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Abstract

Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 (EBP50) is a phosphorylatable PDZ domain-containing adaptor
protein that is abundantly expressed in epithelium but was not yet studied in the endothelium. We report unusual nuclear
localization of EBP50 in bovine pulmonary artery endothelial cells (BPAEC). Immunofluorescent staining and cellular
fractionation demonstrated that EBP50 is present in the nuclear and perinuclear region in interphase cells. In the prophase
of mitosis EBP50 redistributes to the cytoplasmic region in a phosphorylation dependent manner and during mitosis EBP50
co-localizes with protein phosphatase 2A (PP2A). Furthermore, in vitro wound healing of BPAEC expressing phospho-mimic
mutant of EBP50 was accelerated indicating that EBP50 is involved in the regulation of the cell division. Cell cycle
dependent specific interactions were detected between EBP50 and the subunits of PP2A (A, C, and Ba) with
immunoprecipitation and pull-down experiments. The interaction of EBP50 with the Ba containing form of PP2A suggests
that this holoenzyme of PP2A can be responsible for the dephosphorylation of EBP50 in cytokinesis. Moreover, the results
underline the significance of EBP50 in cell division via reversible phosphorylation of the protein with cyclin dependent
kinase and PP2A in normal cells.
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Introduction

Ezrin-radixin-moesin (ERM) binding phosphoprotein of 50 kD

(EBP50) is a member of the Na+/H+ exchanger regulatory factor

(NHERF) family which consists of four related PDZ (postsynaptic

density 95/discs-large/zona occludens-1) domain containing

scaffolding proteins termed as NHERF1/EBP50, NHERF2/

E3KARP, NHERF3/PDZK1, and NHERF4/IKEPP [1].

NHERF1 was originally recognized as Na+/H+ exchanger-3

binding partner [2], and it has later been identified as an ERM

binding phosphoprotein [3]. NHERFs are highly abundant in the

epithelium and their role in Na+/H+ exchanger-3 regulation is

well established [4], therefore EBP50 was characterized mainly in

polarized epithelial cells up to the present.

EBP50 has two PDZ domains and a C-terminal ERM-binding

domain. It is believed that through these domains EBP50 forms

bridges among plasma-membrane and cytoskeleton proteins. Its

function, for example, in microvillar assembly as part of the

PDZK1/NHERF3-EBP50-ezrin complex was studied in details

[5]. It seems that EBP50 binds ezrin specifically in epithelial cells

and there is an interdependence of EBP50 and ezrin for their

apical localization [6,7]. However, recent paper describes the

effect of EBP50-moesin interaction in the contractile response of

artery [8]. Most of the interacting proteins bind to the first PDZ

domain, only a few partners relate with the second PDZ, like beta-

catenin [9]. Self association of EBP50 through the PDZ domains

[10], and the intramolecular interactions of EBP50 between the

PDZ2 and C-terminal domains result in an autoinhibition of

complex formation [11]. Protein-protein interactions between the

members of the NHERF family [5,12] have been described, as

well.

EBP50 is a subject to phosphorylation by several kinases and

these modifications have been suggested to alter its binding

activity. Oligomerization of EBP50 was shown to be regulated via

site-specific phosphorylation. Phosphorylation by PKC on Ser337/

Ser338 enhances the oligomerization [13]; and G protein-coupled

receptor kinase 6 was identified as the kinase responsible for

constitutive phosphorylation of Ser289 which facilitates PDZ

domain mediated interactions [12,14]. During mitosis EBP50 is

phosphorylated on Ser279 and Ser301 by the cyclin dependent

kinase 1 (Cdk1) and that phosphorylation inhibits its oligomeri-

zation, but allows association with Pin1, a peptidylprolyl isomerase

[15]. In addition, it was shown by S77A and S77D substitutions

that phosphorylation of the PDZ1 domain attenuates co-

localization of EBP50 with the cortical actin [16]. In agreement

with the outcome of phosphorylation on oligomerization, it was

demonstrated that PKC activation and EBP50 phosphorylation

promotes microvili rearrangement [17]. Recent study also showed

that phosphorylation of EBP50 by PKC within the PDZ2 domain

reduced its association with the cystic fibrosis transmembrane

conductance regulator [18]. On the other hand, phosphorylation

of EBP50 by Cdk1 inhibits its role in microvili formation in

interphase but not in mitotic cells [17].

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e35595



Dephosphorylation of the above mentioned sites is an equally

important element of the reversible phosphorylation, however,

phosphatases specific for EBP50 have not been identified yet.

Protein phosphatase 1 (PP1), 2A (PP2A), and 2B (PP2B) are the

major classes of serine/threonine specific protein phosphatases,

each having a heterodimer or –trimer holoenzyme form of one of

the catalytic subunits and one or two of the large number of the

variable regulatory subunits [19].

The aim of the present work was to characterize localization,

phosphorylation/dephosphorylation of the ERM binding phos-

phoprotein, EBP50, in bovine pulmonary artery endothelial cells

(BPAEC). We found mainly nuclear localization of EBP50 in

interphase cells, and its redistribution to the cytoplasm during the

course of mitosis parallel with its phosphorylation. PP2A was

identified as an interacting protein of EBP50 during pro-,

prometa-, meta-, ana-, telophase, and early cytokinesis supporting

that PP2A is responsible for the dephosphorylation of the Cdk1

phosphorylation sites.

Results

Nuclear localization of EBP50 in endothelial cells
To study subcellular localization of EBP50 in endothelial cells

(EC), we co-stained BPAEC with anti-EBP50 and anti-b-tubulin

antibody. By confocal microscopy EBP50 was detected mainly in

the nucleus and in the perinuclear region (Fig. 1A.a–c and Fig. S1,

parallel experiments using two different anti- EBP50 antibodies).

In a parallel experiment we also found EBP50 in the nuclei of

HUVEC (Fig. 1A.d–f), but in the cytoplasm of MCF7 human

breast adenocarcinoma cell line (Fig. 1A.j–l). Because EBP50

shares high sequence homology with NHERF2, to exclude the

possibility of cross-reaction of the EBP50-specific antibody with

NHERF2, we stained BPAEC with NHERF2 specific antibody as

well. Our result clearly shows that NHERF2 localizes in the

cytoplasm but not in the nucleus (Fig. 1A.g–i).

To ensure this rather unique nuclear appearance of EBP50 in

EC we cloned bovine EBP50 into a pCMV-Myc plasmid and

transfected the construct into endothelial and epithelial cells.

Immunofluorescent staining with tag specific antibody showed the

same result as above, namely, the recombinant EBP50 was in the

nuclear and perinuclear region in EC (Fig. 1A.m–o), however, it

was present in the cytoplasm of the epithelial cells (Fig. 1A.p–r).

To further strengthen our observation subcellular fractionations

of BPAEC and MCF7 were performed. Western blot analysis of

the fractions proved that EBP50 is present in the nuclear fraction

only in the endothelial cells. The purity of fractions was confirmed

using anti-b-tubulin antibody as a cytoplasmic and anti-lamin A/

C antibody as a nuclear marker (Fig. 1B). Moreover, the nuclear

appearance of EBP50 in endothelial cells was detected by

immunohistochemical study (Fig. S2).

Phosphorylation dependent localization of EBP50
Although the nuclear appearance of EBP50 was quite uniform

for the EC monolayer studied, we also observed that EBP50 left

the nuclear region in dividing cells. To identify the time-point of

re-localization we co-stained BPAEC with anti-EBP50 and anti-b-

tubulin antibodies, and DAPI. EBP50 was in the nucleus in

interphase cells, however, during prophase its redistribution to the

cytoplasm was apparent and we could detect its disappearance

from the cytosol only in the phase of cytokinesis (Fig. 2).

Cdk1 catalyzed phosphorylation and mobility-shift upon SDS-

PAGE of EBP50 in mitotic cells were described in HeLa cells [15].

Therefore, we hypothesized that the varying localization of the

protein during the course of mitosis can be related to its

phosphorylation state. To prove our hypothesis first a phospho-

mimic construct of EBP50 was created by mutation of Ser288 and

Ser310 side-chains, which were known to be phosphorylated in

mitotic cells by Cdk1 [15], to Asp to imitate phosphorylation. On

SDS-PAGE the apparent size of EBP50 mutant shifted upward

compared to the recombinant wild type EBP50 (Fig. 3A). Next we

confirmed by immunofluorescent staining that the phospho-mimic

mutant form of EBP50 showed cytoplasmic allocation but the

wild-type recombinant protein was in the nucleus (Fig. 3B).

To verify the phosphorylation of the endogenous EBP50 we

synchronized BPAEC. Cells were arrested in G1/S using double

thymidine block, and G2/M phase arrest was established using

nocodazole treatment. EBP50 was detected as a 55 kD band in the

lysate of asynchronized cells, however, we observed an additional

pale band at higher molecular mass that completely disappeared in

the lysate of cells in G1/S. Conversely, the band of higher mass

had a massive manifestation 8 h after releasing the cells from the

thymidine block, as the majority of cells got near to the phase of

mitosis (Fig. 3C). Based on the previously published data [15] and

our results (Fig. 3A–B) this higher molecular mass band could be

the phosphorylated form of EBP50. Furthermore, these observa-

tions proved our hypothesis that the relocalization of EBP50

occurs in a phosphorylation-dependent manner.

Phospho-mimic EBP50 supports wound healing
As proliferation/cell division and migration are essential in

wound healing [20,21], to further demonstrate the significance of

the phosphorylation of EBP50 during the cell cycle, we compared

the timing of wound healing of mock-transfected BPAEC

monolayer with the ones overexpressing wild type- or phospho-

mimic EBP50 using electric cell impedance measurements, ECIS

(Fig. 4). The time from the beginning of wound healing to the time

at 50% of the maximum impedance (effective time) was about the

same for the mock-transfected control (1.9 h) and the sample

overexpressing the wild type EBP50 (1.8 h). However, the

phopho-mimic mutant form of EBP50 significantly accelerated

the healing process (effective time = 1.5 h).

EBP50 associates with PP2A-Ba holoenzyme
As protein phosphorylation/dephosphorylation is a reversible

process, next we intended to identify the protein phosphatase

catalyzing the dephosphorylation of EBP50. First BPAEC were

arrested in mitotic phase and at the point of the release the media

were implemented with specific protein phosphatase inhibitors.

Okadaic acid of 5 nM was able to maintain the phosphorylation

state of EBP50 for 6 h after the release suggesting that PP2A is

involved in the dephosphorylation. Furthermore, 2 nM calyculin

A, a specific inhibitor of PP1, had no effect on the above

dephosphorylation process (unpublished data).

Subsequently, we examined whether protein-protein interac-

tions could be detected between EBP50 and PP2A or PP1. Lysates

from thymidine or nocodazole treated cells were prepared and the

endogenous EBP50 was immunoprecipitated from each lysate

using anti-EBP50 antibody. The immunoprecipitated complexes

were probed in Western blot with antibodies raised against

different protein phosphatase subunits. As shown in Figure 5A,

EBP50 co-immunoprecipitated with the A (PP2Aa) and C (PP2Ac)

subunits of PP2A, but no interaction of EBP50 was detected with

PP1c a and d isoforms. EBP50 was also observed in PP2Ac

immunoprecipitates of lysates with thymidine or nocodazole

treatments. The interaction between EBP50 and PP2A was clearly

more pronounced in lysates of mitotic phase cells (Fig. 5B).

Since the apparent size of the B subunits (about 55 kD) is close

the size of IgG we could not detect co-immunoprecipitation of the

Cell Cycle Dependent Association of EBP50 and PP2A
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B subunits with EBP50. To identify the third, variable B subunit of

PP2A - which determine the substrate specificity and subcellular

localization of the holoenzyme – GST-tagged bacterial expression

construct of EBP50 was created. Immobilized recombinant EBP50

or GST protein, as a negative control, were incubated with or

without BPAEC lysates in pull down experiments. The total cell

lysates and the eluted proteins were analyzed by Coomassie

staining (Fig. 6A) and by Western blot (Fig. 6B) using antibodies

for different PP2A subunits. The Coomassie staining shows the

efficiency of the purification from the bacterial extract. The results

of the Western blot indicate the presence of B subunit in the GST-

EBP50 pull-down along with A and C subunits of PP2A (Fig. 6B).

In the same set of experiment B9 subunit of PP2A was not

detectable.

We were able to confirm the specific interaction between EBP50

and PP2A Ba subunit using overexpressed B subunits with Anti-

V5 Affinity Gel. BPAEC were transfected with expression

contructs containing the coding sequence of PP2A Ba or B9c
subunits and the overexpressed proteins were bound to the anti-

V5 antibody immobilized on the resin. The eluted recombinants

and the presence of EBP50 in the eluted fractions were analyzed

by Western blot (Fig. 6C). Although the amount of Ba and B9c

subunits appears the same (lower panel), the binding of

endogenous EBP50 was detectable only to Ba. Taken together,

data of immunoprecipitations demonstrate that endogenous

EBP50 and endogenous PP2A physically associate, moreover,

our results indicate that EBP50 interacts with the holoenzyme

form of PP2A containing Ba.

The mitotic phase interaction led us to search possible co-

localization of EBP50 with PP2A during mitosis. Therefore,

BPAEC were co-stained with anti-EBP50 and anti-PP2Ac

antibodies (Fig. 7A). While EBP50 has nuclear and perinuclear

distribution in interphase cells, PP2Ac appears to be present

mainly in the cytoplasm, consequently, merge of parallel images

emphasizes no overlap of staining. However, in agreement with

our immunoprecipitation experiments which indicated strong

protein-protein interaction between EBP50 and PP2A, we

detected co-localization of EBP50 and PP2Ac in pro-, prometa-,

meta-, ana-, and telophase. We also observed that the two proteins

still co-localize at the beginning of cytokinesis, when EBP50

showed cytoplasmic appearance. On the other hand, no co-

localization could be observed in the late cytokinesis. To quantify

the extent of association the Pearson’s correlation coefficient was

determined at the different phases of the cell cycle. Positive value

Figure 1. Nuclear localization of EBP50 in BPAEC. A) Immunofluorescence staining of confluent BPAEC (a–c,g–i), HUVEC (d–f), MCF7 (j–l) and
pCMV-myc EBP50 transfected BPAEC (m–o), and HeLa (p–r) cells was performed using anti-EBP50 (anti-SLC9A3R1 antibody, Abgent) (a,j: red, d: green),
anti-tubulin (b,k: green), anti-NHERF2 (g: green), and monoclonal anti-c-myc (m,p: green) primary antibodies. Actin microfilaments were stained with
Texas Red conjugated phalloidin (e,h, n,q: red). c,f,i,l,o and r are merged images of a–b, d–e, g–h, j–k, m–n, and p–q, respectively. Representative data
of at least three independent experiments are shown. Scale bars: 100 mm. B) Cellular fractionations of BPAE and MCF7 cells were made as described in
Materials and Methods. The fractions were analyzed with anti-EBP50 (anti-SLC9A3R1 antibody Abgent), anti-b-tubulin as a cytoplasmic and anti-lamin
A/C antibodies as a nuclear marker. CL: cell lysate, CP1: cytoplasmic fraction 1, CP2: cytoplasmic fraction 2, N: nuclear fraction.
doi:10.1371/journal.pone.0035595.g001
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of the coefficient indicates co-localization/association of the

studied proteins. Significant co-localization was found from the

prophase till the early cytokinesis, but not in late cytokinesis,

compared to interphase (Fig. 7B).

To confirm that the EBP50-PP2A interaction is specific and

phosphorylation dependent, the same analysis of cells co-stained

with PP2Ac and NHERF2 specific primary antibodies was

performed. NHERF2 has the highest amino acid sequence

homology with EBP50 in the NHERF family, but NHERF2 does

not exhibit possible Cdk1 phosphorylation sites. Although both

PP2Ac and NHERF2 are in the cytoplasm of interphase cells,

neither co-localization nor interaction between these proteins in

any phase of the observed cells could be detected (Fig. 7C).

Discussion

EBP50 is a well characterized protein in epithelium, yet little is

known about its function in other cell types. It is expressed at high

levels in the kidney, liver, small intestine, and placenta, but also

expressed at lower levels in the brain and lung [2,3]. Based on

studies of epithelial cells where EBP50 is localized to the plasma

membrane and the cytoplasm, it is accepted that its primary

function is to act as a scaffold protein linking transmembrane

proteins to various cytoskeletal proteins. In polarized cells such as

kidney proximal tubule cells it is localized primarily in the apical

region [22] where its association with proteins like cystic fibrosis

transmembrane conductance regulator, podocalyxin, G-protein

coupled- or tyrosine kinase receptors was found [23,24,25].

In interphase BPAEC and HUVEC we detected EBP50 in the

nucleus and in the perinuclear region in contrast with the above

mentioned cytoplasmic location found by others in epithelial cells.

Our observation was verified by immunfluorescent staining, cell

fractionation, and recombinant protein expression. The amino

acid sequence deduced from the DNA coding the endothelial

EBP50 (SLC9A3R1) is identical with the published bovine

sequence in the database (NM_001077852). Therefore the varying

location of EBP50 in endothelial and epithelial cells may be the

consequence of different interactive protein partners suggesting

different function of EBP50 in the two cell types. We also

compared the localization of EBP50 and NHERF2 in BPAEC, as

these proteins are the most similar members of the NHERF family

(49% amino acid identity). Results of immunoflurescence clearly

excluded the possibility of non-specific binding of the primary

antibodies; EBP50 and NHERF2 appeared at different locations

in BPAEC. In addition, we detected the same pattern of

localization of the recombinant EBP50, as well. Only a few

studies [26,27] have reported nuclear localization of EBP50 but

only in cancer cell lines not in normal cells. It was shown that

EBP50 is overexpressed in hepatocellular carcinoma cell lines and

it is localized in the cytoplasm and in the nucleus [9]. In addition,

cell cycle dependent shuttling between the nucleus and the

cytoplasm of merlin, an ERM-like tumor suppressor protein, was

described [28] in glioma and osteosarcoma cells. Interestingly,

others [29] also detected ERM proteins in the nucleus of MDCK

and HeLa cells.

It is known that EBP50 can be phoshorylated by protein kinases

on multiple sites. It is phosphorylated during mitosis by Cdk1 at

Ser279 and Ser301 and this phosphorylation inhibits its oligomer-

ization [15]. The SPX(K/R) preferred phosphorylation motifs of

Cdk1 are conserved in EBP50 of different species, thus Ser279 and

Ser301 residues in the rabbit protein referred in [15] correspond to

Ser288 and Ser310 in the bovine EBP50. Therefore we concluded

Figure 2. Localization of EBP50 during the phases of the cell cycle. Immunofluorescence staining of BPAE cells was performed using anti-
EBP50 (red) primary antibody (anti-SLC9A3R1 antibody, Abgent). Phases of the cell cycle were identified by tubulin (green) and DAPI (blue) staining.
Representative images from five independent experiments are shown. Scale bar: 100 mm.
doi:10.1371/journal.pone.0035595.g002
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that the cell cycle dependent localization change and mobility shift

on SDS-PAGE of the endothelial EBP50 we observed are in

parallel with the phosphorylation and possibly the oligomerization

state of the protein. Furthermore, phosphorylation of EBP50 by

the employment of its phospho-mimic mutant (S288D:S310D)

form showed mobility shift on SDS-PAGE and cytoplasmic

localization as did the endogenous EBP50 in dividing cells.

The nuclear envelope offers a selective barrier between the

nuclear compartment and the cytoplasm. At the transition from

prophase to prometaphase of mitosis the breakdown of the nuclear

envelope leads to combination of the two compartments [30].

However, we could detect EBP50 in the cytoplasm in cells in early

prophase to late cytokinesis, suggesting an active transporting

mechanism. A number of proteins required for nucleocytoplasmic

transport have important functions during mitosis [31], still the

significance of the varying location of EBP50 is not clear yet.

Recent studies showed that phosphorylation, one of the major

posttranslational modifications, strongly regulates the interaction

of EBP50 with several proteins, like moesin and ezrin [8,17].

Further investigations are necessary to clarify what is the

function(s) of EBP50 in the nucleus and cytoplasm and what are

the targeted proteins in these compartments.

The physiological significance of the phosphorylation of EBP50

was observed in wound healing as we found that the phospho-

mimic mutant (S288D:S310D) form of EBP50 significantly

accelerated the wound healing of BPAEC. In vascular smooth

muscle cells siRNA mediated depletion of EBP50 increased cell

Figure 3. Localization of EBP50 is phosphorylation-dependent
in BPAEC. pCMV-Myc EBP50 wild type (wtEBP50) and pCMV-Myc
EBP50 S288D:S310D phosphomimic mutant (muEBP50) proteins were
analysed by Western blot (A) and immunofluorescence (B). Anti-myc
(green) antibody was used for labeling of wild type and mutant EBP50
both in Western blot and immunofluorescent experiments. Actin
microfilaments were stained with Texas Red conjugated phalloidin
(red) and DAPI (blue) staining was used to visualize the nuclei. Scale bar:
100 mm. Panel C: Phosphorylation level of EBP50 in synchronized BPAE
cells. Cells were arrested in G1/S phase using double thymidine block
and in mitotic phase by nocodazole treatment as described in Materials
and Methods. Samples of asynchronized cells (AS), 1st and 2nd
thymidine block cells (G1/S), and cells after 3 or 8 h release of the
thymidine block without or with addition of 80 ng/ml nocodazole (ND)
were tested for EBP50 (anti-NHERF1(A310) antibody, Cell Signaling
Technology) by Western blot. Representative images from at least three
independent experiments are shown.
doi:10.1371/journal.pone.0035595.g003

Figure 4. Phospho-mimic EBP50 supports wound healing.
BPAEC were transfected with pCMV-Myc EBP50 wild type (wt EBP50)
and pCMV-Myc EBP50 S288D:S310D phosphomimic mutant (mu EBP50)
and were plated onto two 8W10E arrays 24 h post-transfection. After
cells achieved monolayer density (about 1000 V impedance) an
alternate current of 5 mA at 60 kHz frequency was applied for 30 sec
duration to establish wounds in the cell layer (0 h); after that the
impedance was measured for 5 h. The average results from three
independent experiments each made with two or three parallel
measurements are shown. Error bars represent SD.
doi:10.1371/journal.pone.0035595.g004

Figure 5. PP2A subunits associate with cellular EBP50. EBP50
(panel A) or PP2A C subunit (panel B) was immunoprecipitated from
lysates of thymidine or nocodazole treated BPAEC as described in
Materials and Methods. The IP complexes were probed for PP2Aa,
PP2Ac, and PP1c (a and d) (A) or EBP50 (anti-NHERF1(A310) antibody,
Cell Signaling Technology) and PP2Ac subunit (B). Ø: cell lysate without
immunoprecipitation, AS: asynchonized cell lysate, S: early S phase cell
lysate, M: mitotic phase lysate. Additional bands at 55 kD are IgG.
Representative blots from three independent experiments are shown.
doi:10.1371/journal.pone.0035595.g005
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migration and induced cell morphology changes, moreover,

binucleated cells were observed indicating the defect of cytokinesis

[32]. NHERF1/EBP50 gene mutations were identified in cancer

cells [33], in addition knockdown of EBP50 increased cellular

proliferation and migration of cancer cell lines suggesting that

EBP50 acts as a tumor suppressor [34]. Our findings in normal

cells underline the importance of EBP50 in cell division via the

cyclin dependent kinase phosphorylation and PP2A dependent

dephosphorylation of the protein.

Based on experiments with the aid of phosphatase inhibitors, it

was suggested that the dephosphorylation of the Cdk1 (mitosis) -

specific phosphoserine side chains in HeLa cells is mediated by

PP1 or PP2A phosphatases, but not by PP2B [15]. Our attempts to

verify the involvement of PP1 in the dephosphorylation of EBP50

in BPAEC have failed, since specific inhibitor (calyculin A, 2 nM)

of PP1 had no effect on the phosphorylation state of EBP50

arrested in G2/M phase, moreover, immunoprecipitation exper-

iments did not show protein-protein interaction between EBP50

and PP1. On the other hand, our results indicated that PP2A

interacts and co-localizes with EBP50 in a cell cycle dependent

manner. The holoenzyme form of PP2A is a heterotrimer that

consists of a core dimer, composed of a scaffold (A) and a catalytic

(C) subunit that associates with a variety of regulatory subunits

(generally named B subunit) [19]. We did detect remarkable

amount of A and C subunits in the immunoprecipitate of EBP50

and definite co-localization of the C subunit and EBP50 in the

mitotic phase BPAEC. Furthermore, we identified Ba (also named

as PR55) [19] with pull-down assays as the third subunit in the

PP2A holoenzyme interacting with EBP50.

No PDZ domain was identified in the PP2A subunits and our

results do not specify which subunit(s) of the PP2A heterotrimer is/

are directly interacting with EBP50. A C-terminal motif was

described in several peptides and proteins, which was shown to be

responsible for binding to the PDZ domains in EBP50 [23,35]. We

compared the sequence of the four amino acids at the C-terminal

of the PP2A subunits (LSLA for A, DYFL for C and DKVN for

Ba subunit) with this DS/TxL motif. Although none of these

tetrapeptides seem to be optimal, still we cannot exclude any

subunit of PP2A as a potential binding partner for EBP50, as the

results of others [23,35] with peptide bonding indicate broad

variations in the sequence.

The location change and the co-localization of EBP50 with

PP2Ac during the course of mitosis were parallel, with the highest

levels of co-localization during the phases from metaphase to early

cytokinesis. We also observed that the ratio of dividing cells was

higher in cells expressing the phospho-mimic mutant

(S288D:S310D) compared to those expressing the wild type

EBP50. Since we could not detect the phosphorylated form of

EBP50 in the lysate of interphase cells, these results suggests that

the dephosphorylation of P-Ser288 and P-Ser310 is necessary for the

mitotic exit and it is catalyzed by PP2A. Dephosphorylation of the

Cdk1 substrates by PP1 and PP2A as an element of the exit from

mitosis in vertebrate cells was described earlier [36,37,38].

Our results show that a protein thought to be a linker between

the plasma membrane and cytoplasmic/cytoskeletal proteins may

be involved in nuclear events as well. We provide evidences for cell

cycle dependent localization and phosphorylation of EBP50, and

its interaction with PP2A during mitosis. Our results indicate that

EBP50 may have a significant role in the course of the cell cycle

and that PP2A can be the phosphatase dephosphorylating P-Ser288

and P-Ser310 of EBP50 in BPAEC.

Figure 6. Ba subunit of PP2A interacts with EBP50. Panels A and
B: Bacterially expressed glutathione S-transferase (GST) and GST-tagged
wild-type EBP50 were loaded onto glutathione-Sepharose as described
in Materials and Methods. After a washing step the resin samples were
incubated with BPAEC lysate or cell lysis buffer. Non-binding proteins
were washed out and the bound proteins were eluted with 10 mM
glutathion. Coomassie staining (A) and Western blot probed with PP2A
A, B, B9, or C specific antibodies (B) of the bacterial and endothelial cell
lysates (Total) and the eluted fractions after the pull-down are shown.
Panel C: BPAEC monolayers were transfected with pcDNA3.1 V5-His
(vector ctr), pcDNA3.1 V5-His PP2A Ba (PP2A Ba–V5) and pcDNA3.1 V5-
His B9c (PP2A B9c–V5) plasmids. Lysates of the transfected cells were
incubated with Anti-V5 Agarose Affinity Gel as described in Materials
and Methods, and the bound proteins were eluted by boiling the resin
in 16 SDS sample buffer. Western blot analysis of the lysates of
transfected cells (Total) and eluted samples were done using EBP50
(upper panel) and V5-tag (lower panel) specific antibodies. Additional
bands at 55 kD are IgG. Representative data of three independent
experiments are shown.
doi:10.1371/journal.pone.0035595.g006
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Materials and Methods

Materials were obtained from the following sources: thymidine,

nocodazole paraformaldehyde, dimethylsulfoxide, bovine serum

albumin, Anti-V5 Agarose Affinity Gel antibody produced in

mouse: Sigma (St Louis, MO); anti-PP1 catalytic subunit antibody:

R&D System (Minneapolis, MN); anti-SLC9A3R1 antibody:

Abgent (San Diego, CA); anti-PP2A B subunit (most specific for

Ba) and anti-NHERF1(A310) antibodies, anti-rabbit IgG HRP-

linked and anti-mouse IgG HRP-linked secondary antibodies: Cell

Signaling Technology, Inc. (Beverly, MA); anti-PP2A B9 subunit,

monoclonal anti-PP2Ac, monoclonal anti-b-tubulin antibodies:

Upstate Biotechnology (Lake Placid, NY); anti-NHERF2 (C-2),

anti-lamin A/C (H-110) antibodies: Santa Cruz Biotechnology,

Inc. (Santa Cruz, CA); monoclonal anti-c-myc antibody: Zymed

Laboratories (South San Francisco, CA); Protease Inhibitor

Cocktail Set III EMD Biosciences (San Diego, CA); Alexa 488-,

Alexa 546-conjugated secondary antibodies, Texas Red-phalloidin

and ProLong Gold Antifade medium with DAPI: Molecular

Probes (Eugene, OR), FuGENEH HD Transfection Reagent:

Roche (South San Francisco, CA); pCMV-Myc and pcDNA3.1

V5-His vector: Clontech Laboratories, Inc. (Mountain View, CA);

restriction enzymes, T4 DNA ligase, PhusionH High-Fidelity DNA

Polymerase: Thermo Scientific, Inc. (Vantaa, Finland).

Substances for cell culturing were from Invitrogen Corporation

(Carlsbad, CA). All other chemicals were obtained from Sigma (St

Louis, MO).

Cell cultures, cell synchronization, transfection
Bovine pulmonary artery endothelial cells (BPAEC) (culture

line-CCL 209) were obtained frozen at passage 8 (American Type

Tissue Culture Collection, Rockville, MD), and were utilized at

passages 17–22. MCF7 (catalogue No: 86012803) cells were

obtained frozen at passage 11 (European Collection of Cell

Cultures, Salisbury, UK). Cells were maintained at 37uC in a

humidified atmosphere of 5% CO2 and 95% air in MEM

supplemented with 10% (v/v) fetal bovine serum (heat inactivat-

ed), 1% sodium pyruvate, 0.1 mM MEM non-essential amino

acids solution. HeLa cells (catalogue No: 93021013) were obtained

frozen at passage 4 (ECACC) and maintained in DMEM

supplemented with 10% (v/v) FBS, 2 mM glutamine and

0.1 mM non-essential amino acids solution.

BPAEC were synchronized at G1/S phase using double

thymidine block as follows. Cells were treated with 2 mM

thymidine for 16 h. After this first thymidine block cells were

Figure 7. Co-localization of EBP50 and PP2Ac during mitosis in BPAEC. (A) Immunofluorescence staining of BPAEC was performed using
anti-EBP50 (anti-SLC9A3R1 antibody, Abgent) (red) and anti-PP2Ac (green) primary antibodies. Phases of the cell cycle were identified using DAPI
staining (not shown). Scale bars: 100 mm. Co-localization of EBP50 (B) or NHERF2 (C) and PP2Ac was evaluated by determination of Pearson cross-
correlation coefficient. The results are presented as means 6 SD from 50–100 (B) or 25–30 (C) independent cells for each studied phase of the cell
cycle. Statistical analysis was done with ANOVA on ranks. Significant changes compared to the interphase cells are indicated by * (P,0.05). I:
interphase, P: prophase, PM: prometaphase, M: metaphase, A: anaphase, T: telophase, C: cytokinesis, LC: late cytokinesis.
doi:10.1371/journal.pone.0035595.g007
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released for 8 h and then treated with 2 mM thymidine for 16 h

again. G2/M phase cells were obtained by 14–16 h treatment

with 80 ng/ml nocodazole.

To express recombinant proteins 1 mg total DNA/3 ml

FuGENEH HD reagent was mixed and added to the culture

plates containing cells at ,80% confluency according to the

manufacturer’s instruction. Cells were analyzed 24 h later.

Cloning of EBP50
Total RNA was extracted from BPAEC using ZR RNA

MicroPrepTM (Zymo Research Corporation, CA). cDNA was

synthesized from 2 mg of total RNA using oligo-dT primer and M-

MLV reverse transcriptase (Promega Corporation, USA). The

coding region of wild-type EBP50 was amplified by PCR using the

following primers (based on the sequence of SLC9A3R1,

NM_001077852) containing XhoI and NotI restriction sites for

subcloning: 59-GCCTCGAGTTATGAGCGCGGACGCGG-39

(forward) and 59-ATATGCGGCCGCTCAGAGGTTGCTGAA-

GAGTTC-39 (reverse). The primers were synthesized by Inte-

grated DNA Technologies (Coralville, IA). EBP50 S288D:S310D

mutant was created using oligonucleotides with the necessary

mutant sequence. PCR products and pCMV-Myc vector were

double digested with XhoI and NotI and ligated using 1:3

vector:insert molar ratio. The DNA sequences of the constructs

were confirmed by sequencing (Clinical Genomics Center,

MHSC, RCMM, University of Debrecen). One nucleotide

deviance was detected (at position 192) that did not cause amino

acid change.

Immunofluorescence and microscopy
Cells were plated onto 0.2% gelatin coated glass coverslips and

grown, washed once with 16PBS (137 mM NaCl, 2.7 mM KCl,

4.3 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4) and fixed with

3.7% paraformaldehyde in 16 PBS for 15 min at room

temperature. Between each step, the cells were rinsed three times

with 16PBS. The cells were permeabilized with 0.5% Triton X-

100 in PBS at room temperature for 15 min, blocked with 2%

BSA in PBS for 30 min at room temperature, and incubated with

primary then with secondary antibodies diluted in blocking

solution for 1 h at room temperature. Cover slips were rinsed

and mounted in ProLong Gold Antifade medium.

Images were acquired with a Carl Zeiss Axioskope-20

microscope using Zeiss Plan-NEC FLUAR 6361.25 NA oil

immersion objective and Axiocam color camera (Zeiss, model 412-

312). Confocal images were acquired with an Olympus Fluoview

FV1000 confocal microscope using UPLSAPO 6061.35 NA oil

immersion objective on an inverted microscope (Olympus IX81) at

25uC. Images were processed using FV10-ASW v1.5 software and

further processed with PhotoShop Imaging software.

Nonspecific binding of the secondary antibodies was checked in

control experiments (not shown).

Immunoprecipitation
BPAEC were grown in 100-mm tissue culture dishes and treated

with thymidine or nocodazole, rinsed three times with 16 PBS

and then collected and lysed with 600 ml of immunoprecipitation

(IP) buffer (20 mM Tris HCl, pH 7.4, 150 mM NaCl, 2 mM

EDTA, 2 mM sodium vanadate, 1% Nonidet P-40) containing

protease inhibitors. The lysate was centrifuged with 10,000 g for

15 min at 4uC. To avoid nonspecific binding, the supernatants

were precleared with 50 ml of protein G Sepharose (GE

Healthcare, Piscataway, NJ) at 4uC for 3 h with end-over-end

rotation. Protein G Sepharose was removed by centrifugation at

4uC for 10 min, and the supernatant was incubated with the

appropriate volume of antibody at 4uC for 1 h and then with 50 ml

of fresh protein G Sepharose at 4uC overnight with gentle rotation.

The resin was washed three times with 300 ml of IP buffer and

then resuspended in 150 ml of 16SDS sample buffer, boiled, and

microcentrifuged for 5 minutes. The supernatant was further

analyzed by Western blot.

Western blotting
Protein samples were separated by SDS-PAGE and transferred

to 0.45 mm pore sized Hybond ECL Nitrocellulose Membrane

(GE Healthcare, Piscataway, NJ). Western blots were imaged using

an Alpha Innotech FluorChemH FC2 Imager.

Subcellular fractionation
ProteoJETTM Cytoplasmic and Nuclear Protein Extraction Kit

(Fermentas) were used for subcellular fractionation. Cells were

collected in cell lysis buffer, containing 0.01 M DTT and protease

inhibitor, vortexed and kept on ice for 10 min. Cytoplasmic

fraction (CP1) was obtained by centrifugation at 500 g for 7 min

and further cleaned by centrifugation at 13 000 g for 15 min at

4uC (CP2). Nuclear protein fraction (N) was obtained after

washing the pellet from the first centrifugation two times with

Nuclei washing buffer. The efficiency of fractionation was

analyzed by immunoblotting using b-tubulin antibody as a

cytoplasmic and lamin A/C antibody as a nuclear marker.

GST pull-down assay
Escherichia coli BL21 (DE3) transformed with pGEX-4T-2

containing glutathione S-transferase (GST) or pGEX-4T-2

containing wild-type EBP50 coding DNA sequence fused with

GST were induced with 1 mM IPTG and grown at 37uC with

shaking for 3 h. Cells were harvested by centrifugation, sonicated

in lysis buffer (50 mM Tris-HCl (pH 7.5), 0.1% Tween 20, 0.2%

2-mercaptoethanol, protease inhibitors) and proteins were isolated

by affinity chromatography on glutathione Sepharose 4B (GE

Healthcare, Piscataway, NJ) according to the manufacturer’s

protocol. BPAEC grown in 100-mm culture flasks were washed

twice with 16 ice-cold PBS, scraped, and lysed in 600 ml lysis

buffer. The lysates were incubated with GST or GST-EBP50

fusion proteins coupled to glutathione Sepharose beads for 2 h at

4uC. The beads were washed three times with 16 PBS then the

GST fusion proteins were eluted with 10 mM glutathione and

were tested by SDS-PAGE and confirmed by Western blot.

Anti-V5 Agarose Affinity Gel
BPAEC grown in 6 well plates were transfected with pcDNA3.1

V5-His, pcDNA3.1 V5-His PP2A Ba, or pcDNA3.1 V5-His PP2A

B9c construct prepared in our laboratory. 24 h after transfection

the cells were washed twice with 16 ice-cold PBS, scraped, and

lysed in 600 ml lysis buffer (50 mM Tris-HCl (pH 7.5), 0.2% 2-

mercaptoethanol and protease inhibitors). The cell lysates were

sonicated then centrifuged at 10 000 g for 10 min at 4uC. The

supernatant was added to 50 ml Anti-V5 Agarose conjugate and

rotated for 5 h at 4uC. Beads were washed 3 times with PBS then

boiled with 16 SDS buffer and analyzed by Western blot.

In vitro wound healing assay
To study wound healing/cell migration ECIS (Electric cell-

substrate impedance sensing) model Zh, Applied BioPhysics Inc.

(Troy, NY) was used that applies high electric field to make a well

defined injury in a confluent cell monolayer and to screen the

repopulation of this wounded area by noninvasive measurements

[20,39]. Wild type, mock, or mutant EBP50 transfected cells were
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seeded on type 8W10E arrays. After the cells achieved monolayer

density (about 1000 V impedance), an alternate current of 5 mA

at 60 kHz frequency was applied for 30 sec duration to establish

wounds in the cell layer, which led to the death and detachment of

cells present on the small active electrode, then the impedance was

measured for 5 h. The impedance in each wounded well increased

gradually, until it reached a maximum plateau value.

Immunohistochemistry
Immunohistochemical staining on paraffin-embedded human

skin sections (5 mm) was performed as follows. Samples were

deparaffinized in xylene and rehydrated in decreasing concentra-

tions (100, 95 and 70%) of ethanol followed by a 10 min

incubation in PBS (pH 7.4). Sections were treated with 3%

hydrogen peroxide in methanol for 15 min to block endogenous

peroxidase activity and then rinsed briefly in PBS. Next the

samples were subjected to antigen retrieval by heating for 2 min in

a pressure cooker in 0.01 M sodium citrate buffer (pH 6.0).

Nonspecific binding was blocked by incubating the slides for

60 min in PBS containing 1% BSA. EBP50 antibody was applied

in a 1:50 dilution in blocking solution O/N at 4uC and the

negative control sections were incubated with blocking solution

O/N at 4uC. After extensive washing (three times for 2 min) with

PBS, samples were incubated with Alexa594 conjugated secondary

antibody for 2 hours at room temperature in dark. Samples were

rinsed for 5 min with PBS and mounted with ProLongH Gold

Antifade Reagent with DAPI. Pictures were taken with a Zeiss

Axioskope-20 microscope with 10061.3 NA oil immersed

objective.

Statistical analysis
Pearson correlation coefficient was determined as described in

[40]. Analysis of Variance on Ranks was performed on Pearson

coefficients using SigmaStat. Statistical significance was deter-

mined at P,0.05 by Dunn’s Method, multiple comparisons versus

control group (group of interphase cells).

Supporting Information

Figure S1 Nuclear localization of EBP50 in BPAEC.
Immunofluorescence staining of confluent BPAEC was performed

using anti-EBP50 (anti-NHERF1(A310) antibody, Cell Signaling

Technology) (a: green) anti- primary antibodies. Actin microfila-

ments were stained with Texas Red conjugated phalloidin (b: red).

c is merged image of a and b. Representative data of at least three

independent experiments are shown. Scale bars: 100 mm.

(TIF)

Figure S2 EBP50 is present in the nucleus of endothelial
cells in vivo. Immunofluorescent staining was performed on

human skin sections using anti-EBP50 (anti-SLC9A3R1 antibody,

Abgent) (c:red) primary antibody. Blood vessels were identified by

morphological aspects using light microscope (a, e). Nuclei were

stained with DAPI (b, f: blue). No non-specific binding of secondary

antibody was detected in control experiment (g). d and h are

merged images of b–c and f–g, respectively.

(TIF)
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gratefully acknowledge the advice of Dr. László Virág with the evaluation
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