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Abstract

Hypermethylation of the glutathione S-transferase p 1 (GSTP1) gene promoter region has been reported to be a potential
biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific
a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on
the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter
region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite–PCR sequencing. We found
that the 59 region of the position 248 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC,
whereas the 39 region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly,
when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we
found that methylation of the 39 region of the promoter appeared to be liver-specific. A methylation-specific PCR assay
targeting the 59 region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased
liver tissues including HCC. When we used an assay targeting the 39 region, we found that the methylation of the 59-end of
the GSTP1 promoter was significantly more specific than that of the 39-end (97.1% vs. 60%, p,0.0001 by Fisher’s exact test)
for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC
contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site
methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA
marker is studied for detection of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the third or fourth leading

cause of cancer deaths in the world, the second fastest growing

cancer, and is now one of the top 10 causes of cancer deaths in the

United States [1]. It is usually an aggressive malignancy with a 5-

year survival rate of as low as 14% [1,2]. The 5-year survival rate

of patients with early-stage HCC is 26% but only 2% when it is

found after metastasis to distant organs. Therefore, early detection

is critical for effective treatment of HCC. The current circulating

marker, alpha-fetoprotein (AFP), and its fucosylated glycoform,

L3, are of limited value, with a sensitivity of only 40% to 60% [3].

Thus, there is an urgent need for a better marker or panel of

markers for the early detection of HCC.

The development of HCC, as with other solid tumors, is

believed to require the dysregulation of at least three biochemical

pathways (proliferation, cell cycle, apoptosis/cell survival) within

the cell [4,5,6]. In addition to genetic mutations, the aberrant

methylation of tumor suppressors plays an important role

throughout the process of HCC carcinogenesis. Due to the high

heterogeneity of HCC, a panel of markers may be needed to

provide sufficient sensitivity for its detection, and combinations of
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markers for HCC detection and management have been suggested

by several groups [7,8,9,10,11,12,13,14,15].

For biomarkers to be most useful for early detection or

screening, one would need to be able to detect the markers

without biopsy, such as in the circulation. In the course of

assembling a panel of HCC markers that have been detected in the

blood of patients with HCC for the development of a potential

screening test for the early detection of HCC, we noticed that

methylated glutathione S-transferase p 1 (mGSTP1), one of the

extensively studied DNA markers, was detected in the circulation

of patients with HCC [16,17,18,19]. However, variability in the

HCC specificity of mGSTP1 has been reported in a number of

previously published studies, examples of which are shown in

Table 1.

The GSTP1 gene encodes glutathione S-transferase p, which

protects normal hepatocytes against a number of mutation-

inducing processes, such as reactive oxygen species linked with

chronic hepatic inflammation and reactive electrophilic com-

pounds linked with the hepatic metabolism of dietary and other

carcinogens [20,21,22,23]. Hypermethylation of its promoter

region has been shown to suppress the expression of the GSTP1

gene [24,25,26]. Thus, the hypermethylation of the promoter of

the GSTP1 gene has been associated with various cancers,

including HCC [9,10,11,13,14,24,27,28,29,30,31].

Recent evidence, as reviewed by van Vlodrop, has implicated

the impact of the location of aberrant CpG dinucleotide

methylation on gene expression and on its clinical value in cancer

[32]. This work suggests that the current data on hypermethyla-

tion markers require a more comprehensive and critical evaluation

prior to their implementation in clinical practice. Our recent study

of the methylation of the adenomatous polyposis coli (APC) gene

also suggested that not only the location of CpG methylation but

also the strand of DNA analyzed could have an impact on the

specificity of the methylated APC gene as a marker to distinguish

HCC from other liver diseases [33]. In this study, the APC gene

was found to be methylated preferentially on the antisense strand

of the DNA in normal liver. Thus methylation of the CpG sites

only on the sense strand of the APC gene is specific for HCC.

Interestingly, Millar et al. [34] studied the association of aberrant

methylation of the GSTP1 with prostate cancer and noticed that

DNA methylation of the sense strand of the GSTP1 gene in normal

liver appeared to be different from that from nine other organs

examined. We thus hypothesized that the variability of HCC

specificity of the mGSTP1 gene observed in previous studies could

be due to the region of the promoter analyzed.

Patients with hepatitis or cirrhosis are known to be at high risk

for HCC. Thus, a biomarker for HCC screening that distinguishes

HCC from hepatitis and cirrhosis would be of particular

usefulness. Although several studies have suggested a role for the

mGSTP1 promoter as a biomarker for HCC detection, to our

knowledge, the methylation status of the GSTP1 promoter has not

been analyzed by bisulfite sequencing, which is used to analyze

every CpG site in the region examined, across the spectrum of

normal liver, hepatitis, cirrhosis, and HCC. In this study, we

performed a comprehensive detailed methylation analysis using

bisulfite sequencing for both sense and antisense strands in normal

and diseased liver tissue (hepatitis, cirrhosis, and matched HCC

and adjacent non-HCC) in order to identify HCC-specific CpG

sites to develop an assay in the future study that would detect

mGSTP1 specifically in the circulation. We demonstrated that only

methylation of a subset of the CpG sites in the GSTP1 promoter,

the 59 end of the position 248 nucleotide [nt] relative to the

transcription start site, was methylated specifically in HCC and

also confirmed that the methylation of the CpG sites of the GSTP1

gene at the 39-end promoter region occurs in the normal liver and

appears to be liver specific compared to DNA isolated from 12

other normal tissues. Furthermore, after comparing the matched

adjacent non-HCC tissues, we suggest a cancer field effect of

GSTP1 methylation.

Results

DNA methylation profiles of the promoter region of the
GSTP1 gene in normal liver and diseased liver tissues

To test the hypothesis that the variable specificities of the

methylated GSTP1 (mGSTP1) gene for HCC reported in previous

studies could be due to the location within the gene analyzed, a

comprehensive survey of the promoter region using a bisulfite-

specific PCR (BS-PCR) assay followed by DNA sequencing was

performed. Because we previously demonstrated that methylation

could occur in a strand-biased manner, such as the antisense

strand-biased methylation of the APC gene in normal liver [33], it

was of interest to determine whether the methylation of the GSTP1

promoter in liver was also DNA strand-biased. Therefore, we

examined the methylation profile of both the sense and the

antisense strands of the GSTP1 promoter region. Bisulfite-specific

primers (BSP) for both the sense (GSTP1_BSP_S) and antisense

strands (GSTP1_BSP_AS) of the promoter region were designed to

include most of the CpG sites that were analyzed in the previous

studies listed in Table 1. Figure 1A shows CpG sites (vertical bars)

in the promoter and first exon regions of the GSTP1 gene, along

with locations of BSP primers (primer sequences are listed in Table

S1). All 32 CpG sites within the region studied were numbered

Table 1. Examples of the variable specificities of methylated GSTP1 genes for HCC reported in previous studies.

Study

GSTP1 Methylation # methylated/total
(%) CpG Sites Studied1 Sensitivity (%) Specificity (%) Method Analyzed

HCC Normal liver

1 [14] 18/34 (53) 0/16 (0) 227 to 27 53 100 MethyLight

2 [7] 46/60 (77) 0/20 (0) 219 to 26 77 100 MSP

3 [13] 28/51 (54) 3/22 (13.7) 219 to 27 54 86.4 MSP

4 [42] 16/20 (80) 3/3 (100) 211 to +4 80 0 Pyrosequencing

5 [15] 24/40 (60) 12/25 (48) 24 to +7 60 48 MethyLight

1The CpG site number is referred to the transcription start site.
HCC, hepatocellular carcinoma; MSP, methylation-specific PCR.
doi:10.1371/journal.pone.0035789.t001

GSTP1 Methylation Pattern in HCC and Normal Liver

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35789



Figure 1. Methylation profiles of the sense and antisense strands of the GSTP1 gene by BSP sequencing of DNA isolated from
normal liver and diseased liver tissues. (A) Diagram of the locations of bisulfite sequencing primers and the CpG sites, indicated by vertical bars,
in the promoter and the first exon regions of the GSTP1 gene (Genbank accession #M24485, nt. 999–1387). The transcription start site (TSS) is also
indicated. The CpG sites are bracketed by the bisulfite sequencing primers for the forward (F) and reverse (R) sense strands (GSTP1_S_F and
GSTP1_S_R) and the antisense strands (GSTP1_AS_F and GSTP1_AS_R). (B) Methylation status of each CpG site in both sense (S) and antisense (AS)
strands of the promoter and the first exon regions of the GSTP1 gene from 228 to +4 on the basis of the sense strand 59 to 39 direction relative to TSS
in hepatocellular carcinoma (HCC, n = 20) tissue, matched adjacent non-HCC liver tissue (Adj Non-HCC, n = 20), and normal (n = 6), hepatitis (n = 5),
and cirrhosis (n = 5) tissues. The filled boxes indicate methylation detected and open boxes indicate no methylation detected. (C) Analysis of the
extent of methylation at each CpG site of the sense strand GSTP1 gene by BS-PCR sequencing of DNA isolated from normal liver and diseased liver
tissues. CpG site locations, BS-PCR sequencing assay, and DNA samples are the same as in panel B. The filled boxes indicate a high level of
methylation detected (more than 50%); hatched boxes indicate a low level of methylation detected (50% or less); and open boxes indicate no
methylation detected.
doi:10.1371/journal.pone.0035789.g001

GSTP1 Methylation Pattern in HCC and Normal Liver
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from 228 to +4 relative to the transcription start site in the 59 to 39

direction.

To determine the assay sensitivity of each BS-PCR sequencing

reaction detecting the methylated CpG, we performed a

reconstitution experiment using a set of standards with varying

proportions of methylated DNA as indicated in Figure S1. We

found that, although the BS-PCR sequencing assays for both the

sense and antisense strands were able to consistently detect

methylated CpG in samples containing 10% methylated DNA

present in an excess of 90% unmethylated DNA, the resolution of

the extent of methylation was higher for the sense assay than for

the antisense assay. When a sample containing 10% methylated

DNA was tested in the reconstitution experiments, the sequencing

chromatograph generated by the antisense BS-PCR sequencing

assay showed only the ‘‘C’’ peak, whereas a mix of ‘‘C’’ and ‘‘T’’

peaks were observed with the sense BS-PCR sequencing assay.

With the sensitivity of the assay determined, we performed BS-

PCR sequencing in normal (n = 6) and diseased liver including

hepatitis (n = 5), cirrhosis (n = 5), and HCC and matched non-

HCC tissues (n = 20). The clinicopathological information for the

study subjects is described in Table 2. To control for the efficiency

of the bisulfite conversion, we determined the percentage of

cytosine-to-thymine conversions that occurred in non-CpG

cytosines within the analyzed region after DNA sequencing of

BSP product from each sample. Only samples yielding a cytosine-

to-thymine conversion rate higher than 95% for these non-CpG

Cs were analyzed further.

Due to the different resolutions obtained using the sense and

antisense BS-PCR sequencing assays, we constructed the methyl-

ation profile of the GSTP1 promoter for both sense and antisense

strands using a dichotomized variable: methylation detected or

undetected, as shown in Figure 1B. As suggested by Millar et al.

[34], when we studied the methylation status of the sense strand of

the GSTP1 promoter, we found that the CpG sites of the sense

strand of the GSTP1 DNA from 27 to +4 were methylated in

normal liver tissue and that the methylation was mostly

symmetrical for both sense and antisense strands of the DNA. In

contrast, most of the first 21 CpG sites (228 to 28) were not

methylated on either the sense or the antisense strand of DNA

(Fig. 1B), although minimal nonsymmetrical methylation was

observed in some samples. We thus divided the region examined

into the 59-end of the GSTP1 promoter, which included CpG sites

228 to 28, or those upstream from the nt position 248 from the

transcription start site, and the 39-end of the promoter, which

included CpG sites 27 to +4, or those downstream from the nt

position 248 in this study. Interestingly, the majority of the CpG

sites in the 59-end of the promoter region did not appear to be

methylated in either hepatitis or cirrhotic liver but were

methylated in HCC and even adjacent non-HCC liver tissues,

as shown in Figure 1B.

Because the variable specificities of the mGSTP1 gene for HCC

reported in previous studies were all obtained from an analysis of

the sense strand, to test our hypothesis, we compared the

specificities of the 39-end and 59-end of the GSTP1 gene only on

the sense strand and categorized the extent of methylation

obtained from results from the reconstitution experiments

(supplemental Figure 1) into three categories: no methylation

detected (0% detectable methylated DNA); low level of methyl-

ation detected (both ‘‘C’’ and ‘‘T’’ peaks detected, 0–50%

methylated DNA), and a high level of methylation detected (‘‘C’’

peak only, .50% methylated DNA) as shown in Figure 1C. We

calculated the percent of the methylated CpG sites detected per

total CpG sites analyzed for both the 39-end and 59-end regions, as

shown in Table 3. For the region of the 59-end promoter, low

levels of methylation were detected in normal (11.1%), hepatitis

(8.6%), cirrhosis (13.3%), adjacent non-HCC (36.9%), and HCC

(59.8%) tissue; however, only the CpG sites in the HCC tissue

contained a high level of methylation (5.2%). The mean level of

methylation detected (low+high), together with the corresponding

standard deviation, was calculated for each tissue group. To see if

the specificity of mGSTP1 for HCC differed between the 39-end

and the 59-end, we determined the p value of HCC compared with

those of all liver tissues from non-HCC patients (cirrhosis+hepa-

titis+normal liver) for each region. As indicated by Fig. 1B, an

increase in the amount of methylation was observed in adjacent

non-HCC tissue compared to that of normal liver. Of interest, we

also determined the p value of the HCC tissue compared with all

non-HCC tissues including adjacent non-HCC tissue, cirrhosis,

hepatitis, and normal liver. As shown in Table 3, the level of

methylation was significantly higher (p,0.0001: by Student’s t test)

in the HCC compared to the non-HCC groups (both with and

without the adjacent non-HCC tissue). In contrast, a similar

analysis was performed for the region of the 39-end promoter; no

significant difference was obtained (p.0.05) for the amount of

methylation detected in the HCC group compared with the non-

HCC groups (with or without adjacent non-HCC). These data

suggested that the methylation of the 59-end promoter, compared

to the 39-end, should have more discriminatory power (specificity)

to distinguish HCC from hepatitis and cirrhosis.

Table 2. Summary of clinicopathological characteristics of the tissues analyzed by BSP sequencing.

Characteristic Normal1 (n = 6) Hepatitis (n = 5) Cirrhosis (n = 5) HCC (n = 20)

Mean age ± SD, years 6467.5 59.8610.3 60.6614.9 60.2612.4

Male/female 4/2 4/1 2/3 11/9

HBV/HCV/other 0/0/0 2/3/1 2/2/1 7/9/5

Stage 1/2/3/4/unknown - - - 10/7/1/1/1

Grade 1/2/3/unknown - - - 3/11/5/1

Mean size of tumor ± SD, cm - - - 5.2762.67

AFP levels, ng/mL, #20/.20/unknown - - - 8/11/1

14/6 of the 6 normal livers are ‘‘normal’’ liver tissues with concomitant cholangiocarcinoma.
AFP, alpha-fetoprotein; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; SD, standard deviation.
doi:10.1371/journal.pone.0035789.t002

GSTP1 Methylation Pattern in HCC and Normal Liver
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Methylation profile of the promoter region of the GSTP1
gene in non-liver normal tissues

Our recent study showed the presence of liver-specific,

antisense-biased CpG methylation in the promoter region of the

tumor suppressor APC gene [33]. Millar et al. [34] suggested that,

on analysis of the sense strand of the DNA from eight different

tissue samples, methylation of the 39-end of the promoter region of

the GSTP1 gene was found only in normal liver [34]. Thus, to

determine if the methylation pattern of the GSTP1 promoter seen

in normal liver tissue is liver-specific, we examined the methylation

profile of both the sense and the antisense strands of the GSTP1

promoter region in 11 other non-liver normal tissues including

pancreas, peripheral blood monocytes, lung, heart, colon,

esophagus, kidney, spleen, stomach, breast, and trigeminal

ganglion and 1 fetal liver, as shown in Figure 2. As a reference

of normal adult liver, we included the methylation profiles from

two normal livers from normal healthy subjects in Figure 2. All 11

nonliver and 1 fetal liver normal tissue samples showed no

detectable methylation in either the 59-end or the 39-end of the

promoter regions, indicating that methylation of the 39-end

promoter region of the GSTP1 appears to be liver-specific.

Evaluation of the specificity of the mGSTP1 promoter in
distinguishing HCC from other liver diseases by the
methylation-specific PCR assay (MSP)

Bisulfite sequencing is a method used to analyze the methylation

status of every CpG site in the region of interest, but it is labor

intensive to analyze a large panel of samples representing the

different stages of disease progression to HCC. To confirm our

results from the BS-PCR sequencing, showing that the methyla-

tion of the 59-end region of the GSTP1 promoter is more specific to

HCC than that of the 39-end region in a large sample of tissues, we

developed an MSP assay targeting the CpG sites that showed

higher HCC specificity when analyzed by BS-PCR sequencing

(Fig. 1B) in the 59-end promoter region. In this MSP assay, the

CpG sites included in the forward primer, the TaqMan probe, and

the reverse primers are 227 to 224, 223 to 219, and 211 and

210, respectively (Fig. 3A). The sequences of the primers and

probe and the PCR conditions are described in Table S1. Using

this assay, we were able to quantify methylated DNA with an assay

sensitivity of 10 copies per reaction, as shown in Figure S2A. As a

comparison, we used an MSP assay reported previously [15] to

target the 39-end of the GSTP1 promoter region. This assay has a

sensitivity and linear range for quantifying the mGSTP1 gene

comparable to the 59-end MSP assay that we developed, as shown

in Figure S2B.

Next, we compared the performance of mGSTP1 in the 59-end

MSP assay with that in the 39-end MSP assay [15] in

distinguishing HCC from hepatitis and cirrhosis. The DNA

isolated from hepatitis (n = 35), cirrhosis (n = 35), adjacent non-

HCC (n = 120), and HCC samples (n = 120) was treated with

bisulfite and quantified by the BS-actin PCR assay as described

previously [33]. The clinicopathological characteristics of the

study subjects are shown in Table 4, which includes the study

subjects used in the BS-PCR sequencing assays. The amount of

methylated GSTP1 promoter was determined for each segment of

BS-converted DNA by MSP assays in duplicate, and the receiver

operating characteristic (ROC) curves were constructed accord-

ingly to evaluate the performance of the mGSTP1 promoter as a

biomarker to distinguish HCC from non-HCC including hepatitis

and cirrhosis (Fig. 3B). We also constructed and compared ROC

curves for HCC tissue and for non-HCC tissues including adjacent

non-HCC tissues (Fig. 3C). The specificity and sensitivity were
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calculated on the basis of the cutoff value of 10 copies since that is

the limit of the quantification for both 39-end and 59-end MSP

assays. As listed in the table inset in Figure 3B, as a biomarker to

distinguish HCC from non-HCC liver diseases, the methylation of

the 59-end of the GSTP1 promoter was significantly more specific

than that of the 39-end (97.1% vs. 60%, p,0.0001 by Fisher’s

exact test), although the 59-end was less sensitive than the 39-end

(37.5% vs. 80%), and the AUROC curves for both regions were

similar (0.760 and 0.775). We obtained a similar result, i.e.,

significantly more specific methylation at the 59-end of the GSTP1

promoter than at the 39-end (96.8% vs. 55.8%, p,0.0001 by

Fisher’s exact test), when the comparison included the adjacent

non-HCC tissues (Fig. 3C).

Identification of the AFP-negative HCC by mGSTP1
As discussed earlier, the current ‘‘gold standard’’ serum marker,

AFP and its fucosylated glycoform, L3, is of limited value because

they have sensitivities of only 40% to 60% [3]. Moreover, there is

currently no biochemical marker that can detect AFP-negative

HCC, in which the serum AFP level is less than 20 ng/mL, as

suggested by the American Association of Liver Diseases [3].

Because mGSTP1 was previously detected in the blood of patients

with HCC [16,17,18,19], it was of interest to see whether we could

detect GSTP1 methylation in the HCC samples that were negative

for AFP. We thus analyzed the incidence of mGSTP1 in the HCC

tissues for which AFP values were available (n = 115). We plotted

the quantity of serum AFP on the x-axis and mGSTP1 in tissue on

the y-axis for each subject with HCC (Fig. 4). In this study

population, 62 patients (53.9%, 62/115) with HCC had AFP

serum levels less than 20 ng/mL and their HCC samples were

therefore considered to be AFP-negative. Encouragingly, mGSTP1

was found in 33.8% (21/62) of the AFP-negative HCC tissues,

thus increasing the sensitivity of detecting HCC in tissues for

which AFP values were available to us (n = 115) from 46.1% (53/

115) with AFP alone to 64.3% (74/115) by combining two

markers.

Discussion

In this study, we observed that only the 59 region of the 32 CpG

sites examined (numbered 228 to +4 relative to the transcription

start site) in the promoter region of the GSTP1 gene that are

methylated specifically in HCC compared to normal liver and

hepatitis and cirrhotic liver tissues. On the other hand, CpG

methylation was observed in the 39 region (CpG sites from the 27

to +4) in most of the liver tissues studied including normal liver.

We demonstrated that the MSP assay, designed for the 39 region

to analyze the mGSTP1 promoter for distinguishing HCC from

cirrhosis and hepatitis, would have poor specificity (60%). In

contrast, a high specificity (97.1%) was obtained when the MSP

assay was designed for the 59 region of the promoter (Figure 3).

These data not only prove our hypothesis that the location of the

GSTP1 DNA analyzed for methylation impacts the specificity for

HCC as a biomarker for HCC detection but also provides an

interpretation for the variation in HCC specificity of the mGSTP1

promoter to distinguish HCC from other liver-disease tissues

reported in previous publications, as examples listed in Table 1. As

discussed, a recent review by von Vlodrop suggested the

importance of the locations of CpG methylation in relation to

gene expression and of the associations with clinicopathological

characteristics in cancer [32]. For instance, only one of the three

Figure 2. Methylation status of the sense (S) and antisense (AS) strands of the promoter and the first exon region of the GSTP1 gene
(Genebank accession #M24485, nt. 999–1387) of the DNA isolated from normal adult livers, fetal liver, and normal nonliver
tissues. The open boxes indicate unmethylated CpG sites; the filled boxes indicate methylation detected.
doi:10.1371/journal.pone.0035789.g002
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regions of the promoter CpG island of gremlin 1 was correlated

with poor survival in clear cell renal carcinoma [35]. Together

with the results of our recent studies, which showed that strand-

biased methylation of the APC gene is present in liver and that

methylation of only the sense strand is specific for HCC [33], these

results highlight the importance of the locations of CpG

methylation of a given marker for clinical applications, particularly

in liver cancer, since both of the methylation markers we studied

exhibited a liver-specific DNA methylation pattern when com-

pared to the other 11 normal tissues examined.

We found significantly more detectable methylated CpG sites in

adjacent non-HCC tissue compared to normal, hepatitis, and

cirrhotic liver tissue using BS-PCR sequencing in the 59 end region

(p,0.0001 by Fisher’s exact test), suggesting that methylation of

Figure 3. Comparison of the specificity of the 59-end and the 3-end of the mGSTP1 as a biomarker to distinguish HCC samples from
tissue samples of other liver diseases, as determined by MSP assays. (A) Locations of forward (F) and reverse (R) primers and TaqMan probe
(P) of the 59-end MSP (59-MSP) (including the TaqMan probe) and 39-end MSP (39-MSP) SybrGreen assays. The CpG sites (vertical bars) and the
transcription start site (TSS) are indicated. Receiver operating characteristic (ROC) curves of the methylated GSTP1 gene as a marker to discriminate
HCC (n = 120) from non-HCC liver tissues including hepatitis (n = 35) and cirrhosis (n = 35) (B), or hepatitis, cirrhosis, and adjacent non-HCC (C),
generated by 59-end MSP and 39-end MSP assays, respectively, as indicated. The amount of methylated DNA was the average of two duplicate MSP
assays as detailed in Materials and Methods. The area under the curve of each ROC (AUROC) curve and the specificity and sensitivity determined by
the cutoff of 10 copies per input of 300 copies of DNA are shown in the inserted table. Note that the CpG sites included in each primer and probe are
as follows; 59-end MSP (F: 227 to 224; P: 223 to 219; R: 211 to 210) and 39-end MSP (F: 24 to 22; R: +4 to +7).
doi:10.1371/journal.pone.0035789.g003

Table 4. Summary of clinicopathological characteristics of the tissues analyzed using the MSP assays.

Characteristic Normal1 (n = 6) Hepatitis (n = 35) Cirrhosis (n = 35) HCC (n = 120) P value

Mean age ± SD, years 6467.5 55611.62 56613.8 60611.3 0.072

Male/female 4/2 17/18 23/12 81/39 0.1752

HBV/HCV/others 0/0/0 11/27/5 4/21/9 63/33/26 -

Stage 1/2/3/4/unknown - - - 48/48/16/4/4 -

Grade 1/2/3/unknown - - - 18/74/23/5 -

Mean size of tumor ± SD, cm - - - 5.3163.69 -

AFP levels, ng/mL, #20/.20/unknown - - - 62/53/5 -

14 of the 6 normal livers are ‘‘normal’’ liver tissues with concomitant cholangiocarcinoma.
2Across all subjects (n = 196), age was analyzed by the Student t test and gender by Fisher’s exact test.
AFP, alpha-fetoprotein; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; SD, standard deviation.
doi:10.1371/journal.pone.0035789.t004
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the GSTP1 promoter occurs early in the carcinogenetic process

that results in HCC and that it plays a role in the cancer

microenvironment or field effect. To date, such field effect

biomarkers have been reported in several sites and organs, for

example, head and neck, colon and rectum, prostate, breast, lung,

esophagus, stomach, and skin, as reviewed by Chai 2009 [36], and

also HCC [37,38]. It has been suggested that the cancer

microenvironment or the cancer field effect plays an important

role in carcinogenesis [39] and that alterations in DNA

methylation patterns may contribute to the field effect [40,41].

Glutathione S-transferases are a family of enzymes that play an

important role in detoxification and are responsible for protecting

cells from cytotoxic and carcinogenic agents. Thus, one could

easily understand that, if this detoxification enzyme is insufficiently

expressed, the accumulation of carcinogens would promote

carcinogenesis and give rise to a tumor in the field. It has been

suggested that DNA methylation of the GSTP1 gene suppresses the

expression of GSTP1 mRNA and protein [24,25,26]. Our data

suggest that HCC-related DNA methylation does occur, although

to a lesser extent in the adjacent non-HCC tissues, suggesting that

methylation of the 59 region of the GSTP1 promoter could be part

of the cancer microenvironment that cultivates the development of

HCC. Because the methylation of the 39 region of the promoter

exists in the normal liver, it is possible that methylation of the 59

region has a more profound effect on suppression of the GSTP1

gene than originally thought. More study is needed to further

understand the role of methylation of the 39 region and 59 region

in the expression of the GSTP1 gene.

As mentioned above, it has been suggested that promoter

methylation of the GSTP1 gene is a potential marker for HCC

screening because this marker has been detected in the circulation

of patients with HCC [16,17,18,19] and could be a potential

marker in combination with other markers for diagnosis and

surveillance of persons at high risk for HCC. The methylation of

the 59 region was more specific (97.1% vs. 60%), but the sensitivity

of detecting HCC was significantly higher if methylation of the 39

region was analyzed (80% vs. 37.5%). As a result, the AUROC

curves for both regions were similar (0.760 and 0.775). This

finding suggests that HCC-related methylation occurs in the entire

region of the promoter. Thus, when the extent of methylation was

measured quantitatively, the increase in methylation was detected

in either region regardless of the basal level of methylation.

However, our study suggests that the assay to detect this marker

should target the 59 region of the promoter to obtain higher

specificity, particularly when the end-point MSP is used.

Although this marker was found in only 37.5% of the HCC

samples, the mGSTP1 marker was detected in 33.8% of AFP-

negative HCC in our study population. This result is important

because no biochemical marker is currently available to detect

AFP-negative HCC. Aberrant DNA methylation has already been

suggested for use in a screening test to identify subjects that are at

high risk for HCC. If one combines mGSTP1 and serum AFP and

detects the HCC specific region with the MSP assay, the sensitivity

can be improved from 46.1% to 64.3%. Thus, mGSTP1 could be a

potential marker for HCC screening that would be complemen-

tary to AFP levels.

Using BS-PCR sequencing, we were able to detect different

amounts of methylation at the 59 region of the promoter in all 20

of the HCC samples and in 17/20 of adjacent non-HCC samples

but limited amounts in hepatitis and cirrhosis tissue. Using the

MSP assay, we targeted the 59 region of the sense strand;

methylation of the GSTP1 gene was highly specific (97.1%

specificity) even when compared to the adjacent non-HCC tissue.

The BS-PCR sequencing data represent a collection of the

methylation at that particular site from the templates that were

amplified by a PCR reaction. This collection of methylation data

Figure 4. Scatter plot distribution of serum AFP levels (x-axis) and the amount of methylated 59-end of the GSTP1 DNA (mGTSP1) (y-
axis) for 115 HCC samples. Each circle represents the value for an individual HCC case. A vertical reference line intersects at an AFP value of 20 ng/
ml. A horizontal reference line intersects right above the MSP value of 0 as the reference for undetectable (ND), which is less than 10 copies per assay.
The number of HCC cases and the percent of the total HCC in each of four areas are indicated.
doi:10.1371/journal.pone.0035789.g004
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does not represent individual molecules in the pool of DNA

isolated from a given tissue. For a sample to be methylation

positive using an MSP assay, all of the CpG sites included in the

primers and probe would have to be methylated on one molecule

except for limited miss-priming. Thus, in adjacent non-HCC

samples, when we used BS-PCR sequencing and defined positive

as detectable methylated CpG sites (low+high, Fig. 1C), 36.9% of

CpG sites in the adjacent non-HCC samples were positive for 59-

end mGSTP1 (Table 3); in contrast, with the MSP assay, only 4 of

120 (3.3%) were positive for the 59-end. For HCC, with the BS-

PCR sequencing assay, 65% of CpG sites in the HCC samples

were positive for 59-end mGSTP1 (Table 3); only 45 of 120 (37.5%)

were positive when measured by the 59-end MSP assay.

Nevertheless, the data from both assays suggest a higher density

of methylation in the HCC samples compared to adjacent non-

HCC samples.

In this study, we used different detection technologies for two

MSP assays: TaqMan for the 59-end MSP and SYBR Green for

the 39-end MSP. It is possible the difference of the sensitivity and

specificity obtain by the these two methods is due to different

detection technologies because that the 59-end MSP could detect

only the DNA molecules that contained methylated CpG sites in

both primers and TaqMan probe locus, but the 39-end MSP only

tested CpG sites in the primers thus it is a less conservative assay.

However, this concern should not affect the conclusion of this

study that methylation of 59-end region is more specific than that

of the 39-end region for detecting HCC from other liver disease

tissues because this conclusion is also suggested by BS-CR

sequencing analysis (Fig. 1). Furthermore, the low (48%) - to

none (0%) specificity of the 39-end methylation were observed by

previous studies as we have referenced in Table 1 (study #4 [42]

and study #5 [15]) in which the TaqMan was used in [15] and

pyrosequencing was used in [42].

Interestingly, although most of the methylation detected in the

GSTP1 promoter region analyzed is symmetrical, some nonsym-

metrical methylation was detected by BS-PCR sequencing

(Fig. 1B). As discussed earlier, the BS-PCR sequencing data

represent methylated molecules collected from the templates at the

particular site and therefore do not represent individual molecule

in the pool of DNA isolated from a given tissue. Analysis by the

BS-PCR cloning sequencing will be needed to determine whether

the nonsymmetrical methylation observed is multiple, continuous

nonsymmetrical CpG site methylation on a molecule, as we

discovered in the APC gene [33], or a collection from many

templates, each of which contains 1 to 2 sparsely distributed

nonsymmetrical methylated CpG sites that occurred because of

errors of methylation. Nevertheless, most of the methylation in the

GSTP1 gene analyzed is symmetrical.

When we analyzed the different clinicopathologies (Table 5), we

did not find a significantly higher incidence of mGSTP1 in any of

the HCC subsets (p.0.5 by the Kruskal-Wallis test). It has been

suggested that infection with hepatitis B virus (HBV) or hepatitis C

virus (HCV) increases the aberrant methylation of tumor

suppressor genes in HCC, including the GSTP1 gene

[8,9,10,13,15,43], in HBV-infected HCC but not in non-HBV-

infected HCC or in non-HCV-infected HCC. This discrepancy

could be due to the differences in the clinicopathological

characteristics of the HCC tumors used in the different studies.

Cancer is a disease of the genome and epigenome; thus,

detection of genetic and epigenetic changes underlying the

development of HCC should aid in the unambiguous detection

of tumors. Interestingly, two of the potential HCC epigenetic

DNA markers we examined, methylation of the APC [33] and

GSTP1 genes, exhibit liver-specific methylation patterns, suggest-

ing that, in the search for epigenetic DNA markers for detection of

HCC, the methylation status of normal liver should be taken into

consideration when developing a sensitive and specific assay for

the detection of HCC.

Materials and Methods

Subjects
The HCC tissues and the matched adjacent non-HCC liver

samples used in this study were obtained with written informed

consent from patients who underwent radical resection at The

National Cheng-Kung University Medical center in accordance

with the guidelines of the National Cheng-Kung University

institutional review board. Archived DNA samples (35 hepatitis

and 35 cirrhosis) were obtained from the Buddhist Tzu Chi

Medical Center, Hualien, Taiwan, in accordance with the

Buddhist Tzu Chi Medical Center institutional review board

protocols. DNA from normal liver (n = 4), esophageal, and colon

tissues was obtained from The Johns Hopkins University School of

Medicine in accordance with The Johns Hopkins University

Institutional Review Board protocols. The Institutional Review

Boards of Drexel University College of Medicine, the Buddhist

Tzu Chi Medical Center, The Johns Hopkins University School of

Medicine, and The National Cheng-Kung University Medical

center specifically approved this study. Normal liver (n = 1), heart,

and lung tissue samples obtained from the National Disease

Research Interchange, Philadelphia were given to us by

Immunotope, Inc (Doylestown, PA), and normal peripheral blood

mononuclear cell DNA was obtained as a gift from the laboratory

of Dr. Pooja Jain (Drexel University College of Medicine). One

normal liver tissue DNA sample was purchased from Capital

Biosciences (Rockville, MD), and stomach 1–4, pancreas, kidney,

spleen, breast, brain, trigeminal ganglion, and fetal liver DNA was

purchased from Biochain (Hayward, CA). The subject profile is

listed in Table 2, Table 4 and Table S2.

DNA isolation and bisulfite treatment
DNA was isolated using the Qiagen DNAeasy Blood and Tissue

kit (Qiagen, Valencia, CA) according to the manufacturer’s

instructions. The DNA concentration was measured using a

NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific Inc,

Wilmington, DE) at 260 nm absorbance. Bisulfite treatment was

performed using Qiagen EpiTect Bisulfite conversion kits (Qiagen)

following the guidelines of the manufacturer.

Table 5. Aberrant methylation of the GSTP1 in HCC stratified
by clinicopathological characteristics.

Comparison of HCC samples (n = 120) P value1

Stage 0.723

Grade 0.160

HBV –HCC (n = 63) vs. non-HBV-HCC (n = 57) 0.801

HCV-HCC (n = 33) vs. non-HCV-HCC (n = 87) 0.906

AFP levels (,20 ng/mL vs. $20 ng/mL) 0.056

1Kruskal-Wallis test.
AFP, alpha-fetoprotein; HBV, hepatitis B virus; HCC, hepatocellular carcinoma;
HCV, hepatitis C virus.
doi:10.1371/journal.pone.0035789.t005
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Preparation of reconstituted standards of methylated
and unmethylated DNA for BS-PCR sequencing and MSP
assays

To determine the assay sensitivity of BS-PCR sequencing and

MSP assays to detect methylated DNA and estimate the relative

amount of methylated DNA in a given sample, we prepared a

reconstituted sample set (i.e., a known amount of methylated DNA

in a background of unmethylated DNA). Bisulfite-converted

human universal methylated DNA control (Zymo Research,

Seattle, WA) was used as the methylated DNA standard.

Bisulfite-treated DNA from normal human peripheral blood

mononuclear cells that was confirmed by sequencing to be

unmethylated in the GSTP1 region of interest was used as a source

of unmethylated DNA and was quantified by the BS-actin real-

time PCR assay, which primers were designed within regions

lacking CpG sites, so that CpG methylation status would not affect

primer binding [33]. On the basis of quantification by BS-actin

PCR, reconstituted sample sets were prepared in the following

ratios: (1) 0% methylated DNA, 100% unmethylated DNA; (2)

10% methylated DNA, 90% unmethylated DNA; (3) 25%

methylated DNA, 75% unmethylated DNA; (4) 50% methylated

DNA, 50% unmethylated DNA; and (5) 100% methylated DNA.

BS-PCR DNA Sequencing
Bisulfite specific primers were designed using Methyl Primer

Express software (Life Technologies, Applied Biosystems, Foster

City, CA) to amplify the promoter region of the GSTP1 gene for both

the sense and antisense strands; the primer sequences are described

in Table S1. PCR was performed in an Eppendorf Mastercycler

thermocycler for 40 cycles with hot-start Taq polymerase (Qiagen).

The PCR program started with activation of the polymerase at 95uC
for 15 min followed by denaturation at 95uC for 30 s, annealing at

the respective annealing temperature (Table S1) for 30 s, and

extension at 72uC for 30 s, followed by a final 4-min extension at

72uC and cooling at 4uC for all primer sets. The reaction was

assembled in a final volume of 20 ml containing 0.5 U HotStart Taq

(Qiagen), 16 PCR buffer, 200 mM of dNTPs, 0.5 mM of each

primer, and bisulfite-treated DNA templates. PCR products were

run on 1% agarose gel with 16TAE buffer. The PCR product of the

correct size was excised, and the gel was purified with Qiagen Gel

Purification kit (Qiagen) and sent with the appropriate primer for

sequencing to the NAPcore facility at the Children’s Hospital of

Philadelphia, Philadelphia, PA. Sequencing results were analyzed

using ClustalW software (available at http://www.ch.embnet.org/),

Chromas 2.3 software (Technelysium, Tewantin, Queensland,

Australia), and Finch TV version 1.4.0 (Geospiza Inc, Seattle, WA).

MSP assays
A quantitative real-time methylation specific PCR (MSP) assay

for the 59-end region was developed with the primer pair and

Taqman probe as shown in Table S1, and illustrated in Figure 3.

More specifically, this is a MethyLight assay since a TaqMan

probe was included in addition to methylation specific primers

used in the assay. This 59-end MethyLight assay was referred as 59-

end methylation specific PCR (MSP) assay. For the 59-end MSP, A

10-ml reaction was assembled using the Roche Light Cycler 480

Real-Time PCR system (Roche Applied Science, Mannheim,

Germany). The reaction contained a 16LightCycler 480 Probes

Master, 1.0 mM primers, 0.2 mM probe, and the DNA template.

The PCR reaction was performed under the following conditions:

95uC 10 min, (95uC 10 s, 65uC 30 s, 72uC 10 s)650 cycles, 40uC
30 s. The MSP assay for the 39-end region used in the study was

modified from the method previously described [15] by using the

LightCycler 480 SYBR Green I Master. For the 39-end MSP, A

10-ml reaction was assembled using the LightCycler 480 SYBR

Green I Master (Roche Applied Science, Mannheim, Germany).

The reaction contained 16 LightCycler 480 SYBR Green I

Master, 1.0 mM primers, and the DNA template. The PCR

reaction was performed under the following conditions: 95uC
10 min, (95uC 10 s, 60uC 15 s, 72uC 10 s)645 cycles, melt curve

analysis (95uC 5 s, 65uC 60 s, 97uC), 40uC 30 s.

Statistical Analysis
To test whether age and gender were evenly distributed across

both HCC and non-HCC groups, the Student t test was

performed for age and Fisher’s exact test was performed for

gender. To study the distribution of GSTP1 59-end MSP values in

HCC tissues across the categories of stage, grade, HBV status,

HCV status, and AFP groups (,20 or .20 ng/ml), a Kruskal-

Wallis test was performed. Stages 2, 3, and 4 were combined into

one group, and Grades 2 and 3 were combined into one group

because the numbers of samples in stage 3 (n = 3), stage 4 (n = 1),

and grade 3 (n = 9) were low. ROC curves, areas under the ROC

curves, comparisons between ROCs and the scatter plot

distribution of serum AFP levels (y-axis) versus the amount of

mGSTP1 DNA distribution was constructed using the PASW

software (IBM, New York).

Supporting Information

Figure S1 The representative chromatograms of BSP
sequencing of the reconstituted standards: 0% methyl-
ated+100% unmethylated DNA (0%);10% methylated
DNA+90% unmethylated DNA (10%); 25% methylated
DNA+75% unmethylated DNA (25%); 50% methylated
DNA+50% unmethylated DNA (50%); and 100% methyl-
ated DNA (100%), from both sense (GSTP1_S_F/R) and
antisense (GSTP1_AS_F/R) bisulfite specific PCR se-
quencing primers, as indicated. The boxed areas are the

areas of the examples showing the relative ‘‘C’’ and ‘‘T’’ peaks in

the chromatogram from each sample of the reconstituted

standards by each primer set as indicated.

(TIF)

Figure S2 Amplification and standard curves of the 59-
end (A) and 39-end (B) MSP assays. Various concentrations

of human methylated bisulfite-converted genomic DNA reconsti-

tuted in unmethylated DNA controls, as indicated, were amplified

by the GSTP1 MSP assays as detailed in Materials and Methods.

The curves generated by different amounts of input DNA (copies)

per reaction are indicated.

(TIF)

Table S1

(DOCX)

Table S2

(DOCX)
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