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Abstract

With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise
levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-
operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that
network compression can be used to compare false positive and false negative noise levels in protein interaction networks.
We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show
that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-
localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological
expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens.
Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard
measures such as average degree and clustering coefficients.
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Introduction

Over the last ten years, several experimental methods such as

Yeast-two-hybrid (Y2H), affinity purification followed by mass

spectrometry (AP/MS), and protein complementation assay (PCA)

have been used for large-scale protein interaction mapping. Other

approaches for reconstituting protein interaction networks range

from computational and structural methods to manual curation

and automated text-mining of large corpora of literature.

Considerable obstacles have been encountered and the ways to

assess data quality remain controversial. Despite many efforts, the

interaction space for most species is still sparsely explored and

reliable gold standards are difficult to define [1]. Consequently the

problem of assessing the quality and coverage of protein

interaction networks remains largely open. In this work we

propose to quantify the richness in patterns and structure of

different protein interaction datasets and investigate how this

relates to quality.

Large-scale interactome screens
Comparison of the first genome-wide Yeast Y2H networks by

Uetz et al. and Ito et al. [2,3], showed less than 20% overlap,

which was slightly above random expectation. Shortly after, Gavin

et al. performed one of the first large-scale screens using AP/MS

[4–6]. Later screens by Gavin et al. and Krogan et al. were

merged and filtered for false positives by Collins et al. [7–9]. Using

a benchmark dataset, von Mering et al. reported that Y2H

datasets had an estimated 1% coverage and 5% accuracy, whereas

AP/MS methods had 35% coverage and 12% accuracy [10]. Up

to date estimates put the accuracy of Y2H screens between 20%
and 35% [11]. Recently, Tarassov et al. completed the first

genome-wide in-vivo protein-fragment complementation assay

(PCA) screen in yeast with positive predictive value of 98:2% [12],

and Yu et al. obtained a second-generation higher-quality high-

throughput Y2H dataset [1]. Despite the large amount of

interaction data obtained, there is only 63 interactions detected

by both Y2H, PCA, and AP/MS screens in Yeast (see Fig. S9 and

[13] for more details). The consensus is that different methods

explore orthogonal sub-spaces of interactions with AP/MS

favoring stable intra-complex interactions and Y2H transient

inter-complex interactions [1,13].

Assessing quality
Several methods have been proposed for assessing the quality of

protein interaction datasets. A first approach is to compare error-

prone high-throughput data with interactions curated from

literature on small-scale interaction studies [10,14]. Indeed,

manually curated interactions supported by multiple, independent

pieces of evidence may be considered a gold standard [14,15]. By

recuration of a random sample of Human interactions mentioned

in at least two publications, Cusick et al. recently reported that

91:5% were correct [16], and Salwinski et al. showed that curation

error rates are typically below 10% [17]. Several high-confidence

datasets have been constructed by pooling information from

literature curation and experimental data such as the ‘binary-GS’

dataset for Y2H [1], or the MIPS complex database for AP/MS
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[18]. A second approach consists in measuring the overlap

between different datasets [10]. A third approach is to measure the

proportion of interacting proteins that are co-expressed, function-

ally similar, co-localized in the cell, or phylogenetically related

[1,10,19–22].

More than the sum of its parts
The question of quality of protein interaction networks is a

difficult and controversial one. It will likely be settled by intense

experimentation using multiple and orthogonal methods [23]. In

this work we propose instead to measure the network’s informa-

tiveness by considering the statistically significant structures and

patterns present in the networks. Consider a low sensitivity

network consisting of isolated and 100% true interactions – each

interaction is correct but no patterns emerge and complexes or

pathways are impossible to identify. In contrast, consider a highly

connected and noisy network with many spurious interactions –

patterns occur, but not more often than expected by chance alone.

Both networks share a lack of informativeness – either because of

sparsity or because of too many false positives – but differ when

considering the quality of individual interactions. Our working

hypothesis is that true and complete interactome maps are not

only characterized by the quality of their individual interactions

but as well by the richness in overall structure. Because quality

measures that assess the truthfulness of individual interactions are

difficult to attain, our proposal is to complement these with a

measure that evaluates the network structure as a whole. In the

following we explain why we should expect the true networks to be

rich in structure and how this can be quantified using network

compressibility.

Quantifying richness in patterns and structure
Modularity, redundancy and cooperativity imply com-

pressibility. Molecular systems in the cell are inherently

modular, cooperative, and redundant [7,24–26]. Fig. 1 shows

that these properties are reflected in the networks – leading to

compressible patterns of interaction. Similarly to the compress-

ibility of genomic sequences due to the recurrence of similar

sequences [27,28], the compressibility of protein interaction

networks is due to

N modules (e.g. protein sub-complexes which are re-used),

N redundant interactions (e.g. multiple inhibitors for the same

enzyme),

N protein domain and motif mediated interactions [29] that form

cliques and bicliques as shown in Fig. 1. Note that domain

interactions do not necessarily lead to bi-cliques nor do

bicliques nescessarily imply interactions between shared

domains.

Entropy, compressibility, and Kolmogorov com-

plexity. In computing, compression algorithms identify patterns

in data and use these patterns to obtain compact representations,

thus reducing data size. Lossless compression algorithms are

reversible: the compressed representation is sufficient to recover

the original data. In 1948, Shannon discovered a fundamental and

unexceedable limit to lossless data compression based on the

notion of entropy [30]. Entropy is intrinsically dependent on the

pattern statistics of the data. Following this first insight,

Kolmogorov and Chaitin later generalized this notion and

introduced program-size complexity as the length of the shortest

program needed to specify data. As put forward by Chaitin: ‘‘to

comprehend is to compress’’ [31]. Chaitin’s insight can be turned

into an operational principle: compression algorithms can be used

to analyze patterns and structure in data. For example, the

information content of genomic sequences has been investigated in

several studies [27,28]. It was applied to alignment-free sequence

comparison by conditional Kolmogorov complexity [32], and to

protein sequence classification [33]. Similarly, there have been

several attempts to quantify the information content of graphs.

Network information theory. There exist a variety of

approaches for measuring the information content of graphs going

back to Rashewsky et al. and Mowshowitz et al. who proposed to

calculate the information content of graphs using Shannon’s

entropy formula [34,35]. For example, Minoli et al. proposed to

measure the combinatorial complexity of a network [36] and Jukna et al.

defined graph complexity as the ‘‘minimum number of union and

intersection operations needed to obtain the whole set of its edges

starting from stars’’ [37]. More recently, a definition of network

entropy based on topology configuration was used to segregate

random network models [38]. And Dehmer at al. introduced a

definition based on local vertex functionals for computing the

entropy of chemical graphs and comparing chemical graphs [39],

and another definition based on graph decompositions [40]. Graph

entropy has also been used to characterize the resilience and

robustness of protein interaction networks [41,42]. Other ap-

proaches use network ensembles to evaluate entropy using concepts

derived from statistical physics [43]. The general conclusion of these

approaches when applied to complex biological networks is that

these network topologies are markedly different from random

graphs [44]. In general, there are suitable measures that quantify the

difference between real and random networks. Protein interaction

networks, for example, generally follow a power law degree

distribution, which is markedly different from the degree distribu-

tion of a random network of the same size generated with the

Erdös–Rényi model. As explained below, further insights into the

information content of networks can be attained by quantifying

network compressibility.

Evaluating information content with compression

algorithms. Instead of measuring the network’s information

content using information theory and Shanon’s entropy, we rely

on the notion of graph compression. Other approaches for graph

compression exploit neighborhood similarity, non-uniform net-

work motif statistics, and scale-free properties of complex networks

[45–52]. These algorithms rely on the idea that the more diverse

the node neighborhoods are, the less compressible the network is,

and the higher the network entropy is. For example, a network in

which all nodes have nearly the same neighbors has a higher

entropy whereas a network for which all nodes have different

neighborhoods will have a higher entropy [53]. If two nodes in a

network have nearly the same neighbors then they are also nearly

exchangeable – to recover the original network few interactions

need to be rewired. This implies that the amount of information

necessary to encode both neighborhoods is less than the sum of

that needed to encode each of them. This highlights the link

between symmetry in networks and compressibility. The more

symmetries a network has, the more compressible it is. Recently,

[54] showed that ‘real-world’ complex networks are richly

symmetric – much more than standard network models predict.

Similarly, [55] showed that complex networks cluster in a tight

region of the entropy-noise space. These result suggests that

compressibility can be used to characterize complex networks.

Network compressibility is then simply quantified by measuring

data size before and after compression. In this work we use the

power graph algorithm as a network compression algorithm [56].

Entropy, compressibility, and relative compressibi-

lity. Because we aim at comparing different networks, it is

necessary to normalize against the effects of different sizes and

Network Compressibility as a Quality Measure

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e35729



topologies on a network’s compressibility (see methods section for

details and in depth discussion). Instead of measuring the entropy

which varies according to the network’s data size, we consider the

absolute compression rate of the network defined as the proportion of

edges removed after compression compared to the number of

edges present before. For example, a compression rate of 70%

means that among 100 edges in the original network, only 30

edges remain after compression. However, high connectivity

networks with many edges per node are compressible solely

because of the chance occurrence of patterns. To prevent this bias,

we measure the compressibility of a network relative to a random

ensemble of networks having the same number of nodes, edges

and same degree distribution. We define the relative compression rate

as the difference between the compression rate of a network and

the average compression rate of these random networks (see

methods section for details). For example, a network in which all

proteins would be interacting with all other proteins has a relative

compression rate of zero. Networks with no edges, a single edge,

an arbitrary number of isolated edges, or a random high

connectivity wiring of edges also have a relative compression rate

of zero. In contrast, networks with statistically significant patterns

can attain a relative compression rate as high as 50%.

Furthermore, it should be noted that measuring the compressibil-

ity of very sparse and lowly connected networks is of limited

interest – at the limit the compressibility for a network consisting of

a single edge is meaningless. Throughout this work compressibility

will implicitly refer to relative compression rate.

What is network quality. We understand network quality as

encompassing both sensitivity and specificity. To illustrate this

consider the following example: i) take a perfect and complete

interactome and remove many interactions at random, or ii) take

the same perfect and complete network and now add many

interactions at random. As we will show, both alterations result in

networks that have global properties closer to that of random

networks and yet the truthfulness of individual positive interactions

differs: individual interactions are more reliable in i) than in ii).

The situation is reversed when looking at the network’s

complement, at the negative interactions: the absence of an

interaction in i) is less reliable than in ii). Importantly, network

quality is not solely determined by the quality of individual

interactions.

In the following we give a four point validation of network

compressibility as a measure of network’s richness in structure –

our proxy for the notion of overall network quality.

Results

First we validate the link between relative compression rate and

network quality as previously defined. We investigate to which

extent it correlates with other measure proposed in the literature.

We then compare the relative compressibility of all large-scale

interactomes and discuss how assay parameters such as protein

expression level, tagging, and pooling strategies influence the

networks’ relative compressibility. Importantly, we show that

relative compressibility is independent of the network topology

such as number of proteins, interactions, average number of

interaction partners, or average clustering coefficient. Finally, we

verify that networks derived from completely and accurately

known complex systems are compressible at levels similar to the

best interactomes.

Validation 1 – False positives and false negatives
decrease network relative compressibility

If relative compressibility measures the fidelity of the networks

to the systems they represent, then the relative compression rate

should deteriorate with the addition of noise to networks. Noise

can be applied by randomly adding interactions – introducing false

positives (FP) – or by randomly removing interactions –

introducing false negatives (FN). We consider two models for

adding or removing interactions in protein interaction networks.

In the Erdös–Rényi model (ER), the choice of interactions is

independent of the network topology and all possible interactions

are equally likely to be selected for addition or removal [57]. In

contrast, in the Barabsi-Albert model (BA), the scale-free topology

Figure 1. Modularity and redundancy in protein interaction networks. Modularity is a hallmark of protein interaction networks [7]. In the
network by Collins et al. the proteins SPT4 and SPT5 have many common interaction partners [9]. It forms the SPT4/SPT5 sub-complex – shared by
both the polymerase I and II [104] as well as complexes involved in mRNA capping and splicing [105]. Redundancy is seen, for example in the
literature curated HPRD network [15], as proteins of same function sharing interaction partners – here two thiol protease inhibitors. Both modularity
and redundancy of protein interactions can be explained by domain and motif mediated binding. For example, in Arabidopsis thaliana cytokinin-
signaling pathway, the histidine kinases AHP1, AHP2, AHP3, AHP5 interact with response regulators ARR2 and ARR8 via their REC receptor domains
[106].
doi:10.1371/journal.pone.0035729.g001

Network Compressibility as a Quality Measure
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is preserved [58]. It is assumed that false positives are more likely

for highly connected proteins (‘‘the rich get richer’’) while false

negatives are more likely for poorly connected proteins (‘‘the poor

get poorer’’). This gives a total of four combinations: FN/ER, FP/

ER, FN/BA, FP/BA which were applied to 13 Yeast networks (5

Y2H, 3 AP/MS, 1 PCA, 2 literature, 1 structure) adding and

removing up to 60% of interactions (see Methods for details). As

shown in Fig. 2, we find that false positives and false negatives

decrease the relative compression rates of networks – indepen-

dently of the system from which the network is derived and

independently of the model considered for false positives and false

negatives. Thus, low sensitivity and low specificity implies low

relative compression rate. Furthermore, relative compressibility

decreases linearly with the increase of noise. For example, for the

Collins network, each additional 2% of false positives or false

negatives leads to a 1 percentage point decrease in relative

compressibility.

Networks that have a low relative compressibility (below 10%)

are proportionally less affected by noise. For example, CCSB YI1

[1] remains stationary at around 6%. There is one exception, Ito

full is the only network to increase in compressibility when

interactions are removed – we examine this network in the next

paragraph.

Why does removing interactions from Ito full slightly

increases its network compressibility?. With one exception

(Fig. S2), all curves in Fig. 2 decrease with the addition or removal

of random interactions. The Ito full dataset consists of both Ito

core interactions as well as unreliable interactions that were

observed only once [59]. We observe that removing interactions

from Ito full brings its relative compression rate to levels

comparable to Ito core without noise. This is explained by an

increase of the signal to noise ratio in the network. The only case

in which removing interactions from a network increases its

compressibility is when many removed interactions are isolated

and not part of structures in the network. Notice that this effect

occurs only when removing interactions and not when adding false

positive interactions (Fig. 2BD). Comparing the structures of both

networks we found that 35% of Ito full interactions are

incompressible, whereas this number is 26% for Ito core, and

for example 20% for Binary-GS. The high proportion of

incompressible interactions in Ito full – many of which are

probably false positives – explains this effect. However, because of

the high variance when computing the effect of noise on lowly

compressible networks (below 10%), the small increase of Ito full

must be interpreted with caution (see high variability in Fig. S2

requiring LOWESS filtering).

Effect of random removal or addition of proteins on the

relative compression rate. In addition, we consider false

positives and false negatives caused by missing or added proteins.

Under-sampling in screens is the main cause for missing proteins. We

removed up to 50% of proteins from the same 13 yeast networks

and observed that the relative compressibility decreases with

protein removal (Fig. 3A, see Methods for details). We also added

up to 50% extra proteins to the networks while preserving the

original network degree distribution. We also observe a decreases

in relative compressibility. Indeed, the relative compression rate

only increases if the added protein has exactly the same interaction

profile as another protein already in the network. This case

happens rarely when proteins are chosen randomly. Therefore, the

net effect is increased randomness in the network and therefore a

decrease of relative compressibility (Fig. 3B). In general, a strong

effect is not expected since the patterns exploited by power graph

analysis – non-trivial cliques and bicliques – are robust to random

node removal or addition. Indeed, when comparing these results

to those of Fig. 2 we note that removing or adding proteins and all

their interactions has a lesser influence on the relative compress-

ibility than the independent removal or addition of interactions.

Validation 2 – Relative compression rates correlate with
published interaction confidences

Published interactomes are often reported as binary interac-

tions, i.e. either two proteins interact or not. Underlying these data

are confidence scores – authors define a threshold and only report

interactions above that threshold. Defining such a threshold is a

difficult compromise since a conservative threshold may improve

precision but lowers the coverage, while a generous threshold

achieves the opposite effect. Thus, the threshold controls the

amount of false positives and false negatives in the network and the

question arises of how is this reflected in the compression rates. To

answer this question we systematically analysed the networks of

Gavin (TAP/MS), Tarassov (PCA), Parrish (Y2H), Kiemer (WI-

PHI integrated network) and computed the compression rates for

networks defined by interactions above a minimum and below a

maximum confidence score (see Fig. 4A and Methods for details).

The results for all three networks are given in Fig. 4 and Fig S1.

First, we note that complete networks – lowest minimum and

highest maximum – are not necessarily the most compressible.

Second, with the exception of the network by Parrish, the most

compressible sub-networks include the interactions of highest

confidence. Moreover, including interactions of low confidence

consistently decreases the compressibility of the corresponding

sub-networks.

Gavin network (TAP/MS). Remarkably, for Gavin’s net-

work, the highest relative compression rate is found for a

minimum confidence score (socio-affinity index) of 5 – a threshold

recommended by the authors. We also observe the detrimental

effect of both false negatives and false positives when imposing

excessively high minimum or low maximal thresholds to the data:

keeping only interactions with a score above 15 leads to similarly

low relative compression rates as keeping only interactions with a

score below 5.

Tarassov network (PCA). For Tarassov’s network we find

that the highest relative compressibility is found for a minimum

score of 4 and a maximal score of 7. However, most sub-networks

with high maximum thresholds have similar compressibility

(between 0:15 and 0:2) unless the minimum threshold is set too

high (above 5). In agreement with this observation the authors

choose to include most lower confidence interactions with a

minimum threshold of 2:5. Interactions with a score above 5 form

less network motifs and thus the sub-networks are lowly

compressible. Yet, including these interactions together with

interactions with a score above 4 gives more compressible sub-

networks than without – indicating that these interactions belong

to structures formed for slightly lower confidences.

Parrish network (Y2H). For Parrish’s network we observe

that interactions with confidence scores below 0:3 form sub-

networks with low relative compression rates. In particular, we

find that the sub-networks with lowest relative compression rates

are found for a minimum of 0:10 and maximums below 0:75 –

which indicates that interactions with a confidence around 0:1 are

detrimental to relative compressibility. This is in agreement with

the analysis by Parrish et al. which shows that interactions with a

confidence of about 0:15 have the highest proportion of false

positives [60]. This is estimated from a training set of likely true

positives and true negatives – see Fig. 2A in [60]. Moreover, the

peak in relative compression rate is found for a minimum

threshold of 0:6, in agreement with the author’s confidence

threshold of 0:5 separating high from low confidence interactions.

Network Compressibility as a Quality Measure

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e35729



The value of 0:6 is in fact closer to the confidence score for which

functional homogeneity between interacting proteins becomes

significant – see Fig. 2C in [60]. Surprisingly, interactions of very

high confidence (above 0:7) are detrimental to the relative

compressibility. These high confidence interactions do not fit

together with the other high-confidence interactions (above 0:5).

Either the confidence scores are flawed for very high values, or

network compressibility is inapplicable in this case. Our suspicion

is that erroneously high Leu and LacZ reporter activities – used for

deriving the confidence scores – could be responsible. Supporting

this hypothesis and following intuition is the observation that for

the Gavin, Tarassov, and the WI-PHI networks, raising the upper

confidence bound always increases compressibility.

WI-PHI network. We also tested a high quality merged

dataset: the WI-PHI network [61]. WI-PHI is a yeast interactome

enriched for direct physical interactions compiled from several
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Figure 2. Effect of removal/addition of interactions on the relative compression rate. (A and B) Effect of removal/addition of interactions
on the relative compression rate in 13 Yeast networks with the ER noise model. In order to validate the relationship between network quality and
relative compressibility, we investigate the effect of false positives and false negatives on the relative compression rate for up to 60% removed/added
interactions with the ER models. Independently of the experimental system or network topology, both false positives and false negatives consistently
reduce the relative compression rate when the proportion of added or removed interactions is increased. (C and D) Effect of removal/addition of
interactions on the relative compression rate in 13 Yeast networks with the BA noise model. Inspired by the BarabÃ¡si-Albert preferential attachment
model of network growth, we investigate the effect of false positives and false negatives biased towards highly connected proteins and lowly
connected proteins, respectively. Therefore, the scale-free network topology is preserved and ‘‘interaction-rich proteins get richer and interaction-
poor proteins get poorer’’. As for the random (ER) noise model, we observe that independently of the experimental system or network topology,
both false positives and false negatives consistently reduce the relative compression rate. While both models give similar curves, the BA model
decreases the relative compression rate by an additional 5% for high noise levels (60%).
doi:10.1371/journal.pone.0035729.g002
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datasets (Gavin, Krogan, Ito, Uetz, and BioGRID, BIND, IntAct,

Mint) [2,7,8,59,62–65]. The authors computed socio-affinity

scores for all interactions covering 85% of the yeast proteome.

Similarly to the networks by Gavin and Tarassov, excluding low-

confidence interactions (score below 20) leads to a higher

compressibility than is achieved for the whole network. The

authors defined the core dataset as all interactions with a score

above 21. Our analysis confirms that interactions with score below

20 are detrimental to the compressibility (Fig. S1).

Validation 3 – Author’s gold standard datasets have
highest relative compression rate

The network by Collins et al. is a merge and re-analysis of the

raw data from the Gavin and Krogan datasets aimed at improving

coverage and reducing false positives [9]. We observe that this

dataset has a higher relative compression rate (48%) than both

original datasets interpreted with the plain spoke model (Gavin 22%
and Krogan 18%). This is in agreement with the author’s

assessment which showed that their consolidated dataset has a

higher functional homogeneity than the Gavin or Krogan datasets

– see Fig. 2 in [9].

Yu et al. compared their novel experimental dataset (CCSB-

YI1) and their own merge of several datasets (Y2H-Union) to a

gold standard of binary interactions derived from literature

(CCSB-binaryGS) [1]. We find that this recent gold standard

dataset has a higher relative compression rate (13%) than all Yeast

Y2H datasets.

Ito et al. discouraged the use of the Ito full dataset and instead

recommended the use of a subset: Ito core. We observe that the Ito

core network has a slightly higher relative compression rate (of 2
percentage points) [59]. Since Ito full has the same if not a greater

coverage than Ito core, we can assume that the difference in

relative compression rate is attributable to false positives.

Similarly, false positive estimates by Lemmens et al. [11]

correlate with relative compressibility: the Stelzl dataset achieved

the highest MAPPIT-retest success rate of 31% and also has a

higher relative compression rate (20%) compared to the datasets

from Rual (4%), Yu (CCSB-YI1, 6%), and Simonis [66] (5%) – see

Fig. 2 in [11].

Finally, the WI-PHI core network by Kiemer et al. [61],

enriched for direct physical interactions has the highest relative

compression rate of all yeast networks when excluding socio-

affinity Gavin and Collins networks. It should be noted that these

‘gold standard’ networks have compressibility rates within a large

range of 13%250% which suggests that they do not necessarily

have the same level of quality. Networks are deemed high-quality

in a specific experimental context. There may well be differences

in quality between these networks for which we dont have

independent evidence. The difficulty here is the absence of reliable

and undisputed gold standards or means to compare different

proposals for gold standards.

Validation 4 – Compressibility correlates with co-
expression, co-localization and shared function

Assortativity in protein interaction networks refers to the

preference of proteins to interact with other proteins that are

similar or share certain properties [67]. It has been previously

proposed as a means of evaluating network quality when applied

to gene co-expression, functional similarity, cellular localization,

and phylogenetic profile similarity [10]. Fig. 5A shows that the

relative compression rate is highly correlated to the proportion of

co-expressed gene pairs corresponding to interacting proteins

(Kendall t~0:74). There is a weaker correlation with function

(Fig. 5B, t~0:44) and with co-localization (Fig. 5B, t~0:46), but

only a weak and statistically insignificant correlation to phyloge-

netic profile similarity (Fig. 5D, t~0:38 and p-value = 0:07).

Several interesting observations can be made: First, gold-standard

dataset CCSB-binaryGS [1] is consistently in the top 3 networks

having higher relative assortativity ratios (Fig. 5A, B, C, and D).

Second, Tarassov’s dataset has the highest co-localization

assortativity ratio – which is consistent with the fact that the

PCA method is unique in that it detects in-vivo protein interactions
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Figure 3. Influence of under-sampling and ‘over’-sampling on the relative compression rate. (A) The relative compression rate decreases
slowly when proteins – and all their interactions – are removed from networks (compare to Fig. 2). For example, removing half of the nodes in the
Collins network decreases its relative compression rate by just 10 percentage points. This shows that the effect of under-sampling is not as strong as
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(see materials and methods for details).
doi:10.1371/journal.pone.0035729.g003
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within a 8 nanometer distance [12]. AP/MS screens are also in-

vivo, but there is a key difference: In TAP the interactions are

initiated in-vivo but detected in-vitro, whereas in PCA everything

happens in-vivo – the proteins never leave the cell even during

detection. Third, Ito full is the worst network for relative

compressibility as well as for network assortativity while Ito core

has consistently higher assortativity and compressibility. Fourth,

the WI-PHI network – a network enriched for direct physical

interactions – has consistently both higher assortativity and higher

relative compressibility than most datasets from which it is derived.

It has been argued that interacting proteins need not to be co-

expressed, co-localized, or functionally similar [1]. However, it

should be noted that even if not all interactions occur between co-

expressed, co-localized or functionally similar proteins, a signal

must exist when comparing these true interactions with totally

random false positives.

To summarize, the above four validation points substantiate our

claim that higher network compressibility is a good proxy for

overall network quality. Next, we will discuss in detail how the

different experimental methods influence the relative compress-

ibility of available large-scale interactomes.

Relative compression rates of all large-scale interactomes
Table 1 lists the relative compression rates for all 22 large-scale

interactomes (13 Y2H, 8 AP/MS, 1 PCA), 5 entire databases

(BioGRID, IntAct, DIP, MINT, and HPRD), 2 literature curated

networks, 1 structural interactome, and 1 mixed dataset (WI-PHI).

AP/MS datasets are interpreted using the spoke model thus

preventing clustering effects – except for the Collins and Gavin

datasets that are interpreted using socio-affinity scoring. To

prevent a bias in the selection of datasets we defined a strict

criteria for what constitutes a large-scale, unbiased, and symmetric screen
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Figure 4. Correlating interaction confidence scores with relative compressibility. (A) Measuring the relative compression rate of sub-
networks obtained by slicing networks for different ranges of confidence scores. The color of each cell indicates the relative compression rate of each
sub-network and the vertical dotted lines indicate the authors’ choice of minimum confidence thresholds. (B) For Gavin’s network we observe that
the sub-network with the most interactions and the highest relative compression rate is found for a minimum socio-affinity score of 5 and a
maximum of 20. This is in agreement with the minimum of 5 recommended by Gavin et al. – interactions with a lower score have reproducibility of
less than 70% [7]. (C) For Tarassov’s network we find that the highest relative compression rates are found for a minimum z-score of 4 and a maximal
z-score of 7. However, lower confidence interactions do not significantly decrease the relative compressibility of the sub-networks – at most 2%
relative compressibility points are lost when including lower confidence interactions (z-score from 2 to 7). This is in agreement with the relatively
generous threshold of 2:5 used by the authors on the colony size z-score. (D) Parrish’s network we observe low relative compressibility for sub-
networks containing low confidence interactions (minimum v0:3). In contrast to the Gavin and Tarassov networks, the highest relative compression
rate is not found when including high confidence interactions. Instead, it is found for a sub-network with confidences between 0:6 and 0:7 which
agrees with the author’s threshold of 0:5 between high and low quality interactions.
doi:10.1371/journal.pone.0035729.g004
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(see Methods for details). Fig. 6 shows a plot of relative

compression rates versus absolute compression rates for these

networks. Absolute compression rates range from 30% to 70% and

relative compression rates from 1% to 48%. Fig. 7 shows that the

maximal achieved relative compression rate has been roughly

increasing with time, suggesting that progress in the methodologies

is leading to networks with increasing richness in patterns and

structure.

Average signal. To investigate the ‘‘average signal’’ of all

available interactome data we computed the relative compression

rate of all protein interaction data available in the multi-species

databases: IntAct, MINT, BioGRID, and DIP. These database

averages cluster around a relative compressibility of 11%. The DIP

database covers 8 large-scale datasets whereas MINT covers 11,

IntAct covers 20, and BioGRID covers 18. DIP covers interactions

from 3,609 publications, BioGRID from 22,645 publications,

IntAct from 4,247 publications, MINT from 2,942 publications.

We note that the relative compressibility of IntAct is greater than

that of MINT, which is greater than that of DIP, HPRD, and

BioGRID, this shows that the IntAct database is slightly richer in

clique and biclique patterns.
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Y2H with two-phase pooling has best compression. First

introduced by [68], the Yeast two-hybrid system (Y2H) is a widely

used technique for protein interaction testing. Applying Y2H for

large-scale interactome mapping raises scalability challenges which

have been addressed with three approaches: library screens,

matrix screens, and the recent smart-pooling screens such as two-

phase pooling [69].

Table 2 shows that the two most compressible networks – Stelzl

and Parrish – were derived using two-phase pooling Y2H screens,

the first having a lower screening completeness than the second.

Parrish’s network was derived from Campylobacter jejuni, a

species with a small genome (1643 coding sequences), and 80% of

all proteins were present as baits and preys. A screening

completeness of 80%|80% was achieved – 64% of all protein

pairs where screened for interaction. In contrast, Stelzl et al.

searched a sizeable but smaller fraction (9%) of the 300 times

larger Human interactome search space [70]. This observation

suggests that already sensitive screens can deliver interactomes

richer in patterns and motifs, if the quadratic size of proteomes can

be overcome.

Lower sensitivity of library-based Y2H screens. The

lower sensitivity of library based Y2H screens is apparent if one

examines the average number of interaction partners. Depending

on the database – IntAct, BioGRID, Mint, HPRD, or DIP – the

average number of interaction partners per protein can be roughly

estimated to be between 5 and 15. Published estimates similarly

range around 5 and 8 [71]. Interestingly, most library-based Y2H

screens exhibit lower values than other strategies. For example, the

Titz dataset was derived using the matrix approach for Y2H

screening – all bait and prey pairs are tested individually – a

potentially more sensitive strategy than library screens [69,72].

Similarly, two-phase pooling also seems to favor more interaction

partners per proteins and thus can be deemed more sensitive.

Overall, Table 2 suggests that differences in relative compress-

ibility between Y2H networks can be partly explained by the

different screening strategies and their sensitivities. In contrast,

screening completeness has a weaker influence on the relative

compression rate than the overall effective sensitivity after taking

assay and sampling sensitivity into account [73].

AP/MS with knock-in and TAP-tagging has best

compression.. As Table 3 shows, one AP/MS network –

Arifuzzaman et al. – has a low relative compression rate of 2%
which is below the average for both Y2H and AP/MS datasets

[74]. It is also the only screen that uses both cDNA over-
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expression and the His-tag system instead of maintaining the

physiological expression by knock-in tagging [10], and achieving

high purity by tandem affinity purification (TAP) [6]. We also

observe the higher relative compression rate of Krogan or Gavin

(knock-in) versus Ho (cDNA over-expression) in Yeast; and the

higher relative compression rate of Butland (knock-in) versus

Arifuzzaman (cDNA over-expression) in E. coli [75,76]. More

generally, the two expression modes can be distinguished by the

relative compression rate of the corresponding networks (Wil-

coxon-Mann-Whitney test with p-value below 5%).

What is the compressibility of a negative

interactome?. What about the compressibility of a network of

non-interacting proteins – a negatome? Take a perfectly accurate

interactome network and consider its complement or negatome.

This network is not random since it contains the same information

as the original network: it states exactly which proteins pairs are

not interacting. From this the original network can be recovered.

Our approach detects this non-randomness in the same way that it

detects it for positive interactions. Noise – in the form of both false

positives and false negatives – affect both a network and its

complement in similar ways by destroying patterns. Our approach

does not know the difference between positive or negative datasets,

but just detects patterns and measures how unlikely they are to

appear randomly. We can test this hypothesis by showing that i)

relative compressibility of networks and their negation are

correlated ii) that a high quality Negatome has high relative

compressibility.

As shown in Fig. S8 the relative compressibility of positive and

negative networks are correlated (Kendall t~0:61, pv10{5). We

find a relative compressibility of 23% for the Negatome database

by [77] in which negative interactions are mined from both

literature and protein complex structures. This negative dataset

acheives the same level (22%) as the positive dataset SIN [78] also

derived from structural data. This shows the non-randomness of

the Negatome network and in fact hints at its quality.

Structure derived interactomes. Since the individual

interactions between proteins can directly and unambiguously be

extracted from 3D structures, why is the SIN network which is

derived from protein complexes’ structures ranked below AP/MS

networks? This is an artifact of the structural network (SIN) which

is derived from structural templates. While the reliability of each

interaction is arguably high, the coverage is very sparse and biased

for protein and complexes found in solved structures. 3D

structures coverage is still order of magnitude lower than coverage

achieved by state of the art protein tagging, purification and

identification in AP/MS screens which are genome-wide. As

shown in validation 1, under-sampling by proteins or interactions

leads to decreasing relative compression rates. Therefore if

coverage in SIN were to be unbiased and genome-wide it would

probably have a higher relative compression rate. Together with

PCA, and two-phase Y2H, AP/MS screens produce the networks

with the best balance between coverage and accuracy revealing

more non-random structures and patterns than other experimental

or compilation approaches.

How compressible are complete and accurate complex

networks?. In the absence of at least one complete and

accurate interactome map it is difficult to estimate the range of

true relative compression rates. In particular, an important

question is whether some of the high relative compression rates

– above 30% – are a sign of an excess of repetitive patterns and

motifs due to systematic errors in the data. To address this point,

we compare the relative compressibility of current interactomes

with that of accurate and complete networks derived from

complex systems of interacting entities. Fig. 8 shows the same

plot as Fig. 6A but overlaid with networks such as the C. elegans

neural network, Internet, network of North American airports,

software module dependency in Java and CytoScape, and others

(see methods for complete list and details). In the case of the neural

network of C. elegans it should be noted that since the pioneering

work of White et al. [79] intensive work has been done to obtain a

high confidence neural network. While far from perfect, the level

of detail and reproducibility of the observations of synaptic

contacts is orders of magnitude more accurate and complete than

for any protein interaction network currently available. We

observe that all complex systems’ networks have a relative

compression rate of at least 15% and on average 25%. There is
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one exception: the north American power grid has a relative

compression rate of just 5%. From manual inspection of the

different networks, we reached the conclusion that a possible

explanation is the network’s planarity: it is the only one in which

the entities and their interactions are strongly constrained in two

dimensions. In the other networks the interacting entities are

embedded in higher dimensional spaces and have more freedom

to interact – a characteristic shared with protein interaction

networks. Fig. 8 suggests that a relative compressibility between

15% and 50% is a signature of networks derived from complex

systems whose structure is completely and accurately known.

Similar levels of relative compressibility are expected for complete

and accurate protein interaction data.

Discussion

Our results show that experimental methods (AP/MS versus

Y2H, pooling strategy, expression level, tagging) strongly influence

relative compressibility. Together with the validation steps, this

suggests that relative network compressibility is a suitable quality

measure for interactomes. However, before drawing this conclu-

sion, there are some more points to consider:

Organism complexity and relative compression rate
As argued in the introduction, complex and random networks

have different topologies. Relative network compressibility can

quantify this difference. Can it go further and quantify the degree of

complexity? If this were the case, then relative network compress-

ibility would be suitable to answer the question whether the

difference of complexity of whole organisms is reflected by the

difference of the organisms’ interactomes network compressibility.

More specifically, one would expect a human network more

compressible than a mouse or C. elegans network. However, the

currently available network data cannot settle this question:

Table 2 and 3 show that differences between methods (two-phase

pooling versus library, and physiological versus over-expression)

have a stronger influence on the relative compression rate than

differences in organism complexity as estimated by the ORFeome

size. For example, for Y2H networks (Table 2), library screens

have relative compression rates around 3% and differ in average

by 2 percentage points from each other – independently of the

species. In contrast, two-phase pooling screens have higher relative

compression rates – above 10%. This shows that any species

specific signal is probably hidden by a much stronger method

specific signal. Hence, with the current data, network compress-

ibility cannot shed light on the question whether more complex

organisms have more complex networks.

Influence of the network topology on relative
compressibility

A reason why network compressibility may not be indicative

solely of quality is that it might also reflect changes in other

network measures such as network size, degree distribution, or

clustering coefficient – which could differ between experimental

methods. First we show in Fig. S4 that the relative compressibility

is largely independent of the number of proteins or number of

interactions. Second, we plot the relative compression rate against

average degree and clustering coefficient and consider the

relationship for the different types of networks (Y2H, AP/MS,

SIN, literature). Some networks (Y2H, literature derived networks)

have lower average number of interaction partner per protein than

others owing to the experimental method. Can this explain their

lower relative compression rates? Fig. S3A shows that the SIN

(Kim), PCA (Tarassov), Stelzl, and literature curated networks

have similarly low average number of interaction partners and yet

have significantly higher relative compression rates. Indeed, we do

not observe a significant correlation between average degree and

relative compression rate (Kendall correlation t~0:2 with

p~0:11). Similarly, networks with low clustering coefficients but

high relative compression rates exist (Ho, Ewing [80], Butland,

Stelzl). We also observe that the clustering coefficient does not

separate Y2H networks from other types of networks as well as

Table 2. Strategies for Y2H screening.

datatset species strategy
num. of prot.
coding genes

screening
completeness

avg. num. of
int. partners

rel. comp.
rate

Stelzl et al. Human two-phase pooling (8) 22,286 5% 3.7 10%

Parrish et al. C. jejuni two-phase pooling (96) 1,685 79% 17.5 20%

Titz et al. T. pallidum matrix 1,028 79% 10.0 5%

Rual et al. Human library 22,286 10% 3.3 4%

Simonis et al. C. elegans library 20,185 24% 2.3 5%

Giot et al. [110] D. melanogaster library 14,144 60% 5.7 3%

Yu et al. (CCSB-YI1) Yeast library 5,797 81% 2.5 6%

Ito et al. (core) Yeast library 5,797 90% 1.8 5%

Uetz et al. Yeast library 5,797 85% 1.6 5%

LaCount et al. P. falciparum library 5,268 84% 4.1 1%

Sato et al. [109] Synechocystis library 3,569 27% 3.2 2%

There are three main strategies for large-scale Y2H screens, briefly: i) matrix – all bait-prey pairs are tested, ii) library – preys are pooled and growing colonies are picked
and then sequenced, and iii) two-phase pooling – preys are pooled in a first phase and in a second phase baits that reported interactions are pooled and screened
against individual preys (see [69,87,88] for reviews). In the Parrish screen pools group 96 preys compared to 8 for Stelzl. The screening completeness is the proportion of

the whole interactome search space that was accessible to the screen:
nb|np

n2
where nb is the number of ORFs cloned for baits, np is the number of ORFs cloned for

preys and n is the estimated number of protein coding genes. In practice, the assay and sampling sensitivity of Y2H screens greatly diminish the effective completeness
[73]. For that same reason, screening completeness should not be misconstrued with assay sensitivity – for which the average number of interaction partners is a better
indicator.
doi:10.1371/journal.pone.0035729.t002
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does the relative compression rate (Fig. S3B). Indeed, lowly

clustered networks can have high relative compression rates

because the compression rate captures network motifs based on

cliques and bicliques. Therefore, bipartite networks that do not

contain a single clique – and thus have a clustering coefficient of

zero – may still exhibit the whole range of relative compression

rates. However, since a part of the compressibility comes from

cliques, it is not surprising to observe a significant correlation

between clustering coefficient and relative compressibility (Kendall

correlation t~0:52 with pv10{3). While the average number of

interaction partners (average degree) clearly does not explain the

whole relative compressibility variability, we further clarify

whether there is a causal relationship between relative compress-

ibility and clique content as measured by the clustering coefficient.

Network de-blurring by clique removal
To better understand the influence of clique content on the

relative compressibility we remove from the networks the cliques

identified by our algorithm and recompute the relative compres-

sion rates and clustering coefficients. Removing the networks’

cliques diminishes the proportion of indirect interactions in the

network – in a sense it de-blurs the network (see Methods for

details). Fig. S5 shows that this more than halves the clustering

coefficient of the most clustered networks such as Collins’.

However, the relative compression rate remains stable with a

median at around 0:095 before and after clique removal because i)

bicliques play an important role behind compressibility ii) the

normalization (see null model in methods section) ensures that the

relative compressibility captures non-random occurrences and not

just clique and biclique content.

These results confirm that the clustering coefficient is strongly

influenced by the amount of cliques while the relative network

compressibility is not. As a consequence, network compressibility

offers new insights into network topology.

Differences between Y2H and AP/MS
Overall, we observe that Y2H networks are on average 6 times

less compressible than all other networks. AP/MS networks have

on average a relative compression rate of 21%, whereas it is 7%

for Y2H networks. Wilcoxon-Mann-Whitney tests confirm that

the relative compression rate of Y2H is significantly different from

PCA, SIN, and literature curated networks (p~0:002) and from

AP/MS (p~0:009). We showed that this difference can be

quantified with network compressibility but cannot be captured

with classical graph theoretic measures such as average degree or

clustering coefficient (Fig. S3). Yu et al. had already noted that

Y2H networks had a markedly different topology when compared

with AP/MS or literature curated networks [1]. This is in part due

to the known lower sensitivity of Y2H screens, which are biased

towards binary, transient, and non-cooperative interactions [2,3].

This particular type of protein interactions do not exhibit as many

cliques or bicliques as PCA or AP/MS networks. Possibly, the

consistently low average number of interaction partners of Y2H

networks indicates that the high selection stringency employed to

achieve high specificity leads to sparser networks [2,3]. Higher

relative compressibility levels could be attained with better

sensitivity. Our results favor this explanation: recent advances in

Y2H screening strategies – in particular two-phase pooling – can

bring the relative compressibility of Y2H networks to levels similar

to AP/MS and PCA networks (above 10% for Stelzl and Parrish

datasets). This shows that Y2H networks can be rich in structure

and patterns when sensitivity issues are overcome.

While network compression shows some clear differences

between types of networks, it should be noted that the method

does not rate individual interactions, but it simply measures the

structure of the global network. And in this sense the individual

interaction of low compression networks are a valuable source of

information. Moreover, different experiments (AP/MS, Y2H,

PCA) even performed in a perfect world without any noise or

artifacts would probably not produce exactly the same networks.

Each experiment defining an accessible interactome with different

properties (i.e. co-complex versus binary, stable versus transient).

Therefore it is conceivable that a perfect and complete Y2H

interactome would not be exactly at the same relative compress-

ibility level as a perfect and complete AP/MS or PCA

interactome. Comparisons within experimental classes as done in

Table 2 and Table 3 are thus easier to interpret than comparisons

across experimental classes. In other words, it is better to compare

experimental results that measure the same underlying ground

truth.

Example – zooming into chromatin remodeling
complexes

As argued by [81], global properties of networks are an average

that hides much detail. Therefore, let us consider the patterns

underlying compressibility in more detail.

Table 3. Expression modes and tagging systems for AP/MS screening.

datatset species
expression
modes

purification
method

num. of prot.
coding genes completeness

rel. comp.
rate

Collins et al. Yeast physiological expression (knock-in) TAP 5,797 80% 48%

Gavin et al. (socio-affinity) Yeast physiological expression (knock-in) TAP 5,797 78% 42%

Gavin et al. Yeast physiological expression (knock-in) TAP 5,797 78% 22%

Krogan et al. Yeast physiological expression (knock-in) TAP 5,797 76% 18%

Butland et al. E. coli physiological expression (knock-in) TAP/SPA 4,263 23% 11%

Ewing et al. Human over-expression (cDNA) FLAG-tag 22,286 1% 12%

Ho et al. Yeast over-expression (cDNA) FLAG-tag 5,797 10% 10%

Arifuzzaman et al. E. coli over-expression (cDNA) His-tag 4,263 61% 2%

The Arifuzzaman dataset is an outlier when compared with other AP/MS datasets. A possible explanation is that it is the only screen that combined both non-
physiological protein expression and His-tagging instead of the superior tandem purification procedure. Note: by default AP/MS datasets are interpreted using the
spoke model. In addition we list the Gavin network derived by socio-affinity scoring (scores above 5). The Collins dataset relies on the same experimental data as the
Krogan and Gavin datasets and is derived by a method similar to socio-affinity [7].
doi:10.1371/journal.pone.0035729.t003
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Richness in network motifs. Fig. 9A–D show the size and

number of motifs obtained from selected networks plotted as disc

charts. The number and size of each disc represents the

abundance of cliques and bicliques of different sizes. Networks

with a high relative compression rate (AP/MS, SIN, PCA; Fig. 9A,

B, D) are rich in cliques and bicliques involving many proteins,

whereas networks of low relative compression rate (Y2H, Fig. 9C)

are depleted.

In particular, panel E and F show a visualization of the low

compression Y2H sub-network and the high compression AP/MS

sub-network. The panels clearly show that the low compression

network has only a few scattered and isolated edges and hence no

structure, while the high-compression sub-network comprises non-

trivial nested structures.

Example – INO80 and SWR1C complexes. Fig. 9F shows

an example from the [9] network, which has been confirmed by

intense examination in [82]. Here, three proteins – RVB1, RVB2,

and ARP4 – interact with 17 other proteins in two chromatin

remodeling and DNA repair complexes. RVB1 and RVB2 are the

subunits of a hetero-dodecameric DNA helicase [83]. ARP4 is an

essential actin-related protein which binds to histone H2A [84].

These three proteins are common subunits in two different

complexes: INO80 [85] and SWR1C [86]. While RVB1 and

RVB2 constitute an interaction unit as a helicase, they also form a

module with ARP4 employed in these two chromatin remodeling

complexes. The other 17 components of INO80 and SWR1C are

found in the biclique motif. Overall, the modularity of these

molecular complexes provides the biological basis for the

network’s significant compressibility. Some of the interactions

between sub-units of the INO80 and SWR1C might be false

positives, but these occur between proteins that are in the same

complex or that indirectly interact. The effect of these false

positives on the compressibility is thus negligible compared to that

of true stochastic false positive occurring between otherwise

unrelated proteins. In contrast, only the binary interaction

between RVB1 and RVB2 is found in the Y2H-union dataset [1].

Conclusion
Over the past years numerous genome-wide protein interaction

datasets have been published. They have been obtained by

different experimental methodologies sparking a discussion on

data quality and coverage. Since proteomic interactions are

inherently co-operative, modular, and redundant, interactomes

are expected to be rich in structure and patterns. We propose the

relative compression rate as a measure of this richness in patterns

and structure and show that it correlates with data quality –
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doi:10.1371/journal.pone.0035729.g008
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understood as encompassing both sensitivity and specificity. We

underpin this relationship as follows:

N First, by showing that adding noise (both false positives and

false negatives) adversely affects relative compressibility

independently of the noise model and type of network.

N Second, gold standard datasets and community-recognized

higher quality datasets (low false positive rates) exhibit higher

relative compressibility.

N Third, an assessment of confidence thresholds based solely on

the relative compressibility agrees with the authors’ own

benchmarks and analyses aimed at minimizing false positives

and false negatives.

N Fourth, we show that relative compressibility correlates with

co-expression, co-localization, and shared function.

We also show that well characterized complex systems from

other domains also exhibit relative compressibility levels similar to

that of many protein interaction networks – thus suggesting that

accurate and complete interactomes are also significantly com-

pressible.

We screened all 22 large interactome datasets available, 5

complete interaction databases, as well as four other networks.

First, we observe that within an experimental method (Y2H or

AP/MS) there is strong effect of the experimental details on the

relative compressibility. Networks derived from state-of-the-art

purification procedures (Tandem affinity purification, TAP) and

detecting interactions of baits expressed at physiological levels

(knock-in versus cDNA over-expression) exhibit higher relative

compressibility.

Second, we observe that networks derived from Y2H library

screens are less compressible than networks derived from two-

phase pooling Y2H screens and other experimental methods (AP/

MS and PCA). The consistently low average number of interaction

partners of networks derived from library Y2H screens suggests

that the high selection stringency employed to achieve high

specificity leads to too sparse networks [2,3]. In contrast, recent

advances in Y2H screening strategies – in particular two-phase

pooling – can bring the relative compressibility of Y2H networks

to levels similar to AP/MS and PCA networks (above 10% for

Stelzl and Parrish datasets). This shows that Y2H networks can be

rich in structure and patterns when sensitivity issues are overcome.

In fact, more sophisticated ‘‘smart pooling’’ strategies for Y2H

screening are being developed and tested such as Shifted

Transversal Design and Steiner-triple-system, thus paving the

way for higher sensitivity [69,87,88].

Based on the results presented in this paper, we make the

following recommendations:

N The relative compression rate of new large-scale protein

interaction networks can be compared to that of other assays on

the same ground truth (same species, same interaction space) to

estimate overall quality – encompassing both sensitivity and

specificity.

N Large-scale interactome screens should employ state-of-the-art

methods such as Y2H two-phase pooling and AP/MS with

TAP tagging to obtain networks richer in patterns and

structure.

N Networks with less than 15% relative compression rate might

suffer from poor sensitivity and/or poor specificity.

Overall, relative compressibility is a new measure for comparing

networks by their information content defined as the richness in

patterns and structure distinguishable from pure noise. This new

measure is a good proxy for both sensitivity and specificity and

gives complementary information to classic measures such as

average degree and clustering coefficient, thus helping to assess the

structure of interactomes.

Materials and Methods

Network datasets
Exhaustive compilation of protein interaction

networks. We collected all (21) large-scale protein interaction

networks derived from experimental data published between 2000

and 2009. The data files where obtained directly from the

supplementary material of the publications. In the cases where the

interaction data was not provided in the supplementary material

or in the companion website, we obtained the data from one of the

interactome databases – Biogrid, Intact, Mint, or DIP. Moreover,

we did an automatic scan of these four databases and verified that

we had collected all experimental datasets satisfying our strict

inclusion criteria: we only consider experimental protein interac-

tion networks that are large-scale and symmetric. We exclude

dataset focused on proteins of a specific biological function.

Symmetric networks. In symmetric networks the sets of

baits and preys are largely overlapping. We exclude highly

asymmetric datasets because they are not comparable to

symmetric ones. For example, if the number of baits is small in

comparison to the number of potential preys. Networks from

Formstecher et al. and Rain et al. [89,90] map interactions

around 102 and 261 baits respectively against several thousand

preys. Another example is the network by Li et al. [91] which is a

highly asymmetric C. elegans protein interactome map between

about 2,000 baits and 15,000 preys. This asymmetry introduces a

bias in their relative compression rates and makes them

incomparable to the other networks (9% and 18% for the Li and

Formstecher datasets respectively).

Screening completeness. In the case of species with large

proteomes such as D. melanogaster, C. elegans, and Human, the

screening completeness of individual datasets may be low.

However, if the experiment has largely overlapping and symmetric

sets of baits and preys – and is unbiased – we included it (for

example the Rual [92] and Stelzl [70] datasets).

Spoke versus matrix. In the case of AP/MS datasets we

interpreted the data using the spoke model. For the Gavin dataset

we also add the network derived from socio-affinity scoring (binary

interactions with a socio-affinity score above 5) for comparison. As

explained in [93] spoke and matrix models are interpretations of

protein complex data into binary interactions. In AP/MS screens

several preys are identified for a given bait. The spoke model

assumes that only the preys interact with the bait but not directly

with each other – this generally under-estimates the number of

interactions as well as ignores any prey-prey interactions. The

matrix model assumes that any two proteins – preys or baits –

interact. Because this model overestimates the number of

interactions and introduces many spurious cliques we use the

spoke model instead.

Reference networks. In addition to these experimental

networks we added two literature curated datasets [1,14], and a

network derived from protein structures [78]. To estimate the

‘‘average’’ signal of all the interactome data available we also

considered the networks derived from the whole protein interac-

tion data compiled in the BioGRID, Intact, Mint, DIP, and

HPRD databases. The different species forming distinct and

independent connected components of the network – hence giving

a species-averaged signal. Finally, we also added the integrated

yeast network WI-PHI [61] enriched for direct physical interac-
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Figure 9. High relative compression rate explained by the richness in network motifs. (A–F) The disc charts show the distribution of
network motifs – bicliques, cliques and stars – found by power graph analysis. The radius of each disc at a point (m,n) represents – on a log scale –
the number of motifs for which m proteins interact with n other proteins. Yellow discs correspond to stars, non-diagonal red discs to bicliques, and
red discs on the diagonal to cliques or bicliques. High relative compression rate corresponds to denser disc charts and thus to many large cliques and
bicliques. (C) The Y2H-union network from Yu– which has the highest relative compression rate of all Y2H networks (13 in Table 1) – has a depleted
disc chart. (D) Collins’ AP/MS network has one of the highest relative compression rates and also has one of the densest disc chart. (E) The same
proteins as in F are looked at in the Y2H-union network – only the RVB1/RVB2 sub-complex is visible. (F) A modular sub-complex of three essential
proteins: RVB1, RVB2, and ARP4 is seen participating in both the INO80 and SWR1 complexes.
doi:10.1371/journal.pone.0035729.g009
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tions compiled from several datasets: Gavin, Krogan, Ito, Uetz,

and BioGRID, BIND, IntAct, and Mint [2,7,8,59,62–65].

Overlap between datasets. Some of the datasets overlap:

the Ito full dataset contains the same interactions as the Ito core

dataset with the addition of lower confidence interactions. The

network by Collins et al. [9] is a computational reanalysis of the

experimental data by Gavin et al. and Krogan et al. [7,8] with a

similar method to Gavin’s socio-affinity. The Y2H-Union dataset

[1] is a merge of three high quality Y2H datasets: Ito-core, Uetz

and the recent CCSB-YI1 [1,2,59]. As mentioned above, the WI-

PHI network contains data from most other yeast datasets.

Graphs, power graphs, and compressibility.

Graphs. A graph G~(V ,E) is a set of nodes V and a set of

edges E(V|V [94,95]. We consider undirected graphs: u,vð Þ[E

implies v,uð Þ[E. The degree of a node in the network is the

number of edges to which it is adjacent.

Clustering in protein interaction networks. The notion of

clustering or edge-transitivity in networks was first introduced by

[96]. Watts et al. defined the network’s clustering coefficient as the

average local clustering coefficient defined for each node [97]. The

clustering coefficient c uð Þ of a node u is the proportion of

interactions between the neighbors of u relative to the maximal

number of potential interactions:

c uð Þ~ 2DE’D
DN uð ÞD(DN uð ÞD{1)

Where N uð Þ is the neighborhood set of u in G, DN uð ÞD the

cardinality of this set, and E’ the set of edges in the neighborhood

subgraph G’~(N uð Þ,E’). Hence, c uð Þ measures how connected is

the neighborhood of u is. If all the neighbors of u are adjacent then

G’ is a clique and c uð Þ~1, but if none of the neighbors are

connected then E’ is empty and c uð Þ~0.

Power graphs. Given a graph G~(V ,E) where V is the set

of nodes and E(V|V is the set of edges, A power graph

G
0
~( V

0
, E
0

) is a set of power nodes V
0
(P Vð Þ and a set of power

edges E
0
(V

0
| V

0
. We say that two disjoint (such that U\W~1)

power nodes U ,W[V
0

are adjacent if there is a power edge

U ,Wð Þ in E
0
. All power nodes in V must participate in at least one

power edge.

A power graph G
0

represents graph G when the following holds:

If and only if in G
0

two power nodes U and W are adjacent, then

in G all nodes in U are adjacent to all nodes in W :

U ,Wð Þ[E
0

if and only if Vu[U ,Vv[W : u,vð Þ[E

Similarly, if and only if a power node is self-adjacent, then in G

the nodes in U are all adjacent to each other:

U ,Uð Þ[E
0

if and only if Vu,v[U ,u=v : u,vð Þ[E

There is one exception, we ignore self-adjacent nodes: u,uð Þ=[E.

It follows that power edges in G
0

represent bicliques, cliques and

stars in G. Reciprocally, given a graph G, its bicliques, cliques and

stars can be represented by power edges in G
0
. In addition we

further constrain the definition of power graphs by requiring the

following two conditions:

Power node hierarchy condition. Any two power nodes are

either disjoint, or one is included in the other. Therefore, power

nodes form a hierarchy. This guarantees that the power node

hierarchy can be represented in the plane which facilitates

visualization.

Power edge partition condition. Each edge of the original

graph is represented by one and only one power edge. In other

terms, the power edges form a partition of the set of edges.

Power graph algorithm. The power graph algorithm is

described in [56] and an implementation can be found here:

http://www.biotec.tu-dresden.de/schroeder/group/

powergraphs.

The algorithm proceeds in two phases: The first phase of the

algorithm collects candidate power nodes and the second phase

uses those for the search for power edges. In the first phase

potential power nodes are identified with hierarchical clustering

based on neighborhood similarity. A set of nodes is a candidate

power node if its nodes have neighbors in common. We use a

hierarchical clustering algorithm based on neighborhood similarity

to identify such sets. The similarity of two neighborhoods is the

Jaccard index of these two sets. It ranges always between 0 and 1:

it is 0 if the sets U and V have no common neighbors, and 1 if

both have identical neighborhoods. Neighborhood similarity

clustering is an intuitive way to identify candidate power nodes.

Additional to the hierarchy of sets of nodes achieved with the

clustering, to detect stars and other highly asymmetric bicliques in

the second phase, we add for each node v two sets to the candidate

power nodes: Its neighborhood set N(v) and the set of common

neighbors of the nodes in N(v),
T

v’[N(v) N(v’), that contains at

least v.

In the second phase power edges are searched. The minimal

power graph problem is to be seen as an optimization problem in

which the power graph achieving the highest edge reduction is

searched. The greedy power edge search follows the heuristic of

making the locally optimum decision at each step with the aim of

finding the global optimum. Among the candidate power nodes

found in phase one each pair that corresponds to a power edge is a

candidate power edge. The candidates abstracting the most edges

are added successively to the power graph.

As explained above, power graphs exploit shared neighbors of

two proteins as pattern for compression. In principle, any

algorithm exploiting shared neighbors should perform similar to

power graphs [45–52].

Clique removal with power graph analysis. For Fig. S5

we have used power graph analysis to filter out cliques from the

networks. For each network we compute its corresponding power

graph and identify the reflexive power edges that represent cliques

in the original network. We then remove from the original network

all the interactions corresponding to these cliques. For example, in

Fig. 9F the two cliques: ARP4/RVB1/RVB2 and NHP10/

ARP8/IES1/IES3 are identified and all 9 corresponding interac-

tions are removed from the network.

Compression rate. Compression rates for protein interac-

tion networks and rewired networks were calculated with the

power graph algorithm. The compression rate of a network is

calculated from a power graph by computing the edge reduction.

If the original network has DED edge and the power graph DED edges,

then the compression rate is:

c~
DED{DED

DED

The compression rate is between 0 and 1. If the power graph

has the same number of edges as the original network, then the

compression rate is 0. The maximal compression rate is achieved

for a completely connected network, which reduces to one power

edge.
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Clique or biclique membership is not covered in the measure of

compression rate because it only assesses the number of edges

before and after compression. There are two reasons for our

choice: First, simplicity – our goal is to keep the measure as simple

as possible. Combining reduction of nodes and edges into one

measure leads directly to a number of subsequent questions: Are

they of equal importance? Should they be weighted? How should

they be combined?

Second, compression with and without nodes strongly correlate.

Fig. S6 plots compression rate defined solely on edges versus

compression rate defined on edges and nodes. The high

correlation coefficient of r~0:94 shows that the dominating

factor in the compressibility of interactomes are edges and thus

nodes can be ignored.

Measuring both clique and biclique content. An impor-

tant point is that compressibility as measured by power graphs can

capture network motifs based on cliques but also based on

bicliques. Therefore, a bipartite network that does not contain a

single clique can still exhibit the whole range of compression rates.

Therefore networks with a clustering coefficient of zero may still

have high compression rates – see South Florida ecosystem network in

Table 4.

Relative compression rate. The relative compression rate

measures an original network’s compression rate in relation to an

average random network of same topology. To compute the

relative compression rate one generates 1000 random networks

following the null model (see below) and computes the average

compression rate. The relative compression rate measures by how

much the original network’s compression rate differs from the

average random compression rate:

crel~c{crandom

Where crandom is the mean of the compression rates for the

random networks. For example, a relative compression rate of 0:1
means that the compression rate is 0:1 – 10% points – higher than

the average compression rate of equivalent random networks. The

relative compression rate is a more relevant measure than the

compression rate because a certain level of compressibility is

always expected, even from random networks. Fig. S7 shows the

compression rates plotted against the average compression rates of

randomly rewired networks having the same number of nodes,

edges and same degree distribution.

Random networks and network noise
Network null model – degree preserving random

rewiring. Given a protein interaction network, we generate a

large (1000) population of randomly rewired networks. These

random networks have the same number of nodes and edges, as

well as the same number of interaction partners per node and

hence the same degree distribution as the original network. These

networks are generated by randomly re-wiring the original

network [98]. Two randomly chosen interactions A–B and C–D

are replaced by two new interactions A–C and B–D. This

preserves the number of edges per node. This operation is

repeated a number of times which is a multiple of the number of

edges in the network – thus ensuring that almost all edges are

rewired at least once. Moreover, each random network is

generated from a previously rewired network and thus correlation

with the original protein interaction network is unlikely.

Models for false negatives and false positives. For all

noise models we perturb the original networks and recompute

their compressibility. For the results in Fig. 2 we used two models

for false positive and false negative interactions. The first model –

ER for Erdös–Rényi – consists in randomly adding or removing

interactions. The interaction partners are drawn from a uniform

distribution over all proteins following the exponential model first

described by Erdös and Rényi [57]. The second model – BA for

Barabási-Albert – consists in randomly removing interactions from

poorly connected proteins and randomly adding interactions to

highly connected proteins. Interaction-rich proteins get richer and

interaction-poor proteins get poorer. The interaction partners are

drawn from a distribution in which the probability for each protein

is proportional (or inversely proportional) to the number of its

interaction partners [58]. For both models we analyzed the

influence of false positives (added interactions) and false negatives

(removed interactions) separately, thus leading to four different

models: ER false negatives, ER false positives, BA false negatives,

BA false positives. Important note: since we consider symmetric large-

scale screens where the set of baits is largely overlapping to the set

of nodes, we don’t need to consider the bait or prey status of

proteins in our noise models. Moreover, it should be noted that

due to the incompleteness of current interactome data, removed

interactions are sometimes false positives, and added interactions

Table 4. Networks of complex system’s are compressible.

network source year
number of
nodes

number of
edges

average
degree

clustering
coefficient

relative
compression rate

South Florida Ecosystem [111] 2000 381 2,137 11.2 zero 0.48

Cytoscape class dependencies Cytoscape 2009 615 3,463 11.2 0.26 0.47

Bible co-appearance network [112] 1993 130 743 11.4 0.77 0.33

US Airports [113] 2007 500 2,980 11.9 0.61 0.21

Corporate Ownership [114] 2002 7,253 6,711 1.8 0.01 0.20

Java library class dependencies Java 2006 1,538 7,817 10.1 0.39 0.17

Internet (autonomous systems) [115] 2006 22,963 48,436 4.2 0.23 0.17

C. elegans neural network [79] 1986 297 2,148 14.4 0.29 0.15

Power Grid (USA) [97] 1998 4,941 6,594 2.6 0.08 0.04

Network relative compressibility in the range 15%{50% is typical of complete and accurate networks derived from complex systems. Note: the South Florida Ecosystem
network has a clustering coefficient of zero because it is a strict bipartite network – the relative compressibility is not solely measuring clique content and clustering in
networks.
doi:10.1371/journal.pone.0035729.t004
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are sometimes false negatives. For the results in Fig. 3A we

randomly remove proteins using a uniform distribution on the

network’s proteins. For Fig. 3 we construct a probability

distribution based on the network’s degree distribution. The

degrees of added proteins are drawn from this distribution thus

preserving the topology of the original network. The added

proteins are cloned from existing proteins in the networks and their

connections are randomly rewired while preserving the number of

neighbors. This minimally affects the degree distribution and

introduces proteins in the network that have completely random

interactions.

Analysis of false negatives and false positives’ influence

on the relative compressibility. We generated networks with

simulated false positives and false negatives for 12 Yeast protein

interaction networks. For each of the four models we considered

30 different levels of false positives and negatives from 1% to 60%
– in total 1,440 networks. For each of these 1,440 networks we

generated 1,000 networks having the same number of nodes, edges

and same degree distribution. More than 1:4 million compression

rates were computed requiring 50,000 CPU-hours on a 2,500

CPUs supercomputer.

Correlations
Correlating interaction confidence scores with relative

compressibility. We obtained the raw interaction confidence

scores for the three datasets by Gavin et al., Parrish et al., and

Tarassov et al. (provided in the supplementary material of the

publications). As illustrated on Fig. 4A, we extracted sub-networks

by selecting interactions with confidence scores within a given

minimal and maximal value. To each pair (min,max) corresponds

a sub-network for which we computed the compression rate. The

relative compression rate was obtained as the difference between

the compression rate of each sub-network and the compression

rate of the whole network after randomization (see procedure

described previously). In this context, the compressibility is

measured relative to the random baseline compressibility of the

whole network. This is required because otherwise sub-networks

richer than the whole network in motifs and patterns would not be

detected. Cells close to the diagonal represent small confidence

intervals and thus correspond to small sub-networks. Unfortu-

nately, few publications offer the raw unfiltered interaction data

with confidence scores – we agree with Hart et al. that a wider

availability of such raw data would greatly benefit new analysis on

error rates [99].

Correlation of network compressibility with co-

expression, co-localization, shared function, and

phylogenetic similarity. We correlate interactions with gene

co-expression, cellular function, cellular co-localization, and

phylogenetic profile similarity for 12 Yeast networks and for all

interacting pairs of proteins for which we have complete

information. We use the following assortativity ratio:

e~
H

HzE

Where H is either the number of homotypic interactions for

which the proteins are significantly co-expressed, share a cellular

function, are found in at least one common cellular compartment,

or have significantly similar phylogenetic profiles. HzE are all

the interactions – homotypic and heterotypic – for which we have

complete information about both interacting proteins. We use data

compiled by [100] for defining co-expression and phylogenetic

similarity. Gene co-expression data is computed by correlating

mRNA gene expression profiles obtained from 497 microarray

experiments [100]. Phylogenetic similarity is calculated by

correlating phylogenetic profiles which are strings that encode

the presence or absence of a protein in every known genome

[101]. We consider that two proteins are co-expressed if they have

a log-likelihood score above 2, and phylogenetically similar if the

log-likelihood score is above 1:5. Shared function was measured

using the Gene Ontology (GO) molecular function (MF) and

biological processes (BP) annotations as provided by the SGD

database [102]. For co-localization, we use the genome-wide

protein localization data from [103]. Two proteins are co-localized

if they share at least one cellular compartment, and two proteins

share cellular function if they have at least one common GO term

(BP or MF). As for the relative compression rate we normalize

these assortativity ratios by subtracting the average proportion

found for equivalent randomized networks. We thus compute the

relative assortativity ratio:

rrel~r{rrandom

Where rrandom is the mean ratio obtained for randomly rewired

networks having the same number of nodes, edges and same

degree distribution (see above for network null-model). In Fig. 5

the x-axis is rrel (relative assortativity ratio) and the y-axis is crel

(relative compression rate). Moreover, the reported magnitude and

statistical significance of correlations are calculated using Kendall’s

method (Kendall package in R).

Networks of complex systems
We collected nine networks from the network science literature

derived from complex systems of interacting entities (Table 4).

These networks were chosen for their accuracy and completeness:

the Internet network, software module dependencies in Java and

Cytoscape, North American airport network, ownership relation-

ships of American corporations, a food web in South Florida, co-

appearance relationships between characters in the Bible, North

American power grid network, and the neural network of C.

elegans (the latter has been completely and accurately mapped

because of its small size).

Supporting Information

Figure S1 Slicing the Kiemer et al. network. We observe

that the sub-network with the most interactions and the highest

relative compression rate is found for a minimum socio-affinity

score between a minimum of 20 and a maximum of 140. This is in

agreement with the authors definition of WI-PHI core as having a

score above 20 – which corresponds to interactions present in at

least 2 datasets as seen in Fig. 4A from [61].

(EPS)

Figure S2 Details for Ito core and full networks. Data

points (dots) are smoothed into curves (line) with the LOWESS

(locally weighted scatterplot smoothing) regression method [107].

Removing interactions according to the (A) ER noise model and

(B) BA noise model.

(EPS)

Figure S3 Low average number of interaction partners
is no reason for low relative compression rates. (A) While

low relative compression rates imply low average number of

interaction partners, low average number of interaction partners

does not imply low relative compression rates. Note that the CCSB

binary interaction gold standard (CCSB-binaryGS) has a similar
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average number of interaction partners as most Y2H networks and

yet it has a higher relative compression rate. (B) Relative
compression rate versus clustering coefficient. Similarly

to the average number of interaction partners, we observe that a

low clustering coefficient do not imply a low relative compression

significance. For example, the LaCount [108] dataset has a similar

clustering coefficient (0:07) to the Butland dataset (0:08), and yet

they differ in relative compression rates (11% difference). We also

observe that the relative compression rate is better than the

clustering coefficient at discriminating different screening meth-

odologies.

(EPS)

Figure S4 Relative compression rate versus the number
of proteins and interactions in the networks. The relative

compression rate is independent of both the number of nodes and

number of edges.

(EPS)

Figure S5 Clique removal and its effect on the relative
compression rate and clustering coefficient. (A) Compres-

sion rate versus relative compression rate after clique removal.

Removing cliques does not significantly alter the plot from Fig. 6.

(B) Relative compression rate versus clustering coefficient after

clique removal. The same scaling is used for easy comparison to

Fig. 13B. The clustering coefficient is drastically reduced for

highly clustered networks such as Collins, Gavin socio-affinity (but

not Gavin interpreted with spoke model), WI-PHI, CCSB

binaryGS, and Reguly. For example, Collins’ clustering coefficient

is more than halved from 0:55 to 0:25. Other networks experience

a lesser decrease in clustering coefficient. In contrast, the relative

compression rate remains stable in comparison – for example

Reguly’s stays at 0:21, and Titz at 0:05.

(EPS)

Figure S6 Edge reduction based on power edges
compared to edge reduction based on power nodes and
power edges. We chose the simplest definition of compression

rate: we compare the number of edges after and before

compression. Counting power edges (after compression) is

sufficient because power edges include the information about the

two sets that are connected. As shown above, considering power

nodes in addition to power edges does not significantly change the

compression rate.

(EPS)

Figure S7 Compression rate versus the average com-
pression rate of randomly rewired networks of same

topology. The relative compression rate is computed by taking

the difference between the absolute compression rate and the

average compression rate of randomly rewired networks with the

same topology.

(EPS)

Figure S8 Relative compressibility correlation between
positive and negative networks. Inverted networks are listed

together with the number of nodes, number of edges and average

degree, corresponding relative compressibility, and relative

compressibility for original positive network. The relative

compressibility of positive and negative networks are correlated

(Kendall t~0:67, pv10{5). We find a relative compressibility of

23% for the Negatome database by [77]. Important note: the

negative Negatome is a network of positive interactions.

(EPS)

Figure S9 Overlap between the subsets of Yeast pro-
teins screened by Y2H, AP/MS, and PCA. In total, 3507

Yeast proteins were found to interact at least once by any of the

three methods. Only 287 proteins were found by all methods to be

part of an interaction. (B) Common protein interaction space.

Between the 287 proteins explored by all methods, 500

interactions were reported in at least one experiment. Only 42

interactions were confirmed by all three methods. (C) Enrichment

analysis of the common protein interactions space. Following the

Venn diagram B, we show enriched MIPS annotations for proteins

participating in interactions specific to each method (Y2H, AP/

MS, and PCA) and common to all (intersection). The number in

each box is the p-value majoring exponent for the enrichment

(pv10x).
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