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Abstract

Understanding the organization and function of transcriptional regulatory networks by analyzing high-throughput gene
expression profiles is a key problem in computational biology. The challenges in this work are 1) the lack of complete
knowledge of the regulatory relationship between the regulators and the associated genes, 2) the potential for spurious
associations due to confounding factors, and 3) the number of parameters to learn is usually larger than the number of
available microarray experiments. We present a sparse (L1 regularized) graphical model to address these challenges. Our
model incorporates known transcription factors and introduces hidden variables to represent possible unknown
transcription and confounding factors. The expression level of a gene is modeled as a linear combination of the expression
levels of known transcription factors and hidden factors. Using gene expression data covering 39,296 oligonucleotide
probes from 1109 human liver samples, we demonstrate that our model better predicts out-of-sample data than a model
with no hidden variables. We also show that some of the gene sets associated with hidden variables are strongly correlated
with Gene Ontology categories. The software including source code is available at http://grnl1.codeplex.com.
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Introduction

Transcriptional regulatory networks govern the expression

levels of thousands of genes as part of a diverse biological

processes. Regulatory proteins called transcription factors (TF) are

the main players in the regulatory network. TFs bind to promoter

regions at the start of other genes and thereby initiate or inhibit

gene expression. Determining accurate models for transcriptional

regulatory interactions is an important challenge in computational

biology. With the development of high-throughput DNA micro-

array technologies, it is possible to simultaneously monitor the

expression levels of essentially all genes. Extensive research has

been done to build quantitative regulatory models by associating

gene expression levels (see [1–3] for reviews).

One challenge in this work is that not all TFs have been

identified and the regulatory relationship between TFs and their

associated genes may not be available (except for some well studied

model organisms such as yeast). Another challenge is the potential

for spurious associations between regulators and affected genes

due to confounding factors such as expression heterogeneity [4–8].

Moreover, in large scale genome-wide expression datasets, the

number of genes (or probs) is usually much larger than the number

of samples. This is the so called ‘‘large p small n’’ problem [9,10].

Feature selection is required when analyzing such datasets.

Various methods have been proposed to learn the regulatory

relationship between TFs and their associated genes [11–16].

Assuming that the (partial) knowledge of the network topology

between TFs and genes is available, network component analysis

[11,15] aims to reconstruct signals from the regulators and their

strengths of influence on each genes. However, such knowledge

may not be always available, e.g., for human. Similarly, in [13,14],

methods have been proposed to infer the TF activities (concen-

tration levels) assuming the TF-gene relationship is known. The

work in [12] does not assume a known regulatory network, and

tries to reconstruct one from sequence and array data. The

proposed methods was applied to yeast datasets. The goal is

different from ours, which is to reconstruct the regulatory network

from the microarray data without the sequence information.

Clustering approaches have also been developed to analyze gene

expression data [17–20]. These methods partition samples into

groups according to the expression patterns of genes in different

groups. The TF information is not used in these algorithms.

In this paper, we propose a linear-Gaussian graphical model to

address the challenges in learning regulatory relationships. Our

model consists of two layers of nodes as shown in Figure 1. The

upper layer nodes include the set of known/putative TFs and a set

of hidden variables. The hidden variables are used to model

possible unknown TFs and confounding factors. The lower layer

represents the remaining genes that are not included in the upper

layer. The nodes are connected via arcs from the upper layer

nodes to the lower layer nodes. The expression levels of a node

(gene) in the lower layer are modeled as a linear function of the
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expression levels of the upper layer nodes–that is, known TFs and

hidden factors. Note that graphical model has also recently been

applied to find expression quantitative trait loci [21].

To learn the parameters of the model from data, which is

usually of high dimension and low sample size, we use L1

regularization as is done in [22] (see also [23–25]). This approach

yields a sparse network, where a large number of association

weights are zero [26]. In gene regulatory networks, the number of

TFs is much smaller than the number of transcribed genes, and

most genes are regulated by a small number of TFs. The matrix

that describes the connections between the transcription factors

and the regulated genes is expected to be sparse. Thus L1

regularization is a natural choice for this setting.

We apply our model to large scale human gene expression data

and show that our model has better prediction accuracy than do

other alternatives. We examine each gene set defined by those in

the lower layer connected to a single hidden variable in the upper

layer. We find that some of these gene sets are strongly correlated

with GO categories, suggesting that the hidden variables at least in

part represent unknown TFs. The software including source code

is publically available at http://grnl1.codeplex.com.

Methods

Linear Regression and Probabilistic PCA
Our model can be thought of as a combination of linear

regression and probabilistic principal component analysis (PPCA)

[27] with L1 regularization. In this subsection, we briefly review

these two approaches.

Throughout the paper, we assume that all vectors are column

vectors. Let r~(r1,r2, � � � ,rK )T represent the K known/putative

TFs (e.g., [28]), and x~(x1,x2, � � � ,xD)T represent the D genes in

the dataset. Note that the two sets r and x are disjoint–that is, x
include the genes that are not TFs. This restriction is added so that

the resulting graph is acyclic and therefore amenable to

straightforward estimation techniques. The linear regression

model assumes that the expression level of a gene xd can be

represented by a linear function of the expression levels of the TFs.

xd~
XK

k~1

bdkrkzmdze,

where bdk (1ƒkƒK ) is the coefficient that quantifies the strength

of the TF rk to initiate (positive) or suppress (negative) the

regulation of gene xd , md is a translation factor, and is the additive

noise of Gaussian distribution with zero-mean and standard

deviation d–that is, e*N (0,d2):
The idea of PPCA is similar to that of linear regression. The

difference is that the expression level of a gene xd is modeled as a

linear function of the expression levels of a set of hidden

(unobserved) variables z~(z1,z2 � � � ,zM )T :

xd~
XM
m~1

wdmzmzmdze,

where z has a zero-mean, unit-variance Gaussian distribution.

Our Model
To incorporate both known/putative TFs and unknown factors,

our model combines linear regression and PPCA. We model the

expression level of a gene to be a linear function of the expression

levels of both known/putative TFs and hidden factors.

D

K

r

x

M

z

B W

Figure 1. The graphical model. Known and potential TFs are assumed to be mutually independent. Regulated genes are assumed to be mutually
independent given the TFs.
doi:10.1371/journal.pone.0035762.g001
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xd~
XK

k~1

bdkrkz
XM
m~1

wdmzmzmdze:

A graphical representation of the model is shown in Figure 1. It

has two layers. The upper layer consists of random (vector)

variable r representing TFs, and z representing hidden factors.

The factors are assumed to mutually independent (although,

because the known/putative factors are observed, any dependen-

cies among them do not affect the predictive ability of the model).

The lower layer contains the random variable x representing the

genes regulated by the upper layer nodes. These regulated genes

are assumed to be mutually independent given the regulators in

the upper layer.

Next, we use multivariate notation to formalize and derive the

likelihood function of our model. Let m~(m1,m2, � � � ,mD)T , B be

the D|K matrix with the d-th row being (bd1,bd2, � � � ,bdK ), and B
be the D|M matrix with the d-th row being (wd1,wd2, � � � ,wdM ).
We have that

x~BrzWzzmzd2I,

where I is the identity matrix. Let the prior distribution over latent

variable z be given by a zero-mean unit-covariance Gaussian

p(z)~N (zj0,I):

The conditional distribution of the observed variable x, condi-

tioned on the value of the latent variable z, is also Gaussian, of the

form
p(xDz)~N (BrzWzzm,d2I):

Integrating out latent variable z,

p(x)~

ð
p(xDz)p(z)dz,

the marginal distribution is again Gaussian

p(x)~N (xDBrzm,C),

where the D|D covariance matrix C is defined by

C~d2IzWWT :

The complexity of inverting C is O(M3) instead of O(D3)

C{1~d{2(I{WM{1WT ),

where the M|M matrix M is defined by

M~d2IzWT W:

Let R = {rn} and X = {xn} be the sets of N observed data points.

The loss function (negative log likelihood function) is

L~{ ln p(XjB,W,m,d2)

~{
XN

n~1

ln p(xnjB,W,m,d2)

~
ND

2
ln (2p)z

N

2
ln jCj

z
1

2

XN

n~1

(xn{Brn{m)T C{1(xn{Brn{m):

The parameter space in our model is SB,W,m,dT. Since only a

small fraction of the candidate TFs are expected to be true

regulators for any given gene, most of the weights in B and W
should be set to zero to indicate non-regulation. L1 regularization

is a well known approach for effective feature selection. In this

approach, we add a penalty to the objective function that

automatically pushes the elements in the parameter space to be

zero. It has shown experimentally and theoretically to be capable

of learning good models when most features are irrelevant [26].

The new objective function with L1 regularization is of the form

min
B,W,m,d

Lzl(DDWDD1zDDBDD1), ð1Þ

where l is a tuning parameter that can be determined using cross

validation, which will be discussed later.

Optimization
To optimize the likelihood function with L1 norm, we use the

Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) algo-

rithm described in [29]. The OWL-QN algorithm minimizes

functions of the form

f (w)~loss(w)zCDwD1,

where loss is an arbitrary differentiable loss function, and DwD1 is the

L1 norm of the weight (parameter) vector. It is based on the L-

BFGS Quasi-Newton algorithm [30], with modifications to deal

with the fact that the L1 norm is not differentiable. The algorithm

is proven to converge to a local optimum of the parameter vector.

The algorithm is very fast, and capable of scaling efficiently to

problems with millions of parameters. Thus it is a good option for

our problem where the parameter space is large when dealing with

large scale genome-wide gene expression data.

Besides the loss function, and the penalized parameters, the

OWL-QN algorithm also needs the gradient of the loss function,

which (without detailed derivation) is

LL
LB

~{
XN

i~1

C{1(xn{Brn{m)rT
n ,

LL
LW

~N({C{1SC{1WzC{1W),

where

S~
1

N

XN

i~1

(xn{Brn{m)(xn{Brn{m)T ,

LL
Lm

~{
XN

i~1

C{1(xn{Brn{m),

LL
Ld

~Nd tr (C{1){d
XN

i~1

(xn{Brn{m)T C{1C{1(xn{Brn{m):

The number of hidden variables M and the L1 penalty l are

determined by two-fold cross validation within a wrapper used to

evaluate out-of-sample prediction (see Evaluation). Only two folds

are used at this stage to lessen the computational burden.
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We note that sparse PCA is not convex [31]. Nonetheless, when

we applied the optimization program with 10 random parameter

initializations for give different models, the program converged to

the same solution for each condition.

Results and Discussion

Data Set
The gene expression data is taken from 1109 human liver

samples. Each RNA sample was profiled on a custom Agilent

44,000 feature microarray composed of 39,296 oligonucleotide

probes targeting transcripts representing 34,266 known and

predicted genes, including high-confidence, non-coding RNA

sequences. The gene expression data was originally collected to

characterize the genetic architecture of gene expression in human

liver [32]. The expression data was processed using the median

imputation method as in [32]. All microarray data associated with

the human liver cohort were previously deposited into the Gene

Expression Ominbus (GEO) database [33] under accession

number GSE24335. The set of known and putative TFs is taken

from [28], which is publicly available from http://hg.wustl.edu/

lovett/TF_june04table.html. The total number of such TFs is

1660.

Evaluation
We evaluated three models: (1) one with hidden variables, (2)

one with no hidden variables, and (3) a reference model that

assumes the non-TF genes are mutually independent (i.e., a model

with no top layer in the corresponding graph). We evaluated the

models by measuring out-of-sample log likelihoods via ten-fold

cross validation. More specifically, we partition the samples into 10

subsets of equal size. In each fold, we use samples in 9 subsets as

training data and test the learned model in the remaining 1 subset

of samples. By measuring out-of-sample versus in-sample predic-

tions, we avoid rewarding models that over fit the data. Within

each cross, optimal values for l were determined with two-fold

cross validation. In one fold, the optimal value for M (the number

of hidden variables) was determined to be 20; and we used this

value for the remaining nine folds.

Figure 2 shows the model log-likelihoods of the out-of-sample

predictions across the 10 folds of the data. As can be seen from the

figure, the model with hidden variables always outperforms the

model without hidden variables. Assuming the log likelihoods are

independent (which is roughly the case as there are only 10 folds in

the cross validation), the difference in predictive ability is significant

(p~1:91|10{6 via a paired Wilcoxon signed rank test). Similarly,

the model without hidden variables predicts significantly better than

does the reference model (p~1:91|10{6).

GO Enrichment Analysis for Gene Sets Associated with
Hidden Variables

Hidden variables can model the effect of unknown regulators or

hidden confounders. To better understand the effect of the hidden

variables, we look for correlations between genes associated with a

given hidden variable and sets of genes in GO categories (Biological

Process Ontology) [34].The GO categories are downloaded from

website for gene set enrichment analysis (GSEA) http://www.

broadinstitute.org/gsea/. In particular, for each gene set H , we

identify the GO category whose set of genes is most correlated with

H . We measure correlation via a p-value determined by application

of Fisher’s exact test. Since multiple gene sets H need to be

examined, the raw p-values need to be calibrated because of the

multiple testing problem [35]. To compute calibrated p-values for

each H, we perform a randomization test, wherein we apply the

same test to 1000 randomly created gene sets that have the same

number of genes as H .

In Table 1, each row represents the gene set associated with a

hidden variable. The calibrated p-values for the gene sets

associated with hidden variables are listed in the second column

in the table. The third column shows the false discovery rate

(FDR) [36] of the gene sets. As can be seen from the Table, with

an FDR significance threshold 0.05, nine of the twenty gene sets

1.50E+06

1.70E+06

1.90E+06

2.10E+06

2.30E+06

2.50E+06

2.70E+06

2.90E+06

3.10E+06

3.30E+06

1 2 3 4 5 6 7 8 9 10
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g 
Li
ke
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d

Model with Hidden Variables

Model without Hidden Variable

Reference Model

Figure 2. Out-of-sample prediction accuracy of the three models across the 10 folds of the data.
doi:10.1371/journal.pone.0035762.g002
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are significant. These nine hidden variables may represent the

joint effect of unknown TFs. The remaining hidden variables may

correspond to hidden confounders.

The first column of Table 1 shows the sizes of the gene sets

associated with hidden variables. As can be seen, each gene set

covers a large number of genes, despite the use of an L1 penalty

that tends to drive many association weights to zero. This result

Table 1. GO enrichment analysis of the gene sets associated with hidden variables.

Gene Set Size Raw p-value Adjusted p-value FDR GO Categories

19649 1.17610215 0 0 cellular protein metabolic process

19431 2.31610213 0 0 protein metabolic process

22301 1.71610210 0 0 transport

23608 2.5361029 0 0 transport

20500 9.4761029 0 0 cellular protein metabolic process

26332 1.5561028 0 0 transport

21264 2.2061025 0.001 0.003 response to chemical stimulus

19395 1.8761025 0.004 0.01 organic acid metabolic process

21098 1.5161024 0.01 0.022 organic acid metabolic process

29240 2.0361023 0.026 0.052 synaptic transmission

20199 3.7661024 0.03 0.054 positive regulation of phosphate metabolic process

24175 1.0461023 0.048 0.08 phosphoinositide mediated signaling

17480 6.7361024 0.064 0.1 cation homeostasis

20331 9.4561024 0.07 0.1 digestion

22477 1.2961023 0.075 0.1 locomotory behavior

22644 2.7461023 0.204 0.255 organic acid transport

18732 4.0061023 0.393 0.462 positive regulation of t_cell proliferation

16294 7.8661023 0.707 0.786 inorganic anion transport

doi:10.1371/journal.pone.0035762.t001
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Figure 3. Histogram of sizes of the gene sets associated with known and putative regulators.
doi:10.1371/journal.pone.0035762.g003
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indicates that the hidden variables may model the effects that

influence many different genes.

Among the gene sets associated with known/putative regulators,

there are 803 gene sets with size greater or equal to 5. The

maximum size is 8820. Figure 3 shows the histogram of sizes of

these gene sets. It can be seen from the figure that the gene sets

associated with known/putative regulators are much smaller than

those associated with hidden variables. This is reasonable since

real regulators are expected to regulate a relatively small subset of

genes. On the other hand, the large sizes of the gene sets associated

with hidden variables indicate that the hidden variables are useful

in modeling confounding factors that may effect most of the genes.

Comparison to Network Component Analysis Method
Our method aims to learn the transcriptional regulatory

relationship without any prior knowledge of the network topology.

As discussed in the Introduction section, various methods have

been proposed to learn transcription factor activity assuming that

the regulatory network topology is known [11–16]. Among the

existing methods, Network Component Analysis (NCA) is a widely

used approach. NCA aims at decomposing gene expression matrix

X into two matrices A and P, such that X~AP, where A
represents the connectivity network, and P presents the transcrip-

tional factor activities (TFA). The connectivity matrix A is a

required input of NCA. A nonzero value indicates there is an edge

from a TF to a gene, and zero value indicates there is no edge

between them. The nonzero values in the input matrix A can be

random. The algorithm automatically learns the optimized A and

P. The zero entries in A remain unchanged. That is, the structure

of the regulatory network does not change. Therefore, NCA is

mainly used to infer the TF activities with known network

structure.

The NCA algorithm needs three criteria to ensure the

decomposition to be unique [11]. First, the connectivity matrix

A must have full-column rank. Second, when a node in the

regulatory layer is removed along with all of the output nodes

connected to it, the resulting network must be characterized by a

connectivity matrix that still has full-column rank. This implies

that each column of A must have at least K-1 zeros, where K is the

number of TFs. Third, matrix P must have full row rank.

To apply NCA to infer the regulatory structure, we use a

random matrix as the input matrix A, of which K-1 random

elements in each column are set to 0. This is needed in order to

satisfy the three criteria required by NCA. For the fairness of

comparison, after the connectivity structure is learned by NCA, we

remove the edges with small weights so that the number of

remaining edges is equal to that of our model.

We apply GO enrichment analysis on the gene sets learned by

NCA and our method. Table 2 shows the average raw p-value of

the gene sets and the number of significant gene sets (with

significance level 0.05 after correction for multiple testing). As can

been seen from the table, the average raw p-value of our model is

much less than that of NCA. Moreover, our model identified more

significance gene sets than did NCA. The main reason for this

difference is that NCA requires prior knowledge about the

regulatory structure. Our model dose not have this assumption

and tries to reconstruct the regulatory structure from the

expression values of the TFs and genes.

Conclusion
Reconstructing gene transcriptional regulatory networks is a

central problem in computational systems biology. Challenging

issues include the incorporation of knowledge about TFs and

modeling unknown TFs and confounders. We have developed a

probabilistic graphical model that includes the known TFs as

observed variables, uses hidden variables to model unknown TFs

and confounders, and uses L1 regularization to address the high

dimensionality and relatively low sample size of the data. Using

human gene expression data, we have shown that the proposed

model predicts significantly better than does the model without

hidden variables. In addition, we have found that some of gene sets

corresponding to hidden variables have significant correlations

with GO categories, suggesting that the hidden variables at least in

part represent unknown TFs.
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