yy�t ) for the macroscopic

dynamics was found by solving the macroscopic equations (Eqs 23

and 24) (Methods). The kinetic parameters and initial conditions

used in the simulations are presented in Table 1. These consistent

set of parameters are based on the quantitative experimental

estimates [35] for Ras/MEK/ERK MAPK cascade obtained

(using fluorescent probes) for mammalian cells such as HeLa cells

and COS7 cells. Notably, the parameter estimates in Fujioka et al.

[35] has been compared with those from several other reports for

different species available in literature. (Parameter values present-

ed in Table 1 are in number of molecules, which, wherever

necessary, are converted into concentration by assuming the cell to

be a sphere of 10 mM diameter.).

Using continuation techniques [36], the steady state response

curve that captures the dependence of steady states of the

phosphorylated substrates (�xx�t ,�yy�t )on the total concentration of the

Figure 1. Schematic of a two-step series enzymatic cascade. X
and Y are the unphosphorylated substrates, X* and Y* are the
phosphorylated substrates. E, P1, and P2 are the upstream kinase, and
two phosphatases, respectively.
doi:10.1371/journal.pone.0035958.g001
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upstream enzyme e0 is obtained (Methods). This response curve

presented in Fig. 2 suggests that the phosphorylated substrate

quantity is sensitive to the total number of upstream enzyme

molecules e0. The gradual increase in number of molecules of X*

and the abrupt increase in that of Y* with change in e0 is observed

due to the signal amplifying nature of the enzymatic cascades [37].

Note that the macroscopic dynamics of a two step enzymatic

cascade permits only unique stationary state for any set of

parameters, a fact verified by Ciliberto et al. [38] using Advanced

Deficiency theory [39]. Therefore, the cascade cannot exhibit a

bistable behavior.

Next, we linearize the SDEs (Eqs 5 and 6) around the stationary

state (�xx�t ,�yy�t ) and e0, and obtain the set of dynamic equations for

the perturbations Dx�t ~x�t {�xx�t , Dy�t ~y�t {�yy�t . In addition to the

perturbations (Dx�t ,Dy�t ), we also introduce perturbation De0 to

the mean number of enzyme E. The linearized equations

(Methods) are

dDx�t
dt

~{t{1
1 (Dx�t {g1De0)zg1(t) ð7Þ

dDy�t
dt

~{t{1
2 (Dy�t {g2Dx�t )zg2(t) ð8Þ

where, t{1
1 ~

k3K1e0

(K1zx0{�xx�t )2
z

k6K2P10

(K2z�xx�t )2
and t{1

2 ~

a3K3�xx�t
(K3zy0{�yy�t )2

z
a6K4P20

(K4z�yy�t )2
are the relaxation times, that is the

time taken by the system to return to the steady state following a

perturbation Dx�t and Dy�t . Associated gain factors g1~

t1k3(x0{�xx�t
�

(K1zx0{�xx�t ) and g2~t2a3(y0{�yy�t
�

(K3zy0{�yy�t )

provide an estimate of the response of the phosphorylated

substrate to the fluctuations in the total number of enzyme

molecules [29,30]. Note that although the upstream enzyme E

does not directly participate in the phosphorylation of the

substrate Y, the fluctuations in the upstream enzyme propagate

through the cascade and affect noise in Y*.

Fluctuations in X* and Y* are then obtained by simultaneously

solving Eqs (7) and (8) using Fourier transforms (Methods and Text

S2). Total noise in the system around the steady state [29] is given

by the square of the appropriate perturbations, which is a sum of

the extrinsic noise E and intrinsic noise I. In this study, we assume

that the intrinsic and extrinsic noise have independent noise

sources. Assuming Poisson statistics for the birth and death of the

upstream enzyme E (via a phosphorylation-dephosphorylation

futile cycle) with a time scale of fluctuation t, we estimate extrinsic

noise in the substrates. If De0(t)j j2is the fluctuations around e0, the

extrinsic noise in the phosphorylated substrates is given by.

Ex~
Dx�t (t)
�� ��2
De0(t)j j2

~
g2

1

1zt{1t1
ð9Þ

Ey~
Dx�t (t)
�� ��2
De0(t)j j2

~t(g1g2)2 (t2
2{t2)t3

1z(t2{t2
1)t3

2{(t2
2{t2

1)t3

(t2
2{t2

1)(t2{t2
1)(t2

2{t2)

� � ð10Þ

and the corresponding intrinsic noise in the two substrates is given

by

Ix~ Dx�t (t)
�� ��2~ k3e0(x0{�xx�t )

K1z(x0{�xx�t )
z

k6P10�xx�t
�KK1z�xx�t

� �
t1

2
ð11Þ

Iy~ Dy�t (t)
�� ��2

~
k3e0(x0{�xx�t )

K1z(x0{�xx�t )
z

k6P10�xx�t
�KK1z�xx�t

� �
(t1g2)2

2(t1zt2)

z
a3�xx�t (y0{�yy�t )

K2z(y0{�yy�t )
z

a6P10�yy�t
�KK2z�yy�t

� �
t2

2

ð12Þ

The first and second terms in Eq. (12) correspond to intrinsic

noise contributions from the first cascade and second cascade,

respectively. (The joint probability mass function corresponding to

stochastic variables in the linearized model (Eqs 7 and 8) were

Table 1. Biochemical parameters and initial conditions [35].

Initial number of molecules Phosphorylation reactions Dephosphorylation reactions

x0 757 k3 0.18 s-1 k6 0.3 s-1

y0 567 a3 0.22 s-1 a6 0.3 s-1

p10 32 K1 120 K2 22

p20 32 K3 110 K4 22

e0 94

doi:10.1371/journal.pone.0035958.t001

Figure 2. Dependence of the steady state response of the
phosphorylated substrates on the total number of the
upstream kinase E.
doi:10.1371/journal.pone.0035958.g002
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obtained analytically [40,41] and is presented in Text S3.)

Figures (3A) and (3B) respectively show the effect of the total

molecules of enzyme E on the extrinsic and intrinsic noise in X* and

Y*, estimated using Eqs (9) – (12). Based on the relaxation times

reported for MAPK cascades [42,43], we assumed t= 100s. (Note

that t and the fluctuations in the number of molecules completely

describe the strength of extrinsic noise that is input to the cascade.)

Figure 3 suggests that the total number of molecules of enzyme

controls the amplification or attenuation of total noise, which is the

sum of extrinsic and intrinsic noise in the cascade. For the chosen set

of parameters, when e0,,28 (Fig. 3A, region I) or e0.,52 (Fig. 3A,

region III), both extrinsic and intrinsic noise propagation in the

cascade are almost completely arrested. However, when 28,e0,52

(Fig. 3A region II), extrinsic noise in Y* is two orders of magnitude

greater than that in X*, which indicates that noise propagating

through the cascade is significantly amplified.

Intrinsic and extrinsic noise propagation
Noise estimated using the linearization method [27,29–31]

shows that the intrinsic noise propagation dominates extrinsic

noise propagation (Fig. 3). Linearization method ignores the effects

of nonlinearity in the macroscopic rate equations on the estimation

of noise propagation. This raises the question as to what extent

linearization method, which is well-suited for analytical solution,

predicts the extrinsic and intrinsic noise propagation in the

cascade. True contributions to the total noise in the substrates

from extrinsic and intrinsic noise sources can be estimated only by

solving the full nonlinear SDEs, for which analytical solution is

non-tractable. Therefore, Euler-Maruyama (EM) method [44] was

used to numerically solve the SDEs.

Time-dependent noise terms in the model (Eqs 5 and 6)

accounts only for noise contributions due to inherent stochasticity

in chemical reactions, that is, intrinsic noise. Therefore, in order to

account for extrinsic noise propagation, we introduced perturba-

tions in the total upstream enzyme concentration e0 by reformu-

lating [45] the SDEs to

dx�t ~R1(x�t )dtzs(e0)
k3xt

K1zxt

dBt ð13Þ

dy�t ~R2(x�t ,y�t )dt ð14Þ

where, s(e0), a tunable parameter, represents the strength of the

fluctuations in the total upstream enzyme concentration e0. All

effects of the extrinsic noise are incorporated in this tunable

parameter. Assuming s= 0.25, as suggested in literature [45], we

conducted extensive stochastic simulations of the reformulated

SDEs (Eqs 13 and 14). Concentration trajectory obtained using

one simulation mimics the dynamics of the substrates in one cell.

Therefore, in order to obtain the trajectory of a population of cells,

we conducted 5000 realizations starting from same set of

parameters and initial conditions. As one realization corresponds

to the dynamics in one cell, 5000 such represent dynamics in those

many individual cells in a population. The trajectories of the

stochastic simulations were found to be fluctuating around a mean

that matches the dynamics obtained using the deterministic

formulation (Fig. S1). (Note that this behavior was observed for

all values of the total enzyme concentration e0 considered.) At a

certain time where the system attains equilibrium, we estimated

the variance in the number of protein molecules in the population,

which provides an estimate of the extrinsic noise in the substrates,

EL
x and EL

y . Similarly, we solved Eqs (5) and (6) to obtain intrinsic

noise in the substrates, IL
x and IL

y . (Note that a vector of

independent random numbers generated from a multivariate

normal distribution guarantees zero co-variance between the two

fluctuation terms in Eqs (5) and (6), respectively.).

Figures (4A) and (4B) show the dependence of extrinsic and

intrinsic noise in both substrates, respectively on e0. Comparison of

the Figs (3A) and (4A) suggests that extrinsic noise predicted by

solving the SDEs match with those obtained using linearization

method. Moreover, the total upstream enzyme concentration

ranges at which noise was predicted to attenuate or amplify also

agree. This suggests that the linearization method, which provides

quick, analytical estimates for noise in enzymatic cascades is a

reliable method for extrinsic noise predictions. However, linear-

ization method significantly over predicts intrinsic noise propaga-

tion (compare Figs (3B) and (4B)). Actual simulations of the SDEs,

though tedious is required to obtain correct estimates of the

intrinsic noise. Intrinsic noise estimates which include nonlinear

effects (Fig. 4B) preserve the region of noise amplification and

attenuation. Moreover, for the chosen set of parameters,

comparison of the noise propagation predictions by stochastic

simulations of the SDE model (Fig. 4) and the linearization

method suggests that the latter method fails to accurately predict

intrinsic noise propagation, particularly for the parameters where

the steady state response is sensitive to input signal.

Noise estimated using stochastic model of Langevin type (Eqs 5

and 6), obtained using linear noise approximation of the rCME

[34] (Eq. 18), is valid only up to the order [46] of V-3/2. In addition

to this volume constraint on the region of validity of the estimates,

the number of molecules in the cells must be sufficiently large [47].

Therefore, in order to prove that the linearization method fails to

make correct predictions, the intrinsic noise estimated by solving

SDEs needs to be validated. As the master equation (Eq. 18) is not

Figure 3. Effect of the total number of molecules of upstream
enzyme, e0 on (A) extrinsic and (B) intrinsic noise in the
phosphorylated substrates estimated using the linearization
method (LM) applied to the Langevin type stochastic model
(Eqs 5 and 6) around the steady state (�xx�t ,�yy�t ). Parameters used for
the simulations are those in Table 1.
doi:10.1371/journal.pone.0035958.g003
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amenable to analytical approaches, we validate the intrinsic noise

predictions using SDEs by performing extensive Gillespie simula-

tions [48], which is a tedious, computationally expensive but an

exact method of sampling the trajectories of rCME. Using 5000

realizations of Gillespie simulations, each started from same set of

initial conditions and parameters, we estimated the intrinsic noise

in the substrates, IG
x and IG

y . (Note that all the trajectories

fluctuated around a mean that matches the the deterministic

dynamics (Fig. S1).) Figure (5) shows the dependence of the intrinsic

noise in the substrates as a function of the total upstream enzyme

concentration. The predictions agree well with those obtained using

SDEs (Fig. 4B). A comparison between Figs (3), (4) and (5) also shows

that, for enzymatic cascades, the SDEs [34] predicts quite accurately

the regions where noise attenuates or amplifies.

When the probability distributions obtained using the three

methods were compared, it was evident that the linearization

method failed to predict the probability distribution of the two

stochastic variables, particularly in the region where the steady

state response of the cascade is sensitive. (A comparison of the

probability distributions predicted by the three methods for

various total upstream enzyme concentration can be found in

Text S3 and Fig. S3.) This observation substantiates the finding

that linearization method fails to predict the intrinsic noise

propagation in enzymatic cascades.

Sensitivity of intrinsic noise propagation to system
parameters

Dynamics of the biochemical reactions involved, and therefore,

noise propagation in the cascade is sensitive to the biochemical

parameters, that is, rate parameters and initial conditions. Estimates

of the biochemical parameters available for MAPK cascade are

those measured under in vitro conditions and for a certain mam-

malian species. They are likely to differ not only from one cell type to

another but also from one species to another [49]. Therefore, in

order to estimate the nature of intrinsic noise propagation at various

parameters, we develop a systematic methodology (Fig. 6 and

Methods) based on the combination of the global sensitivity analysis

(GSA) [50] and Gillespie simulations [48].

Global sensitivity analysis involves estimation of the intrinsic

noise, the objective function – for several sets of parameters and use

of statistical tools to estimate the relative sensitivity of each of the

Figure 4. Effect of the total number of molecules of upstream
enzyme, e0 on (A) extrinsic and (B) intrinsic noise estimated by
stochastic simulations of the Langevin type stochastic model
(Eqs 5 and 6). Extrinsic noise was estimated with s= 0.25 [45]. 5000
realizations were performed for both extrinsic and intrinsic noise
estimates. Parameters used for the simulations are those in Table 1.
doi:10.1371/journal.pone.0035958.g004

Figure 5. Intrinsic noise in the phosphorylated substrates as a
function of the total number of molecules of upstream
enzyme, e0 estimated by Gillespie simulations [48]. 5000
realizations were performed. Parameters used for the simulations are
those in Table 1.
doi:10.1371/journal.pone.0035958.g005

Figure 6. Flow chart describing the steps in the systematic
methodology for characterizing noise propagation.
doi:10.1371/journal.pone.0035958.g006
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parameters (Methods). The nature of MAPK cascades and the

model considered poses certain constraints on the permitted values

of the parameters. QSSA for both substrates is valid [51] only when.

et%x0zK1 ð15aÞ

y0%x�t zK2 ð15bÞ

Besides, MAPK enzymatic cascades are designed to act as signal

amplifiers [3]. Due to this design, the cells are engineered [9,52]

such that, for a two-step cascade considered.

x0wy0 ð16Þ

Note that the total concentration of MEK and ERK in the Ras/

MEK/ERK has been experimentally measured for several systems

(see Table 1 in Fujioka et al. [35]). The constraint in Eq. (16) is

based on the abundance of MEK and ERK in mammalian cells

[9,35,53]. (Note that this constraint may not be valid for other

classes of species [3,35].).

We generated 25000 random sets of biochemical parameters

using uniform distribution according to the nominal values and

corresponding deviations presented in Tables 1 and 2, respectively.

From these random sets, we chose those 4820 sets that satisfied the

constraints specified in Eqs (15) and (16). Using these 4820 sample

sets and the proposed systematic methodology (Fig. 6), we estimated

D-statistics (Eq. 25), a measure of the sensitivity (Methods), for all the

parameters. Figure 7, which presents the D-statistics suggests that the

intrinsic noise in Y* is sensitive predominantly to e0, x0 and y0. x0 and

y0 have equal sensitivity towards intrinsic noise propagation. Note

that when all 25000 samples were considered for GSA, e0 still

emerged as the key parameter to which intrinsic noise propagation is

very sensitive to. However, it is less sensitive to x0 when compared to

that due to y0 (Fig. S2).

Discussion

Conventionally linearization method [26,27,29–31] applied to

Langevin type stochastic models of signaling cascades such as

MAPK cascades is used to estimate extrinsic and intrinsic noise

propagation. However, this method fails to predict the intrinsic

noise propagation in MAPK enzymatic cascades when the

Michaelis-Menten type reaction rates are nonlinear with respect

to the substrate concentrations. This failure is predominant in the

region where the steady-state response of the cascade is sensitive to

the total number of upstream enzyme e0. We prove this by

conducting extensive stochastic simulations of both Langevin type

model and the chemical master equation for various ranges of

systems parameters. This failure is due to the fact that the

linearization method ignores the nonlinear interactions between

the enzymatic reaction rates and the fluctuations, which may

contribute significantly to the extent of noise propagation through

the cascade. On the other hand, the extrinsic noise propagation

predicted by the linearization method agrees very well with those

obtained by stochastic simulations (Figs 3A and 4A). This agreement

can be attributed to two aspects: a) the linear dependence of the rate

processes on the total upstream enzyme concentration, b) availability

of the tunable parameter s (Eq. 13) in the stochastic model [45],

which captures the fluctuation strength in the upstream enzyme, that

is, strength of the extrinsic noise input to the cascade.

Reliable intrinsic noise estimates of the proteins involved in

MAPK cascade can only be obtained using complete stochastic

simulations of the model equations. Analytical solution of chemical

master equation is intractable and the Gillespie simulations are

computationally prohibitively expensive. Therefore, not-so-tedious

stochastic simulations of the Langevin type linear noise approx-

imation model should be used for a reliable estimate of noise

propagation when the number of substrate molecules is sufficiently

large. In cases where the number is not sufficiently large,

alternative methods proposed by Lan and Popaian [47] may be

used to estimate noise in the cascade. In this study, we assume that

the extrinsic and intrinsic noise are independent. However,

Tănase-Nicola et al. [9] suggested that under certain conditions,

the extrinsic and intrinsic noise propagation in an enzymatic

cascade may be correlated. It remains an open question as to

which method provides a reliable estimate of noise propagation

when the two types of noise are correlated.

Studies of noise propagation in activated signaling pathways are

limited by the availability of precise information about the kinetic

parameters and initial conditions [28]. Identification of the key

parameters that strongly affect noise propagation in the pathway can

prove useful in designing strategies to control flow of fluctuations in

the network. Based on the combination of global sensitivity analysis

(GSA) and stochastic simulations, we have developed a systematic

methodology (Fig. 6) to identify system parameters to which noise

propagation is sensitive. We demonstrated the applicability of the

method by identifying the key parameters in the two-step MAPK

enzymatic cascade that affect noise propagation. We argue that the

proposed systematic methodology, though tedious must accompany

noise propagation studies in signaling networks.

Figure 7. Sensitivity of various parameters towards intrinsic
noise in the downstream phophorylated substrate y�t . All the
parameter sets used in estimating the sensitivity index satisfy Eqs (15)
and (16).
doi:10.1371/journal.pone.0035958.g007

Table 2. Parameter range for global sensitivity analysis.

Parameter Range Parameter Range

x0 4 – 946 a3 0.144 – 0.216

y0 4 – 946 K1 96 – 144

e0 4 – 473 K2 96 – 144

k3 0.144 – 0.216

doi:10.1371/journal.pone.0035958.t002
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Upon applying the proposed systematic methodology, the total

number of upstream enzyme molecules e0 and the total number of

downstream substrate molecules y0 emerged as the two key

parameters that affect noise propagation in the cascade. Proteins

in MAPK cascades being potential targets [8] for several diseases,

identification of the key parameters that affect noise propagation

can provide clues for identifying strategies to engineer a cell to

commit to a certain desired outcome. In fact, several experimental

methods exist to independently alter the total enzyme concentration

and substrate concentration in a cell. For example, perturbations in

the MAPK cascade can be introduced using siRNA knockdown

technique [42]. Besides, specific chemical inhibitors for proteins

involved in MAPK cascade [54,55] can be used to modulate the

substrate concentration. An alternative scaffold mechanism [52] can

be used to re-wire MAPK cascade [56].

Methods

Stochastic model formulation
We represent the number of molecules of each of the species

involved in the MAPK cascade (Fig. 1) by the vector

M(t)~(X ,Y ,XE,X �P1,YX �,X �P2)t, where superscript t indi-

cates transpose. We use smaller case for each of the species to

represent the number of that species present in the system. We

define P(m,t) as the joint probability that at the instant t,

M~m~(xt,yt,xe,x�p1,yx�,x�p2)t, where xt~xzxe and yt~

yzyx� are the total number of molecules of unphosphorylated

substrates present in the system at any time t, with the initial

condition M(t~0)~m0. We assume that x0~xtzx�t ,

y0~ytzy�t , are the initial total number of molecules of X and

Y, respectively. We also assume the conservation relations

e0~ezxe, p10~p1zx�p1, p20~p2zy�p2, x�t ~x�zyx�, and

y�t ~y�zy�p2 for the total number of molecules of E, P1, P2, X*,

and Y*, respectively present in the system. Assuming the system to

be well-mixed and applying the standard laws of probability, the

chemical master equation (CME) [57] that captures the dynamics

of the joint probability mass function, P(m,t) for the set of

biochemical reactions involved in the cascade (Fig. 1) is given by.

dP(m,t)

dt
~k1(xt{xez1)(e0{xez1)P(m{c

1
; t)

zk2(xez1)P(m{c
2
,t)

zk3(xez1)P(m{c
3
,t)

zk4(x0{xt{yx�z1)(p10{x�p1z1)P(m{c
4
; t)

zk5(x�p1z1)P(m{c
5
; t)zk6(x�p1z1)P(m{c

6
; t)

za1(yt{yx�z1)(x0{xt{yx�z1)P(m{c
7
; t)

za2(yx�z1)P(m{c
8
,t)

za3(yx�z1)P(m{c
9
,t)

za4(y0{yt{y�p2z1)(p20{y�p2z1)P(m{c
10

; t)

za5(y�p2z1)P(m{c
11

; t)za6(y�p2z1)P(m{c
12

; t)

{ k1(xt{xe)(e0{xe)z(k2zk3)xe½

zk4(x0{xt{yx�)(p10{x�p1)

z(k5zk6)x�p1za1(yt{yx�)(x0{xt{yx�)

z(a2za3)yx�za4(y0{yt{y�p2)(p20{y�p2)

z(a5za6)y�p2�P(m; t)

ð17Þ

where, c
i
Vi~1,12 are the stoichiometric coefficient vectors

corresponding to the twelve biochemical reactions in Eqs (1) – (4).

Quasi-steady state approximation
Similar to the implementation of the quasi-steady state approxi-

mation (QSSA) in the deterministic framework, we introduce

QSSA into the stochastic model (Eq. 17) by assuming the inter-

mediates XE,X �P1, YX � and Y �P2 to be fast variables and elimi-

nate them [33]. (Details of the reduction procedure are in Text

S1.) The resulting reduced chemical master equation (rCME) is

dP(xt,yt; t)

dt
~k3E(xejxtz1,yt)P(xtz1,yt; t)

{k3E(xejxt,yt)P(xt,yt; t)

zk6E(x�p1jxt{1,yt)P(xt{1,yt; t)

{k6E(x�p1jxt,yt)P(xt,yt; t)

za3E(yx�jxt,ytz1)P(xt,ytz1; t)

{a3E(yx�jxt,yt)P(xt,yt; t)

za6E(y�p2jxt,yt{1)P(xt,yt{1; t)

{a6E(y�p2jxt,yt)P(xt,yt; t)

ð18aÞ

where,

k3E(xeDxt,yt)~
k3xte0

K1zxt

,k6E(x�p1Dxt,yt)~
k6(x0{xt)p10

K2z(x0{xt)
,

a3E(yx�Dxt,yt)~
a3ytx

�
t

K3zyt

,a6E(y�p2Dxt,yt)~
a6(y0{yt)p20

K4z(y0{yt)

ð18bÞ

are the corresponding propensity functions in which the Michaelis-

Menten constants of each of the phosphorylation/dephosphory-

lation reactions are given by K1~(k3zk2)=k1,K2~(k6zk5)=k4,
K3~(a3za2)=a1,K4~(a6za5)=a4.

Stochastic differential equations (SDEs) model
By applying V-expansion [34] to the multivariate rCME (Eq.

18), we derive the SDE model. The SDEs of the Langevin type

[58] for the cascade are.

dx�t
dt

~
k3e0xt

K1zxt

{
k6p10x�t
K2zx�t

zg1(t)~R1(x�t )zg1(t) ð19Þ

dy�t
dt

~
a3ytx

�
t

K3zyt

{
a6p20y�t
K4zy�t

zg2(t)~R2(x�t ,y�t )zg2(t) ð20Þ

where, R1(x�t ) and R2(x�t ,y�t ) are the net rate of formation of the

phosphorylated substrates, and g1(t)and g2(t) are independent

Gaussian white noise terms that have zero mean, that is,

Sg1(t)T~Sg2(t)T~0 and that satisfy

Sg1(t)g1(t’)T~A1d(t{t’) ð21Þ

Sg2(t)g2(t’)T~A2d(t{t’) ð22Þ

where, d(t{t’) is the Dirac delta function. A1~
k3e0�xxt

K1z�xxt

z
k6p10�xx�t
K2z�xx�t

and A2~
a3yt�xx

�
t

K3z�yyt

z
a6p20�yy�t
K4z�yy�t

are the strength of the

fluctuations or the total variance of the increment of the respective
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species in the time interval d(t{t’) [29]. The strength of the

fluctuations is estimated at the mean number of species (�xx�t ,�yy�t )

which is the steady state of the macroscopic rate equations.

Macroscopic equations obtained by ignoring fluctuations in Eqs

(19) and (20), that is, by setting g1(t)~g2(t)~0 are:

dx�t
dt

~R1(x�t ) ð23Þ

dy�t
dt

~R2(x�t ,y�t ) ð24Þ

Note that the macroscopic rate equations are also the leading

terms [34] in the V-expansion of the rCME.

Response curve
The macroscopic equations (Eqs 23 and 24) were first solved for

a set of parameters to obtain a steady state using a Newton solver.

Using the solution for this set of parameters as a starting point, the

response curve – locus of steady states – was constructed using

pseudo-arc length continuation [36]. Programs were written in

MatlabH (http://www.mathworks.com).

Linearization method
Perturbations to the steady state number of phosphorylated

substrates Dx�t ~x�t {�xx�t , Dy�t ~y�t {�yy�t and the perturbations De0

in the mean total number of upstream enzyme E were introduced

into the model equations (Eqs 5 and 6). The model was then

expanded in Taylor series around the base state (�xx�t ,�yy�t ) and

truncated upto linear terms to obtain the dynamics of the

perturbations. This set of linearized equations was solved using

Fourier transforms to obtain analytical expressions for the intrinsic

and extrinsic noise and thereby, the total noise. (Detailed solution

presented in Text S2.).

Global sensitivity analysis
A flow chart containing the key steps in GSA is presented in

Fig. 6. We provide here a brief description of each of these steps:.

1) Sample generation. Using Latin Hyper Space sampling

technique [59] we generated SN = 25000 sets of parameters

by assuming uniform distribution to each parameter in the

set considered.

2) Noise estimation. For each set of parameters, we con-

ducted sufficient realizations of Gillespie simulations [48] and

estimated noise in the downstream phosphorylated substrateIG
y .

3) Error objective function. For every sample set of

parameters, using the IG
y , we calculated the error objective

function F (i)~(IG
y,nom{IG

y,sim(i))2, where IG
y,nom and IG

y,sim(i)
are respectively the noise estimated at the nominal value

(Table 2) and those for each i = 1 to SN set of parameters.

4) Cumulative frequency functions. A sample is consid-

ered acceptable (unacceptable) when F (i)vFavgo

(F (i)wFavg) where Favg~

PSN

i~1

F (i)

SN

. We then construct the

cumulative frequency functions for the acceptable C(h) and

unacceptable gC(h)C(h) samples.

5) Kolmogorov-Smirnov test: According to the Kolmogorov-

Smirnov test [50], the sensitivity of noise in y�t , IG
y with

respect to each of the parameters h is given by the metric D

(called D-statistics) defined as

D(h)~ sup
h

C(h){gC(h)C(h)
��� ��� ð25Þ

where C(h) and gC(h)C(h) are the cumulative frequency

functions of acceptable and unacceptable samples. Higher

(lower) the D(h) more (less) sensitive is noise in y�t with

respect to h.
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Figure S1 Dynamics of (A) x�t and (B) y�t for the set of
parameters in Table 1.
(TIF)

Figure S2 Sensitivity of various parameters towards
intrinsic noise in the downstream phophorylated sub-
strate y�t when all 25000 sample sets of parameters were
considered.
(TIF)

Figure S3 Comparison of the cumulative probability
distribution C(x�t ),C(y�t ) of the stochastic variables x�t and
y�t obtained using the three methods viz., linearization
method (LM), stochastic simulations of SDEs (SDE), and
Gillespie simulations (GS) for (A) e0 = 44, (B) e0 = 70, (C)
e0 = 150 and (D) e0 = 300.
(TIF)

Text S1 Quasi-steady state approximation (QSSA) of
the chemical master equation.
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Text S2 Fourier transform method to estimate noise
from linearized SDEs.
(DOC)

Text S3 Comparison of the probability distributions for
all three methods.
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40. Jiménez-Aquino JI (1996) The characteristic times of the transient stochastic

dynamics with time-dependent control parameters: Distributed initial condi-

tions. Physica A 229: 444–460.
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