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Abstract

Prostate cancer is the most commonly diagnosed cancer affecting 1 in 6 males in the US. Understanding the molecular basis
of prostate cancer progression can serve as a tool for early diagnosis and development of novel treatment strategies for this
disease. Protein Kinase D1 (PKD1) is a multifunctional kinase that is highly expressed in normal prostate. The decreased
expression of PKD1 has been associated with the progression of prostate cancer. Therefore, synthetic or natural products
that regulate this signaling pathway can serve as novel therapeutic modalities for prostate cancer prevention and
treatment. Curcumin, the active ingredient of turmeric, has shown anti-cancer properties via modulation of a number of
different molecular pathways. Herein, we have demonstrated that curcumin activates PKD1, resulting in changes in b-
catenin signaling by inhibiting nuclear b-catenin transcription activity and enhancing the levels of membrane b-catenin in
prostate cancer cells. Modulation of these cellular events by curcumin correlated with decreased cell proliferation, colony
formation and cell motility and enhanced cell-cell aggregation in prostate cancer cells. In addition, we have also revealed
that inhibition of cell motility by curcumin is mediated by decreasing the levels of active cofilin, a downstream target of
PKD1. The potent anti-cancer effects of curcumin in vitro were also reflected in a prostate cancer xenograft mouse model.
The in vivo inhibition of tumor growth also correlated with enhanced membrane localization of b-catenin. Overall, our
findings herein have revealed a novel molecular mechanism of curcumin action via the activation of PKD1 in prostate cancer
cells.
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Introduction

Prostate cancer is the second leading cause of death and the

most commonly diagnosed cancer in males in the US [1]. The risk

for prostate cancer increases exponentially after the age of 50.

Hence, prostate cancer is positioned to become a greater challenge

in the coming years due to an overall increase in longevity. While

the etiology of prostate cancer is not well understood, both genetic

and environmental factors seem to play important roles in the

development of the disease. A common first-line strategy for

treatment of prostate cancer includes surgical or pharmacological

castration through androgen ablation therapy. While androgen

ablation therapy is effective during initial stages of the disease, the

cancer quickly progresses to an androgen independent stage for

which no known effective therapy is currently available.

Therefore, understanding the molecular basis of the disease is

highly desirable for developing newer strategies for prevention and

treatment of prostate cancer.

Protein Kinase D1 (PKD1) is an evolutionarily conserved,

ubiquitously expressed serine-threonine kinase that plays a central

role in regulating a variety of cellular functions including cell

survival, proliferation, motility and invasion [2–8]. The PKD1 gene

is expressed in many organs with the highest expression

documented in the prostate and testis germ cells [3,9,10]. PKD1

exhibits a combination of structural and functional features of both

the PKC family (diacyl glycerol and phorbol ester binding

structural domains) and the CaMK family (structural homology

of kinase domain and substrate and inhibitor specificity).

Therefore, it is uniquely positioned within the signal transduction

cascade for integrating signaling information from external stimuli

and converts them into intracellular response by modulating

diverse downstream pathways [2]. Thus, the deregulation of

PKD1 affects multiple signaling pathways, resulting in chronic

diseases like cancer [2]. Previous work from our laboratory has

implicated a critical role for PKD1 in prostate cancer [11]. Our

work has revealed the ability of PKD1 to inhibit the functions of b-

catenin in prostate cancer [12]. In addition, PKD1 has been

shown to interact with and modulate the functions of E-cadherin,

androgen receptor and MAPKinase signaling pathways [13–18].

PKD1 also inhibits cell motility by directly interacting with and

modulating the functions of a number of proteins involved in actin

remodeling, including sling shot phosphatase (SSH1L) and

cortactin [19–23]. Furthermore, PKD1 is known to be involved

in inhibiting invasion, metastasis and epithelial-mesenchymal

transition (EMT) of cancer cells by regulating the expression of

matrix metalloproteinases (MMPs) [24,25] and the functions of

snail transcription factor [26], respectively. Therefore, molecules
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that modulate PKD1 expression or activity may play an important

role in the prevention and or treatment of prostate cancer.

Curcumin (Figure 1A), the active ingredient of turmeric, is a

non-toxic, diferuloyl methane compound that has potent anti-

proliferative, anti-inflammatory and anti-oxidative properties

[27,28]. Both in vivo and in vitro studies have demonstrated the

ability of curcumin to effectively inhibit cancer growth [29–31].

This potent anti-cancer property of curcumin is related to its

ability to simultaneously modulate the functions of a number of

different molecular pathways including MAPK, EGFR and NFkB

pathways [32]. In addition, curcumin also regulates the nuclear b-

catenin/T cell factor (TCF) transcriptional activity. However, the

precise molecular mechanisms of curcumin mediated suppression

of b-catenin transcriptional activity are not fully understood.

In the present study, we have revealed the effect of curcumin on

PKD1 activation. Curcumin mediated PKD1 activation sup-

pressed nuclear b-catenin/TCF transcription activity and inhib-

ited the growth of prostate cancer in cell line and xenograft animal

model. Activation of PKD1 also enhanced cell-cell aggregation

and inhibited cell motility functions via enrichment of membrane

b-catenin and the inhibition of cofilin activity. Overall, we have

revealed a novel molecular signaling pathway regulated by

curcumin to attenuate prostate cancer growth.

Results

Curcumin inhibits prostate cancer cell proliferation
Deregulated cell proliferation is a hallmark of cancer cells. In

order to determine the anti-proliferative activity of curcumin

(Figure 1A), a panel of prostate cancer cell lines (early passage

androgen sensitive LNCaP, androgen-independent C4-2, PC3 and

DU145) were treated with varying concentrations of curcumin for

48 h and assessed for cell proliferation. Curcumin treatment

exhibited dose-dependent inhibition of cell proliferation in all the

different prostate cancer cells (Figure 1B). The paired prostate

cancer cell line system LNCaP (androgen sensitive) and C4-2 cells

(LNCaP derived, androgen-independent) were used for further

studies.

Curcumin activates PKD1
PKD1 is necessary for normal physiology of the prostate cells

and its down regulation is associated with the progression of

prostate cancer. Therefore, non-toxic, natural compounds that

upregulate the expression or activity of PKD1 may help in the

prevention and or treatment of prostate cancer. In order to

determine if curcumin can modulate the expression or activity

of PKD1, androgen-independent prostate cancer C4-2 cells

Figure 1. Curcumin inhibits prostate cancer cell proliferation. A). Chemical structure of curcumin. B). Effect of curcumin on proliferation of
various prostate cancer cell lines. LNCaP, C4-2, DU145 and PC3 cell were treated with curcumin or vehicle control DMSO for 48 h and cell proliferation
was determined using MTS assay. The percent cell proliferation was calculated by normalizing the proliferation of curcumin treated cells with
proliferation of control treated cells. Concentration dependent inhibition in cell proliferation was observed with curcumin treatment. Mean 6 SE;
n = 3; *p,0.05.
doi:10.1371/journal.pone.0035368.g001
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were treated with curcumin for varying time points, and the

expression of total PKD1 (Figure 2A) and active PKD1

(Figure 2B) was determined using PKD1 and phospho PKD1

antibody antibodies. While no marked change in the total

PKD1 level was detected following curcumin treatment

(Figure 2A), curcumin treatment significantly enhanced the

expression of activated PKD1 within 1 h of treatment (Figure 2B

and Figure S1A). Similar results were also obtained in C4-2

cells overexpressing PKD1 (C4-2-PKD1) (Figure S1B) and in

LNCaP cells (Figure S1C). These data suggest that curcumin

treatment can efficiently induce the activation of PKD1 in

prostate cancer cells.

Curcumin treatment enriches b–catenin localization at
the cell membrane
b-catenin is an important cellular protein that is phosphory-

lated by PKD1. PKD1 has also been shown to increase the levels

of membrane b-catenin and cell-cell interaction in prostate

cancer cells [12]. To determine the effect of curcumin mediated

activation of PKD1 on membrane b-catenin localization,

curcumin treated C4-2 cells were immunostained for b-catenin

and processed for confocal microscopy (Figure 3). As shown in

Figure 3, curcumin treatment enriched membrane b-catenin

localization in C4-2 cells within 1 h of treatment compared to

vehicle control treated cells. Similar results were also observed in

LNCaP cells (Figure S2).

Curcumin mediated enhancement of membrane b-
catenin is inhibited by PKD1 siRNA

PKD1 has previously been shown to influence the subcellular

localization of b-catenin [12]. Therefore, we sought to investigate

the role of PKD1 in curcumin mediated enrichment of membrane

b-catenin. For this purpose, we used PKD1 specific siRNA to

silence PKD1 in C4-2 cells. PKD1 siRNA effectively silenced

PKD1 expression (over 95%) in C4-2 cells compared to scrambled

(non-targeted) siRNA (Figure 4A). After inhibition of PKD1

expression, C4-2 cells were treated with curcumin and processed

for confocal microscopy to determine b-catenin and PKD1

expression and localization (Figure 4B). In scrambled siRNA

transfected cells, curcumin treatment efficiently enhanced b-

catenin localization on the cell membrane (Figure 4B, A2–D2)

compared to control cells (Figure 4B, A1–D1). However, in cells

transfected with PKD1 silencing siRNA, curcumin treatment

failed to enrich b-catenin on the membrane in C4-2 cells

(Figure 4B, A4–D4). These data suggest that PKD1 plays a role

in curcumin mediated enrichment of membrane b-catenin in

prostate cancer cells.

Curcumin attenuates nuclear b-catenin signaling
PKD1 modulates the b-catenin signaling pathway by interact-

ing, phosphorylating and modulating the subcellular localization

and inhibiting the transcription activity of nuclear b-catenin [12].

We observed maximal PKD1 activation by curcumin treatment

within 1 h (Figure 2B). Transient activation of PKD1 has been

Figure 2. Curcumin activates PKD1. A). Effect of curcumin on PKD1 levels. C4-2 cells were treated with 20 mM curcumin. At varying time points,
the cells were harvested, and the lysates were resolved on SDS-PAGE, transferred onto a PVDF membrane and probed for total PKD1. b-actin was
used as an internal loading control. The band intensities were densitometrically analyzed, normalized to b-actin levels and graphed. Curcumin
treatment resulted in no marked change in PKD1 expression at 1, 3 and 6 h. B). Effect of curcumin on activation of PKD1. For determining the
expression of activated/phosphorylated PKD1, blots were probed with phospho PKD1, total PKD1 and b-actin antibodies. The pPKD1 band intensity
was normalized to total PKD1 levels and graphed. Curcumin treatment induced PKD1 activation/phosphorylation by 1 h, while no apparent changes
were observed in the expression of total PKD1. Representative blots of three experiments are shown in the figure. AU- arbitrary units.
doi:10.1371/journal.pone.0035368.g002
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Figure 3. Curcumin treatment enhances membrane b-catenin. C4-2 cells were cultured on glass coverslips overnight in 12 well plates. The
cells were treated with DMSO (upper panel) or curcumin (20 mM) (lower panel) for 1 h, washed, fixed and immunostained for b-catenin (red) and
counter-stained with DAPI (blue). Higher b–catenin staining was observed on the cell surface at 1 h of curcumin treatment, compared to DMSO
control treated cells. Original Magnifications 6006.
doi:10.1371/journal.pone.0035368.g003

Figure 4. PKD1 is required for curcumin induced enrichment of b-catenin on the membrane. A). Silencing of PKD1 by PKD1 specific siRNA.
C4-2 cells were transfected for 48 h with 25 nM control siRNA or PKD1 siRNA, lysed and immunoblotted for PKD1 and b-actin using specific
antibodies. Quantitation of protein band intensities was performed by densitometric analysis. The PKD1 levels was normalized to b-actin levels and
graphed. AU- arbitrary units. Immunoblotting shows over 95% suppression of PKD1 expression on transfection with PKD1 specific siRNA (lane 2)
compared to control siRNA-transfected cells (lane 1). B). Suppression of PKD1 inhibits enrichment of membrane b-catenin levels. C4-2 cells were
cultured on coverslips overnight. The cells were first transfected with either control siRNA (A1–D1; A2–D2) or PKD1 silencing siRNA (A3–D3; A4–D4)
for 24 h, followed by treatment with vehicle control (DMSO) (A1–D1; A3–D3) or curcumin (20 mM) (A2–D2; A4–D4) for 1 h. The cells were
immunostained for b-catenin (red) or PKD1 (green) and the nucleus was counter stained with DAPI (blue). Higher b–catenin staining was observed on
the cell surface of control siRNA cells at 1 h of curcumin treatment (A2) compared to vehicle treatment (A1). However, siRNA mediated silencing of
PKD1 (B3, B4) inhibited curcumin mediated enrichment of membrane b–catenin staining on the cell surface (A4 vs A3 and A2). Original Magnifications
6006with 26 zoom.
doi:10.1371/journal.pone.0035368.g004
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shown to have long term downstream cellular effects [12,17].

Therefore, we further determined the effect of curcumin on

membrane b-catenin localization after 24 h of treatment using

confocal microscopy (Figure 5A). Higher membrane b-catenin

localization along with reduced cytoplasmic b-catenin was

observed in cells after 24 h of curcumin treatment (Figure 5A).

In addition, 24 h curcumin treatment also altered the subcellular

localization of PKD1 (Figure 5A). While in control cells, PKD1

was primarily localized in the cytoplasm, curcumin treated cells

exhibited PKD1 localization on the membrane and in the nucleus

(Figure 5A).

b-catenin is a critical component of the Wnt signaling cascade.

Nuclear b-catenin functions as a co-transcription factor by forming

a complex with TCF and enhances the expression of a number of

molecules with pro-oncogenic roles, including cyclin D1, c-myc

and c-jun. Since PKD1 modulates the subcellular localization of b-

catenin and since curcumin mediated PKD1 activation enhanced

the membrane localization of b-catenin, we analyzed the effect of

this activation on nuclear b-catenin expression using immuno-

blotting and on b-catenin transcription activity using a luciferase

reporter system in C4-2 prostate cancer cells (Figures 5B and 5C).

Curcumin treatment significantly reduced the nuclear expression

of b-catenin compared to dimethyl sulfoxide (DMSO) treated cells

Figure 5. Curcumin inhibits b-catenin transcription activity in prostate cancer cells. A) Effect of curcumin treatment on the cellular
localization of b-catenin and PKD1. C4-2 cells treated with curcumin (20 mM) or DMSO for 24 h were immunostained for b-catenin (green) or PKD1
(red) and counter-stained with DAPI (blue). Curcumin treated cells showed lower cytoplasmic and higher membrane b-catenin staining compared to
control cells. In addition, while PKD1 was predominantly localized in the cytoplasm in control cells, curcumin treated cells exhibited staining primarily
on the cell membrane and in the nucleus (white arrows), with faint cytoplasmic staining. Original Magnifications 6006with 26 zoom. B) Effect of
curcumin on nuclear b-catenin levels. Nuclear proteins isolated from C4-2 cells treated either with curcumin (20 mM) or DMSO were resolved on PVDF
membrane and processed for immunoblotting using b-catenin antibody. Histone H1 protein was used as loading control. Densitometric quantitation
of b-catenin band intensities, normalized to Histone H1 levels is shown in graph. Curcumin treatment markedly decreased the levels of nuclear b-
catenin compared to vehicle treated cells. AU- arbitrary units. C) Effect of curcumin on b-catenin transcription activity in C4-2 prostate cancer cells.
The b-catenin transcription activity was measured by transiently transfecting the cells with TCF luciferase reporter construct containing either TCF
promoter binding sites (pTOP-FLASH) or mutant TCF promoter binding sites (pFOP-FLASH) along with internal control plasmid containing Renilla
luciferase gene (pRL-TK). After 3 h, the cells were treated with curcumin (20 mM) or DMSO for 24 h. The b-catenin transcription activity was first
normalized to Renilla luciferase activity, and expressed as a ratio of pTOP-FLASH/pFOP-FLASH activity. The activity of curcumin treated cells was
normalized to activity of vehicle treated cells (considered 100%). Curcumin treatment significantly reduced b-catenin transcription activity in C4-2
cells compared to vehicle treated cells. Mean 6 SE, n = 3, *p,0.01. D). Effect of curcumin on transcription of cyclin D1. The transcription of cyclin D1
was analyzed from cells treated with curcumin or vehicle control for 24 h. After reverse transcription of RNA to cDNA, PCR amplification of cyclin D1
or internal control GAPDH was carried out using gene specific primers. The amplified products were resolved on 1% agarose gel. The densitometric
quantitation of cyclin D1 band intensities normalized to GAPDH levels is shown in graph. Curcumin treatment reduced the expression of cyclin D1.
AU- arbitrary units. E). Immunoblot analyses. Cell lysates prepared from curcumin (20 mM) or DMSO treated C4-2 cells were resolved by SDS-PAGE and
processed for immunoblotting using specific antibodies. Curcumin treatment markedly decreased cyclin D1 expression, whereas no effect was
observed on the expression of total b-catenin, E-cadherin or Wnt 3a. Representative immunoblots from three experiments are shown.
doi:10.1371/journal.pone.0035368.g005
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(Figure 5B). The decrease in nuclear b-catenin levels was

correlated with the attenuation of b-catenin transcription activity

in C4-2 (Figure 5C). In order to determine the downstream effects

of the suppressed b-catenin activity, the expression of cyclin D1

was analyzed in curcumin treated C4-2 cells. Interestingly, a

marked decrease in the expression of cyclin D1 at mRNA

(Figure 5D) and protein levels (Figure 5E) was observed in

curcumin treated C4-2 cells. Similar results were also obtained by

real-time PCR analysis (data not shown). However, no apparent

change was observed in the expression of Wnt 3a, b-catenin and

E-cadherin (Figure 5E).

We also determined the effect of curcumin on b-catenin

transcription activity in LNCaP cells. Similar to C4-2 cells,

curcumin inhibited b-catenin transcription activity (Figure S3A)

and markedly decreased the expression of cyclin D1 (Figure S3B)

in LNCaP cells.

Curcumin treatment suppresses oncogenic phenotype in
prostate cancer cells

Enhanced clonogenic potential and decreased cell-cell adhesion

are two important characteristics of cancer growth and metastasis.

The clonogenic growth characteristic is necessary for the cancer

cells to establish a primary tumor and eventually metastasize.

Hence, we examined the ability of curcumin to inhibit anchorage

dependent and anchorage independent colony formation. Curcu-

min treatment inhibited anchorage dependent and anchorage

independent colony formation in a dose-dependent manner in C4-

2 prostate cancer cells (Figure 6A, B). In anchorage independent

assays, curcumin treatment not only decreased the number of

colonies, but also decreased the size of the colonies (Figure 6B).

Similar results were observed in LNCaP cells (Figure S3C, D).

Cell-cell adhesion is facilitated by intercellular cadherin-

cadherin interaction. The increased membrane localization of b-

catenin strengthens the cadherin-catenin interactions and thus

enhances cell-cell interactions [12]. In order to determine the

effect of enhanced membrane localization of b-catenin, curcumin

treated C4-2 and PKD1 overexpressing C4-2 cells (C4-2-PKD1)

were assessed for cell-cell aggregation. Curcumin treated C4-2

cells formed larger cell-cell aggregates compared to the control

treated cells (Figure 6C). Interestingly, while C4-2-PKD1 formed

large cell aggregates, much larger cell-cell aggregates were

observed upon curcumin treatment of these cells (Figure S4).

These data implicate a role of curcumin mediated activation of

PKD1 in cell-cell aggregation.

Curcumin inhibits cell motility through PKD1 mediated
cofilin phosphorylation

Cancer cells usually exhibit enhanced cellular motility to

facilitate metastasis. Therefore, the ability of a chemopreventive

or chemotherapeutic agent to inhibit cell motility will aid in

preventing cancer metastasis. Hence we investigated the effect of

curcumin on cell motility using a ‘wound healing’ and Boyden’s

chamber assays. Compared to control, curcumin treatment

inhibited cellular motility of C4-2 prostate cancer cells in both

assays (Figure 7A, B). A similar effect on cellular motility was also

observed in LNCaP cells (Figure S3E).

The highly coordinated process of actin remodeling underlies

the process of cellular motility. This remodeling at the growing

front requires the orchestrated action of a number of molecules

involved in the F-actin reorganization. The actin related proteins

(Arp) play an important role in the branching of the actin filament.

The protein cofilin is an actin monomer generating molecule that

is involved in actin remodeling. Cofilin is activated by slingshot

(SSH) phosphatase mediated dephosphorylation reaction and is

inactivated by LIM Kinase (LIMK) mediated phosphorylation

reactions [2,21]. PKD1 is intricately involved in inhibiting cell

motility by interacting, phosphorylating and inhibiting the

functions of many motility related proteins including a slingshot

1 like (SSH1L) phosphatase [21]. Since curcumin activated PKD1,

we sought to investigate the effect of curcumin on the activity and

levels of cofilin and Arp3 protein by immunoblotting. Curcumin

treatment increased the levels of inactive phospho-cofilin in C4-2

prostate cancer cells with little or no effect on the expression of the

total protein (Figure 7C). Curcumin treatment also caused a slight

decrease in the expression of Arp3 protein. These data suggest a

potential role of PKD1 in curcumin mediated inhibition of cell

motility via cofilin phosphorylation.

In vivo effects of curcumin on prostate cancer growth
A xenograft mouse model was used to examine the in vivo effect

of curcumin on prostate tumor growth and b-catenin subcellular

localization. Nude mice were subcutaneously inoculated with

androgen-independent C4-2 cells. Following tumor development,

the mice were administered intra-tumoral injections of curcumin

or vehicle control. On day 7, the tumor volumes were measured

and the rate of tumor growth following curcumin treatment was

determined. Curcumin efficiently inhibited tumor growth by over

two folds compared with the control-treated mice (*p,0.05)

(Figure 8A). In addition, we observed change in b-catenin

subcellular localization in curcumin treated tumor tissues

(Figure 8B), similar to in vitro observations (Figure 3 and 5A).

These results suggest that curcumin inhibits prostate tumor growth

by modulating b-catenin functions.

Discussion

The dysregulation of PKD1, a serine-threonine kinase, has been

associated with cancer progression [2,4,6]. PKD1 is expressed at

the highest level in the prostate gland and plays a critical role in

the normal physiology of the prostate [9,10]. Previous work from

our laboratory has revealed the association of PKD1 downregu-

lation with the progression of prostate cancer [3,11]. Our previous

work has also illuminated the role of PKD1 in E-cadherin

phosphorylation, modulation of cell motility and cell-cell aggre-

gation in prostate cancer cells [13]. In addition, we have shown

PKD1 to interact with, phosphorylate and modulate the function

of b-catenin [12]. The natural macrolactone Bryostatin 1 activates

PKD1 in prostate cancer cells [12]. The activated PKD1

phosphorylates and translocates nuclear b-catenin from the

nucleus resulting in the inhibition of b-catenin/TCF transcrip-

tional activity [12]. Thus natural compounds that modulate PKD1

activation might help in prevention and treatment of prostate

cancer. Curcumin is a natural compound that is currently in

clinical trials for prevention and treatment of various cancers [33–

35]. In this study, we have demonstrated that curcumin activates

PKD1, attenuates b-catenin/TCF transcriptional activity and

enriches membrane b-catenin resulting in the suppression of

prostate cancer growth.

b-catenin is a multifunctional protein that plays an important

role in ontogenesis and oncogenesis. In combination with TCF

and p300, it functions as a transcription factor in the Wnt signaling

pathway [36]. In addition, b-catenin, along with E-cadherin

functions at the cell membrane as a critical component of the

adherens junction to enhance cell-cell adhesion [37]. Thus the

dysregulation of b-catenin has been associated with the develop-

ment of many types of cancers, including prostate cancer

[36,38,39]. We have previously shown a novel mechanism of b-

Modulation of PKD1 Signaling by Curcumin
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catenin regulation through the action of PKD1 [12]. Herein, we

have revealed that curcumin activates PKD1 within 1 h of

treatment (Figure 2B). Additionally, using a reporter luciferase

assay, we have demonstrated that the b-catenin activity is inhibited

by curcumin, following PKD1 activation (Figure 5C).

Since b-catenin is an important signaling molecule, its functions

are regulated by multiple pathways [40]. While curcumin has been

shown to inhibit b-catenin/TCF transcription activity [41], its

precise molecular mechanisms are not fully known. Herein, we for

the first time demonstrated that curcumin attenuates b-catenin/

TCF transcription activity via activation of PKD1 in prostate

cancer cells. Studies have also reported inhibition of b-catenin

transcriptional activity upon curcumin treatment in colon cancer

cells via caspase-3 mediated degradation of b-catenin [42].

However, we did not observe a marked decrease in overall b-

catenin expression levels in prostate cancer cell lines. This suggests

a possible cell type variation in curcumin mediated inhibition of b-

catenin transcription activity. Interestingly, curcumin treatment

alters the subcellular localization of PKD1 in prostate cancer cells

(Figure 3C). Compared to control cells that revealed predominant

PKD1 localization in the cytoplasm, curcumin treated cells

showed PKD1 localization predominantly on the cell membrane

and in the nucleus, with very low expression in the cytoplasm

(Figure 5A). The enhanced presence of PKD1 in the nucleus

following curcumin treatment suggests the role of PKD1 in the

attenuation of nuclear b-catenin/TCF activity, probably by

phosphorylation and/or shuttling of nuclear b-catenin out to the

nucleus. We also showed that a decrease in nuclear b-catenin

transcription activity results in the lowered expression of cyclinD1,

a downstream oncogene of b-catenin/TCF transcription activity.

Our in vitro (Figure 6) and in vivo (Figure 8) studies showed that

curcumin effectively attenuated prostate cancer growth. Thus,

since active PKD1 is involved in shuttling of nuclear b-catenin out

of the nucleus, our study suggests a novel mechanistic role for

curcumin mediated attenuation of b-catenin/TCF activity and

prostate cancer growth through activation of PKD1. The

activation of PKD1 and the reduction of b-catenin transcriptional

activity by curcumin may also impact androgen receptor (AR)

signaling in prostate cancer, since both PKD1 and b-catenin

modulate AR function. Although previous studies have demon-

strated that curcumin treatment modulates the levels and

transcription activity of AR [43–45], the activation of PKD1 by

curcumin and the inhibition of b-catenin activity might be another

mechanism for the regulation of AR function and prostate cancer

growth.

The cadherin-catenin complex forms the adhesion junction that

is essential for maintaining cell-cell adhesion. The transmembrane

E-cadherins is linked to the actin cytoskeleton through its

Figure 6. Curcumin treatment attenuates colony formation and cell-cell aggregation. A). Anchorage dependent colony formation assay.
C4-2 cells (2000) were plated overnight, treated with indicated concentrations of curcumin for 14 days and examined for their colony forming ability.
Representative photographs are shown. Curcumin showed a dose-dependent inhibition in anchorage dependent colony formation assay. Mean 6 SE;
n = 3; *p,0.05. B). Anchorage independent colony formation assay. C4-2 cells were seeded in 0.3% agarose and treated with varying concentrations
of curcumin for 9 days. The number of colonies were counted and plotted. Curcumin treatment inhibited anchorage independent colony formation
of C4-2 cells. Mean 6 SE; n = 3; *p,0.01. C) Cell-cell aggregation assay. C4-2 cells treated with curcumin (15 mM) or DMSO for 1 h were harvested and
assayed for cell-cell aggregation by incubating under gentle shaking conditions at 37uC in the presence of 5 mM CaCl2. After 6 h incubation, an
aliquot of the reaction mixture was analyzed and photographed for cell-cell aggregation under phase contrast microscope. Larger cell-cell aggregates
were observed in curcumin treated cells, compared to DMSO control cells. Original Magnifications 1006.
doi:10.1371/journal.pone.0035368.g006
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interaction with b-catenin, a-catenin and c-catenin [37]. The loss

of cell-cell adhesion is a critical factor responsible for cancer

metastasis. Previous work from our laboratory and others has

revealed the regulation of both E-cadherin and b-catenin by

PKD1 [13,18,39]. An increased level of b-catenin or E-cadherin

on the membrane facilitates enhanced cell-cell aggregation. We

have previously shown a novel mechanism of b-catenin regulation

through PKD1 [12]. In this study we showed that curcumin

treatment enriched the levels of membrane b-catenin (Figure 3

and Figure S2) and this change in the subcellular localization of b-

catenin is mediated by PKD1 upon curcumin treatment (Figure 4).

Additionally, we showed that curcumin treatment enhanced cell-

cell aggregation (Figure 6C and Figure S4), probably by enhanced

b-catenin localization on the cell membrane. The specificity of the

role of PKD1 in these processes was confirmed by PKD1 siRNA

and exogenous overexpression of PKD1 in C4-2 cells. This change

in b-catenin subcellular localization was also reflected in xenograft

mouse studies (Figure 8B), implicating the role of curcumin

mediated activation of PKD1 in prostate cancer.

Additionally, in this study we have demonstrated a novel

molecular mechanism responsible for the inhibition of cell motility

by curcumin treatment. Our results revealed that curcumin

inhibits cell motility by decreasing the levels of active cofilin.

Cofilin is a protein necessary for actin remodeling, which is a

molecular process essential for cell motility. This dynamic and

complex process of actin remodeling involves the coordinated

action of a number of proteins to actively balance the

polymerization and growth of fibrous actin with depolymeriza-

tion/severing of the actin polymers [2,21]. Cofilin activity is tightly

regulated by phosphorylation and dephosphorylation mechanisms.

Cofilin is inactivated by the phosphorylating action of LIMK,

while the SSH enzyme converts inactive cofilin to active form

Figure 7. Curcumin treatment inhibits cell motility through phosphorylation of cofilin. A). Scratch assay. C4-2 cells were grown, until
confluent, in plates containing IBIDI inserts. The inserts were removed from the plates to generate gaps (solid white lines show width of the gap;
dashed lines border the gap) and phase contrast images of the same area of the gaps were taken at varying time intervals in the presence or absence
of 20 mM curcumin. Curcumin treatment inhibited motility of C4-2 prostate cancer cells. B). Boyden’s chamber assay. Equal numbers of C4-2 cells were
seeded on the Boyden’s chambers and incubated in the presence DMSO or curcumin (20 mM) for 24 h. Migrated cells were fixed, stained, counted
and graphed. Curcumin inhibited motility of C4-2 cells. Mean 6 SE; n = 3; *p,0.05. C). Effect of curcumin on the expression of actin remodeling
proteins. Total cell lysates prepared from curcumin (20 mM) or DMSO treated C4-2 cells were processed for immunoblotting using specific antibodies.
The densitometric quantitation of protein bands normalized to b-actin level is shown in graph. Curcumin treatment induced a marked increase in the
expression of inactive phospho-cofilin compared to DMSO treated control cells. Minor change was also observed in the expression of Arp3. AU-
arbitrary units.
doi:10.1371/journal.pone.0035368.g007
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through its dephosphorylating activity [21]. The cell further finely

controls this process by regulating the activities of LIMK and SSH

through phosphorylation and dephosphorylation reactions. PKD1

has been shown to play a critical role in inhibiting cellular motility

through inhibition of SSH activity and activation of LIMK activity

[20,22,23]. Herein, we showed that curcumin treatment, which

activates PKD1, results in the accumulation of inactive phospho-

cofilin to inhibit cell motility.

In conclusion, our study elucidates a new molecular paradigm

involving PKD1 signaling in mediating the anti-cancer effects of

curcumin (Figure 9). The nutraceutical compound curcumin may

act as a chemo-preventive agent to inhibit or delay the onset of

prostate cancer via the activation of PKD1. Additionally, curcumin

treatment could also synergize conventional chemotherapy by

activating PKD1 and inhibiting b-catenin transcriptional activity.

Further, activation of PKD1 by curcumin may prevent metastasis

by enhancing cell-cell adhesion and inhibiting cell motility. This

study suggests a novel molecular mechanism of curcumin

mediated prostate cancer prevention/treatment.

Materials and Methods

Materials
Media containing glutamine (RPMI 1640, High glucose

DMEM), fetal bovine serum (FBS), 100 mM sodium pyruvate

solution and 16 antibiotic and antimycotic solutions were

purchased from Hyclone (Hyclone Laboratories, South Logan,

UT). OPTI-MEM reduced serum growth media was purchased

from Invitrogen (Life Technologies, Carlsbad, CA). All other

chemicals were purchased from Sigma (Sigma-Aldrich, St. Louis,

MO) unless mentioned otherwise.

Cell culture
All the cells were aseptically handled and grown at 37uC in a

humidified incubator containing 5% CO2. C4-2 (UroCor,

Oklahoma City, OK), PC3, and LNCaP prostate cancer cells

(ATCC, Manassas, Virginia) and C4-2 cells overexpressing PKD1

[13] were maintained in RPMI 1640 media containing 1 mM

sodium pyruvate, 2.5 mM glutamine, 10% heat-inactivate FBS

(Hyclone) and 16 antibiotic and antimycotic solution. Early

passage LNCaP cells (passage 32–37) were used for experiments.

DU145 prostate cancer cells (ATCC) was maintained in DMEM

media containing 1 mM sodium pyruvate, 2.5 mM glutamine,

10% heat-inactivate FBS (Hyclone) and 16 antibiotic and

antimycotic solution.

Antibodies
The mouse monoclonal b-catenin antibody is a generous gift of

Dr. Keith Johnson (University of Nebraska Medical Center,

Omaha, Nebraska) and has been described previously [46]. Rabbit

polyclonal PKD1 antibody (C-20), Histone H1 (Santa Cruz

Biotechnologies, Santa Cruz, CA), rabbit monoclonal PKD1,

rabbit monoclonal phospho-PKD1 (744.748), rabbit monoclonal

phospho-PKD1 (916), E-cadherin, cofilin, phospho-cofilin, Arp3,

Wnt3a, c-Myc (Cell Signaling Technologies, Danvers, MA), b-

actin (Sigma-Aldrich and cyclinD1 (Santa Cruz Biotechnologies)

were commercially procured.

Cell proliferation assay
The effect of curcumin on cell proliferation was determined by

MTS assay using CellTiter96 Aqueous One Solution reagent

(Promega, Madison, WI). Briefly, prostate cancer cells (5000 cells/

well) were plated in 100 ml RPMI in 96 well tissue culture plates

and incubated for 12 h. Curcumin was dissolved in DMSO and

diluted in tissue culture media. The cells were treated with varying

concentrations of curcumin or equivalent amounts of vehicle

control (DMSO) and incubated for 48 h. The cell proliferation

was determined by adding 20 ml of MTS reagent, incubating for

2 h at 37uC and measuring the absorption at 490 nm using a

SPECTRA max Plus plate reader (Molecular Devices, Sunnyvale,

CA). The percent proliferation in curcumin treated cells was

determined by normalizing to cells treated with equivalent amount

Figure 8. Curcumin inhibits prostate cancer growth in xenograft mouse model. A) Effect of curcumin on prostate cancer growth. C4-2
prostate cancer cells were used to generate xenografts in male nude mice. Following tumor development, the mice were treated intra-tumorally with
curcumin (n = 4) or DMSO (n = 3). The rate of tumor growth was measured after 7 day and the percent tumor growth following treatment was
graphed. Curcumin effectively inhibits prostate cancer growth. B) Effect of curcumin on b-catenin localization. Tumor tissues from curcumin or
control treated mice were processed for IHC staining using anti-b-catenin antibody. Enhanced staining of membranous b-catenin was observed in
curcumin treated mice compared to control mice. Original Magnifications 4006.
doi:10.1371/journal.pone.0035368.g008
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of vehicle considered (100%). The results expressed are average of

three independent experiments.

Immunoblotting
Prostate cancer cells were grown and treated with curcumin

(20 mM) or DMSO for immunoblot analysis as described earlier

[12]. Briefly, cells were washed, and lysed in 26SDS lysis buffer.

Following normalization of protein concentrations of the cell

supernants using SYPRO Orange dye (Life Technologies), the

protein samples were electrophoretically resolved on a 4–20%

SDS-PAGE and transferred onto a PVDF membrane (Bio-Rad

Laboratories, Hercules, CA). The blots were probed for various

proteins using specific primary antibodies. Following incubation

with HRP-labelled secondary antibody (Promega), protein bands

were detected with Lumi-Light Plus chemi-luminescent reagent

(Roche, Indianapolis, IN).

Immunofluorescence
Immunofluorescence was performed as described earlier [12].

Briefly, C4-2 and LNCaP prostate cancer cells (passage 34–37)

(16105/well) were grown on glass coverslips and treated with

curcumin (20 mM) or DMSO for varying time points. The cells

were fixed in 2% paraformaldehyde, permeabilized, blocked and

then incubated with primary antibody. Following washing, the

cells were incubated with Alexa488 or Cy3 labeled secondary

antibody. After washing, the cover slips were mounted on glass

slide using aqueous antifade medium (Vector Laboratories,

Burlingame, CA). The slides were analyzed by confocal laser

scanning microscopy (Olympus FV1000 Laser Scanning Micro-

scope, Olympus, Japan).

Silencing of PKD1 by siRNA
The expression of PKD1 in prostate cancer cells was blocked

using synthetic siRNA as mentioned earlier [12]. Briefly, C4-2

cells were transfected with 25 nM synthetic siRNA duplexes (sense

5-GGAAGGAAAUAUCUCAUGAUU, antisense 5-PUCAUGA-

GAUAUUUCCUUCCUU; Life Technologies) for 24 h to silence

PKD1 expression using Dharmafect Transfection Reagent (Life

Technologies). The transfected cells were then used for further

experiments. For negative control experiments, cells transfected

with 25 nM scrambled control sense siRNA (5-UAGCGA-

CUAAACACAUAA; Life Technologies) were used.

Reporter assay for detection of b-catenin transcription
activity

A luciferase reporter assay system was used to measure b-

catenin/TCF transcription activity as previously mentioned with

slight modifications [12]. Briefly, actively growing cancer cells

were plated overnight in 12 well plates (26105 cells/well) in

normal growth medium. After replacing the growth medium with

reduced serum OPTI-MEM media for one hour, the cells were

transiently transfected with TCF-firefly luciferase reporter con-

Figure 9. Schematic diagram showing possible signaling mechanisms modulated by curcumin mediated PKD1 activation. Curcumin
modulates a number of molecular pathways within the cancer cells including PKD1 signaling. Curcumin may suppress prostate cancer growth and
metastasis by activating PKD1, which in turn may inhibit cell growth through the inhibition of b-catenin/TCF transcription activity, enhance cell-cell
aggregation via enhanced translocation of b-catenin to the cell membrane and inhibit cell motility either directly by enhancing cell-cell aggregation
and/or phosphorylating and inhibiting the function of sling shot 1 like (SSH1L) phosphatase or indirectly (dashed lines) by negatively regulating the
expression of active cofilin via indirectly activating LIM kinase (LIMK).
doi:10.1371/journal.pone.0035368.g009
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struct containing either wildtype TCF promoter binding sites

(pTOP-FLASH) or mutant TCF promoter binding sites (pFOP-

FLASH) (generous gift from Dr. R. Moon, Washington University)

and co-transfected with Renilla luciferase construct (pRL-TK)

(Promega) to normalize for transfection efficiency. Three hours

post-transfection, the cells were treated with either 20 mM

curcumin or equivalent amount of control vehicle (DMSO) for

24 h and cell lysates were prepared using luciferase lysis buffer

(25 mM Tris phosphate pH 7.8, 0.1% Triton X-100, 1 mM

DTT). The firefly luciferase activity and Renilla luciferase activity

were assayed in a two step process using the Dual Glo reagents

(Promega) according to the manufacturer’s instructions and the

signals measured in GLOMAX 96 microplate luminometer

(Promega). The b-catenin/TCF transcription activity was deter-

mined by first normalizing the firefly luciferase acitivty to that of

Renilla luciferase acitivity and finally calculating the ratio of TOP-

FLASH signal to FOP-FLASH signal. The b-catenin/TCF

transcription activity of curcumin treated cells was expressed in

percentage after normalizing to activity in vehicle treated cells

(considered 100%). Non-paired t-test was used to determine the

value of statistical significance (*p value).

RNA isolation and reverse transcription PCR
Total RNA was isolated from prostate cancer cells using an

RNA isolation kit (Qiagen Inc, Valencia, CA). The RNA (2 mg)

was reverse transcribed (RT) to cDNA using Applied Biosystems

High capacity RNA to c-DNA kit according to manufacturer’s

instruction (Life Technologies). The RT reaction was carried out

in a thermocycler for 1 h at 30uC, followed by inactivation of the

enzyme at 95uC for 5 min. This cDNA was used for amplification

of specific genes in a final volume of 25 ml using 200 nM gene

specific primers (cyclin D1: Forward primer- 59-CCG CTG GCC

ATG AAC TAC CT; Reverse primer- 59-ACG AAG GTC TGC

GCG TGT T), 200 mM dNTP, 1.5 mM MgCl2, and 1.25 unit

Taq DNA polymerase (Eppendorf Master Mix, Eppendorf,

Hamburg, Germany). The PCR cycling conditions used included

a denaturation step at 95uC for 4 min; 25 cycles of denaturation at

95uC for 30 sec, annealing at 53uC for 30 sec and extension at

72uC for 1 min; and a final extension at 72uC for 10 min. The

amplification of GAPDH (Forward primer- 59-GAA GGT GAA

GGT CGG AGT C; Reverse primer- 59-GAG GGA TCT CGC

TCC TGG AAG A) was used as internal control. The amplified

samples were resolved on 1% agarose gel and imaged.

For real time PCR analysis, the cDNA generated from

curcumin treated samples were amplified with SYBR Green

PCR master mix (Applied Biosystems) using a 7500 Real-Time

PCR System (Applied Biosystems). Each reaction was performed

in duplicate and the amplification of b2-microglobulin (Forward

primer- 59-AGA TGA GTA TGC CTG CCG TGT GAA;

Reverse primer- 59-TGC TGC CAT GTC TCG ATC CCA) was

used as internal control. The specificity of the PCR reaction was

confirmed by examining the melting curve for a single peak. The

results were analyzed using the 7500 System SDS software

(Applied Biosystems). The results were first normalized to control

for the b2-microglobulin gene and percent change in the

expression levels of the drug treated sample was compared to

vehicle treated samples. Non-paired t-test was used to determine

the value of statistical significance (*p value).

Anchorage dependent colony formation assay
This was performed as described earlier [47] with slight

modifications. Cells (26103) were plated in 100 mm cell culture

dishes. Following overnight incubation, the cells were treated with

varying concentrations of curcumin in fresh media. After 12–14

days, the plates were washed, fixed and stained with 0.05% crystal

violet solution. Visible colonies were counted and plotted against

curcumin concentrations. Non-paired t-test was used to determine

the statistical significance value (*p value).

Anchorage independent colony formation assay
Anchorage independent assay was performed as described

earlier [45] with slight modifications. In this two layered agarose

assay, the bottom agarose layer was cast by adding 1 ml of 0.6%

agarose medium/well in 6 well plates. The cells (46104) were

seeded in 0.35% agarose, treated with varying concentrations of

curcumin or DMSO and cultured for 10 days. The plates were

stained with 0.05% crystal violet and formed colonies (cluster of

.30cells) were imaged using a phase contrast microscope. The

numbers of colonies were counted and average number of colonies

was plotted against curcumin concentrations.

Aggregation assay
The aggregation assay was performed as described earlier [48].

In brief, tissue culture plates containing actively growing cells were

treated with varying concentrations of curcumin or appropriate

amount of vehicle control for 1 h. The cells were trypsinized with

0.01% trypsin-EDTA, washed with PBS containing 5 mM CaCl2,

and then resuspended (16106 cells/ml) in RPMI media containing

5 mM CaCl2 in polystyrene tubes. The tubes were incubated in a

shaker for 6 h at 37uC at low speed (20 rpm) and the cellular-

aggregations in suspensions were observed under a phase contrast

microscope.

Cell motility assay
The motility assay was performed using a scratch assay as

previously described [49]. Briefly, cells (0.56106cells/plate) were

cultured in 35 mm plates containing IBIDI cell culture inserts

(Integrated Bio Diagnostics, München, Germany), until confluent.

The media was carefully removed and replaced with 2 ml media

containing either 20 mM curcumin or DMSO for 1 h. The inserts

were carefully removed under asceptic conditions (creating a

500 mm cell free area) and phase contrast images of three cell free

areas were taken using EVOS microscope (Advanced Microscope

Group, Bothell, WA) at varying time intervals.

Boyden’s chamber motility assay: The Boyden’s chamber assay

was carried out as described elsewhere [39]. Briefly, cells,

pretreated for 6 h with 5 or 10 mM curcumin or DMSO were

harvested and suspended at 0.36106 cells/1 ml in RPMI media

containing 1% FBS and curcumin or DMSO. These cells were

seeded on the Boyden’s chambers and placed in 6 well plates

containing identical medium with higher concentration of FBS

(10%). The chemo-tactic gradient generated by the different FBS

concentration between the upper and lower chamber induces the

cells to migrate. Following 24 h incubation, the non-migrated cells

were cleaned from the upper chamber and the migrated cells, on

the lower side of the membrane were fixed (100% ethanol for

30 min), stained (0.05% crystal violet for 30 min) and the phase

contrast images were using EVOS microscope. The migrated cells

were counted and the average number of migrated cells was

graphed.

Tumor xenograft study
Six-week-old male athymic nude (nu/nu) mice (Charles River

Laboratories, Wilmington, MA) maintained in pathogen-free

conditions were used for this study as described earlier [50].

Briefly, C4-2 cells (106106 cells per mouse in 200 mL) mixed with

100 ml Matrigel (BD Biosciences, Sparks, MD) were injected sub-
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cutaneously (s.c) into the flank of the left hind limb. The animals

were periodically monitored for tumor development. On day 40,

the mice were randomly distributed into two groups and intra-

tumorally injected with curcumin (25 mg/mouse) or vehicle

control (DMSO). The tumor volume was measured after 7 days

post intra-tumoral injection. The tumor growth was measured

using a digital Vernier caliper and the tumor volume was

calculated using the ellipsoid volume formula, tumor volume

(mm3) = p/66L6W6H, wherein L is length, W is width, and H is

height. Mice were sacrificed and the tumors were fixed in

formalin. These procedures were carried out following approval by

the Sanford Research/University of South Dakota Institutional

Animal Care and Use Committee.

Immunohistochemical (IHC) analysis of prostate
xenograft tumors

IHC analysis of formalin fixed, paraffin embedded xenograft

mouse tumors (5 mM sections) was performed as previously

described [50]. Briefly, the tumor tissues were deparaffinized,

rehydrated, treated with 0.3% hydrogen peroxide and processed

for antigen retrieval using heat-induced technique. Following

blocking with background sniper (Biocare Medical, Concord, CA),

the samples were processed for staining with anti-b-catenin

antibody. b-catenin expression was detected using MACH 4

Universal HRP Polymer detection kit (Biocare Medical) and 3,39-

diaminobenzidine (DAB substrate kit, Vector Laboratories). The

slides were counterstained with hematoxylin, dehydrated, mount-

ed with Vectamount (Vector Laboratories) and visualized using an

Olympus BX 41 Microscope (Olympus Corporation, Japan).

Supporting Information

Figure S1 Activation of PKD1 by Curcumin. A). Effect of

curcumin on phospho PKD1 levels. C4-2 cells were treated with

20 mM curcumin for varying time points. The cell lysates were

resolved by SDS-PAGE and processed for immunoblotting using

phospho PKD1 antibody. The densitometric analysis of phospho

PKD1 normalized to b-actin levels is shown in graph. Curcumin

activates PKD1 by 1 h and remains active until 3 h. At 24 h,

however, a slight decline in phosphorylation status was observed.

B). Curcumin activates exogenously expressed PKD1. C4-2 cells

overexpressing PKD1 (C4-2-PKD1 cells) were treated with 20 mM

curcumin, for varying time points and the cell lysates were

processed for immunoblotting using phospho PKD1 antibody.

Quantitation of the pPKD1 levels normalized to b-actin is shown

in graph. Curcumin treatment induced maximal PKD1 activa-

tion/phosphorylation by 1 h. C). Curcumin activates PKD1 in

LNCaP cells. Cell lysates of LNCaP cells treated with 20 mM

curcumin for varying time points were processed for immuno-

blotting using phospho PKD1 antibody. Quantitation of protein

band is shown in graph. Curcumin treatment induced maximal

PKD1 activation/phosphorylation by 50–60 min. AU- arbitrary

units.

(TIF)

Figure S2 Curcumin treatment enhances membrane b-
catenin in LNCaP prostate cancer cells. A). LNCaP cells

were cultured on coverslips overnight in 12 well plates and treated

with DMSO or curcumin (20 mM) for 1 h. The cells were

processed for immunostaining using anti-b-catenin (red) and

PKD1 (green) antibodies and counter-stained with DAPI (blue).

Enhanced membranous b–catenin staining was observed on cell

surface at 1 h of curcumin treatment, compared to control cells

treated with vehicle (DMSO).

(TIF)

Figure S3 Effect of curcumin treatment on LNCaP
prostate cancer cells. A). Effect of curcumin on b-catenin

transcription activity in LNCaP prostate cancer cells. A luciferase

based reporter assay system was used to measure the b-catenin

transcription activity in LNCaP cells, as described in materials and

methods and Figure 5. The b-catenin activity of curcumin treated

cells was normalized to the activity of vehicle treated cells

(considered 100%). Curcumin treatment significantly reduced b-

catenin transcription activity in LNCaP cells compared to vehicle

treated cells. Mean 6 SE, n = 3, *p,0.01. B). Effect of curcumin

on cyclin D1 expression in LNCaP cells. RNA was isolated from

LNCaP cells treated with curcumin or vehicle control for 24 h and

processed for RT-PCR using cyclin D1 and GAPDH specific

primers. The densitometric quantitation of cyclin D1 normalized

to GAPDH levels is shown in graph. Curcumin treatment

specifically reduced the levels of cyclin D1 gene compared to

internal control. AU- arbitrary units. C). Anchorage dependent

colony formation assay. LNCaP cells (2000) were plated overnight,

treated with indicated concentrations of curcumin for 14 days and

examined for their colony forming ability. Curcumin showed a

dose-dependent inhibition in anchorage dependent colony forma-

tion assay. Mean 6 SE; n = 3; *p,0.05. D). Anchorage

independent colony formation assay. LNCaP cells were seeded

in 0.3% agarose and treated with varying concentrations of

curcumin for 9 days. The number of colonies were counted and

plotted. Curcumin treatment inhibited anchorage independent

colony formation of C4-2 cells. Mean 6 SE; n = 3; *p,0.01. E)

Boyden’s chamber assay. Equal numbers of LNCaP cells were

seeded on the Boyden’s chambers and incubated in the presence

DMSO or curcumin for 24 h. Migrated cells were fixed, stained,

counted and graphed. Curcumin inhibited motility of LNCaP

cells. Mean 6 SE; n = 3; *p,0.05.

(TIF)

Figure S4 Effect of curcumin treatment on cell-cell
aggregation in C4-2-PKD1 cells. C4-2 cells overexpressing

PKD1 were treated with curcumin (15 mM) or DMSO for 1 h,

harvested and assayed for cell-cell aggregation by incubating

under gentle shaking conditions at 37uC in the presence of 5 mM

CaCl2. After 6 h incubation, an aliquot of the reaction mixture

was photographed for cell-cell aggregation under phase contrast

microscope. C4-2-PKD1 cells formed larger cell-cell aggregates

than control treatment. Original magnifications 1006.

(TIF)
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