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Abstract

Background: Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may
mediate signals of genotoxic damage to cytosolic effectors including mitochondria.

Methodology/Principal Findings: We have investigated the effects of histones on mitochondrial function and membrane
integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated
mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins
cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker
histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of
pyridine nucleotides, and mitochondrial fragmentation.

Conclusions: We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey
genotoxic signals to mitochondria and promote apoptosis following DNA damage.
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Introduction

The genome is continuously exposed to external and internal

genotoxic agents that can damage the DNA and lead to loss of

genetic information. Damage to the genome activates the DNA

damage response, a signal transduction pathway evolved to

activate DNA repair mechanisms and to coordinate appropriate

repair methods [1] or, in case of irreparable damage, to induce

apoptosis [2]. Defects in the molecular switches between DNA

repair and apoptosis are likely to contribute to degenerative

disorders and tumor formation. However, DNA damage sensing

and repair tailoring remains incompletely understood at molecular

level.

Histones constitute the major protein component of chromatin.

The first level of DNA compaction consists in the assembly of

arrays of nucleosomes composed of two copies of each of the core

histones H2A, H2B, H3 and H4, around which an about 147-bp

long stretch of DNA is wrapped into nearly two superhelical turns.

The linker histone H1 completes the DNA compaction, binding to

the internucleosomal DNA near the entry and exit points of the

nucleosome.

Core histones are highly conserved through evolution [3,4] and

they share a common fold domain consisting of three a-helices

separated by loops [5]. The nucleosomes are stabilized by an

extensive number of bonds between the amino acids of the histone

fold domain and the phosphodiester backbone of DNA [6]. The

histone fold domain is flanked by two tail regions which protrude

from the nucleosome [5]. These tail regions undergo posttrans-

lational covalent modifications which are of crucial importance for

nucleosome stability and positioning along the DNA molecule. In

contrast to core histones, linker histone H1 is less conserved

through evolution [7] and has a distinct structure consisting of a

short amino-terminal tail, a central winged-helix bundle, and a

carboxy-terminal intrinsically disordered domain [8]. Linker

histone H1 is subject to posttranslational covalent modifications

that are important for chromatin compaction [9].

During the early DNA damage response the chromatin

compaction around the damage site is relaxed through specific

core histone modifications and by displacement of linker histone

H1 [10]. The subsequent choice between repair and apoptosis

may involve at least two histone-mediated switching mechanisms:

(i) tyrosine phosphorylation of H2AX resulting in activation of the

protein kinase JNK [11] and (ii) translocation of linker histone H1

from the nucleus to mitochondria [12,13]. JNK1 is activated by a

number of cell stress signals [14], leading to phosphorylation of

several target proteins including the p53 tumor suppressor protein

[15] and a subsequent activation of the mitochondrial apoptosis

pathway [16,17]. In contrast to H2AX, linker histone H1 appears

to target directly the mitochondrial apoptosis pathway [12,13],

hence bypassing the transcriptional activation required for the

JNK1 pathway.
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The mitochondrial apoptosis pathway can be activated by

intracellular stress signals and through receptor-mediated mech-

anisms [18]. Activation of the mitochondrial apoptosis pathway

leads to a remodeling of the mitochondrial membrane architecture

with an ensuing permeabilization of the outer membrane [19].

This event triggers the release of a set of pro-apoptotic proteins,

including cytochrome c, from the mitochondrial intermembrane

space to the cytosol [20,21]. In the cytosol, these pro-apoptotic

proteins activate caspases and endonucleases, leading to the cell’s

demise.

The discovery of linker histone H1-induced cytochrome c

release [12] prompted us to study the interactions of both linker

and core histones with mitochondria in order to address the

mechanism and selectivity of cytochrome c release. To address

these issues we employed a reconstituted system. We found that

both core and linker histones bound strongly to mitochondria.

This resulted in a rapid and massive release of cytochrome c,

indicating that both linker histone H1 and core histones can

permeabilize the outer mitochondrial membrane. However, unlike

core histones, linker histone H1 permeabilized the inner

membrane with a collapse of the membrane potential, release of

pyridine nucleotides, and mitochondrial vesiculation. These

findings demonstrate that both linker histone H1 and core histones

have the capability to influence mitochondrial apoptosis signaling,

and that histone H1 and core histones act on mitochondria

through strikingly different molecular mechanisms. We propose a

model for histone-mediated nucleus-to-mitochondria signaling in

the setting of genotoxic DNA damage.

Results

Binding of linker and core histones to mitochondria
Linker and core histones were extracted from rat liver nuclei

and purified to homogeneity by HPLC (Fig. 1A). The identity of

each histone was verified by MALDI TOF mass spectrometry

(Fig. 1B & Table 1) and by immunoblotting using anti-histone

antibodies (data not shown). First, we investigated the binding of

histones to mitochondria. Each histone (1 mM) was incubated with

isolated rat liver mitochondria using succinate as substrate. After

10 min mitochondria were sedimented by centrifugation where-

upon the resulting pellets and supernatants were analyzed by SDS-

PAGE and immunoblotting. The results showed that histones were

localized exclusively in the mitochondrial pellet (Fig. 1C) indicat-

ing that histones bind with high affinity to mitochondria. For

comparison we investigated the pro-apoptotic proteins tBID and

p53 [20,16]. In contrast to histones, tBID and p53 bound only

partially to mitochondria under these conditions (Fig. 1C).

Effects on mitochondrial membrane potential and
ultrastructure

To investigate if histones influence basic mitochondrial

functions we began by measuring membrane potential (DY) using

the fluorescent probe tetramethylrhodamine methyl ester

(TMRM). In the control experiment (Fig. 2A), addition of

Figure 1. Purification of histones and binding to mitochondria.
Panel A: histones extracted from rat liver nuclei by acid treatment were
separated by reverse phase HPLC using a C18 column. All fractions were
collected for analysis by MALDI TOF mass spectrometry and SDS-PAGE.
The peaks labeled F1 to F5 were found to contain histones. Panel B:

MALDI TOF mass spectra of compounds in fraction F1 to F5. Fraction F1
contained histones H1.2; fraction F2, histone H2A; fraction F3, histone
H2B; fraction F4, histone H4; and fraction F5 contained histone H3.
Panel C: binding of histones, tBID, and p53 to mitochondria. Isolated rat
liver mitochondria respiring on succinate as substrate were incubated
with histones, tBID or p53. Mitochondria were sedimented by
centrifugation and proteins of the resulting pellets (P) and supernatants
(S) were analyzed by immunoblotting. Each protein was used at a
concentration of 1 mM and the incubation was for 10 min at RT.
doi:10.1371/journal.pone.0035357.g001
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succinate to mitochondria led to a decrease in TMRM

fluorescence due to DY-driven uptake of the probe into the

mitochondrial matrix. After about 26 minutes the fluorescence

intensity increased to initial level due to probe release indicating

that the mitochondrial suspension had reached anoxia (Fig. 2A,

left panel). Supplementing the suspension with tBID had no effect

on the DY (Fig. 2A, left panel). Addition of histone H1.2 to

respiring mitochondria induced a dramatic decrease in DY
(Fig. 2A, middle panel). This effect was sharply concentration-

dependent with a complete collapse of the DY within minutes after

addition of 5 mM histone H1.2. In contrast to histone H1.2,

addition of core histones had no significant effect on the DY or on

the time required to reach anoxia (Fig. 2A, right panel).

Following these findings we examined the mitochondrial

ultrastructure. Transmission electron microscopy (TEM) images

of mitochondria prepared by chemical fixation are shown in

Fig. 2B. Control mitochondria incubated without histones showed,

as expected, a normal ultrastructure. However, addition of histone

H1.2 resulted in striking effects including mitochondrial fragmen-

tation and formation of vesicle aggregates, indicating that histone

H1.2 caused a major disruption of the mitochondrial membrane

architecture. In contrast to histone H1.2, core histones did not

induce any major changes in the mitochondrial ultrastructure.

However, in histone H3- and H4-treated mitochondria we

frequently noted outer membrane blebs and ruptures (Fig. 2B).

Opening of the mitochondrial permeability transition pore

(PTP) [22], a Ca2+-dependent megachannel, induces large-

amplitude swelling and rupture of the outer membrane. We

investigated if the ultrastructural changes induced by histone H1.2

were due to opening of the PTP measuring mitochondrial swelling

by the decrease in light scattering of the mitochondrial suspension

[23]. As shown (Fig. 2C, trace a) addition of histone H1.2 to

mitochondria respiring on succinate resulted in a rapid decrease in

the light scattering of the mitochondrial suspension. However, this

decrease remained unchanged by the PTP inhibitor cyclosporin A

(trace b) suggesting that the histone H1.2-induced decrease in light

scattering was not due to PTP opening. Furthermore, cyclosporin

A failed to prevent the effects of histone H1.2 on mitochondrial

ultrastructure (data not shown). As predicted from the TEM

results, core histones did not affect the mitochondrial light

scattering (Fig. 2C, traces c to f).

Release of mitochondrial pro-apoptotic proteins
Mitochondria respiring on succinate as substrate were incubat-

ed with histones whereupon soluble proteins were separated from

mitochondria by centrifugation. The resulting pellets and

supernatants were analyzed by immunoblotting using anti-

cytochrome c antibodies (Fig. 3A). In control mitochondria

incubated without histones cytochrome c was recovered exclusively

in the pellet. Upon addition of histone H1.2 a major part of the

cytochrome c was recovered in the supernatant, in agreement with

the findings of previous investigators [12,13]. Unexpectedly

however, after addition of core histones a substantial quantity of

the total cytochrome c was recovered in the supernatant, histones

H3 and H4 being most effective to release cytochrome c. In

contrast to histones, addition of tBID or p53 resulted in a release of

only a minor part of the total cytochrome c.

To determine if histones are capable of releasing other pro-

apoptotic intermembrane space proteins we used antibodies

against Smac/DIABLO [24,25], the serine protease Omi/HtrA2

[26], the flavoprotein AIF [27], and endonuclease G [28]. We also

included LACTB, a conserved protein forming high molecular

weight filaments in the intermembrane space [29]. Our results

(Fig. 3A) revealed that Smac/DIABLO was released both by linker

histone H1.2 and by core histones. The extent of Smac/DIABLO

release paralleled that of cytochrome c. In addition, histone H1.2

also induced a partial release of Omi/HtrA2, endonuclease G and

LACTB, and promoted AIF cleavage. In contrast, these proteins

were recovered almost exclusively from the pellet following

incubation with core histones. The release of cytochrome c and

Smac/DIABLO remained insensitive to cyclosporin A for all

histones (Fig. 3B).

To investigate if histones induce a general increase in the

permeability of the outer mitochondrial membrane we employed

trypsin. Addition of trypsin alone to mitochondria respiring on

succinate had no effect on Omi/HtrA2, AIF, endonuclease G, or

LACTB as assessed by immunoblotting (Fig. 3C, data not shown

for Omi/HtrA2 and endonuclease G), implying that the outer

mitochondrial membrane remained intact. However, incubating

mitochondria with core histones prior to trypsin addition rendered

Omi/HtrA2, AIF, endonuclease G, and LACTB accessible to

trypsin digestion, indicating that core histones permeabilize the

outer mitochondrial membrane.

Release of NAD+ from mitochondria
Mitochondria harbor a large pool of NAD+, a compound which

is required for DNA repair by poly(ADP-ribose) polymerase-1

(PARP-1) [30]. Therefore, we investigated if histones can induce

release of NAD+ from mitochondria (Fig. 4). In the positive control

we induced PTP opening through Ca2+ addition to induce inner

membrane permeabilization and a complete release of mitochon-

drial pyridine nucleotides, as previously described [31]. NAD+

released from mitochondria was detected by fluorescence

spectroscopy following enzymatic conversion to NADH (Fig. 4A).

The results showed that following PTP opening 1.2 nmol NAD+/

mg protein was detected in the mitochondrial supernatant

(Fig. 4B). A similar quantity of pyridine nucleotides was released

from mitochondria following addition of linker histone H1 (Fig. 4B)

indicating that it had triggered a complete release of the

mitochondrial NAD+ pool. In contrast, addition of core histones

did not induce release of any detectable quantity of NAD+ above

the control level (data not shown).

Translocation of core histone H3 following DNA strand
breaks

We employed a HeLa cell line engineered to constitutively

express red fluorescent protein targeted to mitochondria (mtRFP)

as a model system to probe our findings in a cellular setting. DNA

double strand breaks were induced by etoposide while monitoring

the location of core histone H3 using the anti-histone H3 antibody

(Fig. 5). Cellular nuclei stained with bisbenzimide are shown in

panels A and A9, mitochondria harboring mtRFP are shown in

panels B and B9, and core histone H3 visualized with a anti-IgG

Table 1. MS/MS analysis of peptides resulting from hydrolysis
of the HPLC fractions by trypsin.

HPLC
fraction m/z Amino acid sequence Score Hit

F1 1578.80 ALSSSGYDVEKNNSR 128 Histone H1.2

F2 944.54 AGLQFPVGR 75 Histone H2A

F3 1744.03 AMGIMNSFVNDIFER 61 Histone H2B

F4 1467.05 TVTAMDVVYALKR 86 Histone 4

F5 1055.75 EIAQDFTDLR 100 Histone 3

doi:10.1371/journal.pone.0035357.t001
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Alexa 488 is shown in panels C and C9. Overlay images between

mitochondria and core histone H3 are shown in panels D and D9.

The findings revealed that for control cells, core histone H3

remained confined to the nucleus, as evidenced by the distinct red

mitochondrial fluorescence and green nuclear fluorescence.

However, following induction of DNA strand breaks with

etoposide, it is evident that a substantial fraction of core histone

H3 has translocated from the nuclear compartment to the cytosol.

Furthermore, the overlay image between core histone H3 and

mitochondria reveal frequent yellow areas indicating co-localiza-

tion of core histone H3 with mitochondria. These findings suggest

that core histones have the capability to function as signaling

molecules during DNA damage.

Discussion

This study demonstrates that histones bind effectively to

mitochondria, and that binding influences mitochondrial function

and ultrastructure. Both linker and core histones induced a rapid

and extensive release of the pro-apoptotic proteins cytochrome c

and Smac/DIABLO. However, while the basic bioenergetic

function of the inner membrane, i.e. the maintenance of a

Figure 2. Effects of histones on mitochondrial function and ultrastructure. Panel A: mitochondrial membrane potential. Mitochondria were
suspended in measurement medium supplemented with 0.5 mM TMRM. Succinate (Suc) was added to energize the mitochondria followed by 1 mM
tBID (tBID), the indicated concentration of histone H1.2 (H1.2), 10 mM histone H2A (H2A), 10 mM histone H2B (H2B), 5 mM histone H3 (H3), or 5 mM
histone H4 (H4). The asterisk indicates anoxia. Panel B: mitochondrial ultrastructure. Mitochondria suspended in measurement medium were
incubated with histones for 30 min and then processed for transmission electron microscopy. The primary magnification is 50 0006and the scale bar
is 200 nm. Panel C: light scattering. Mitochondria were suspended in measurement medium containing succinate. Histones were added as indicated.
Trace a and b, 5 mM histone H1.2, in trace b the medium was supplemented with 1 mM cyclosporin A, trace c 10 mM histone H2A, trace d, 5 mM
histone H3, trace e, 10 mM histone H2B, and trace f, 5 mM histone H4.
doi:10.1371/journal.pone.0035357.g002
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membrane potential, remained unaffected by core histones, linker

histone H1.2 caused a disruption of the inner membrane resulting

in loss of membrane potential, release of NAD+, and ultrastruc-

tural alterations. We conclude that both linker histone H1 and

core histones have the capability to influence mitochondrial

apoptosis signaling. However, the bioenergetic effects of linker

histone H1 and core histones are very different which suggests that

they act through separate molecular mechanisms, i.e. exclusively

through outer membrane permeabilization for core histones, and

through permeabilization of both the outer and inner membrane

for linker histone H1.

Histones occur in massive quantities (60 million molecules per

histone type) in nucleated cells. Therefore, the release of even a

minor fraction of the total quantity of histones from the nucleus

Figure 3. Release of mitochondrial intermembrane space proteins. Mitochondria were incubated as described in the legend of fig. 1,
whereupon they were sedimented by centrifugation and proteins of the resulting pellets (P) and supernatants (S) were analyzed by immunoblotting.
Panel A: release of cytochrome c, Smac/DIABLO, Omi/HtrA2, AIF, endonuclease G, and LACTB by histones, tBID and p53. The concentrations used
were: 5 mM histone H1.2; 10 mM histone H2A, 10 mM histone H2B, 5 mM histone H3, 5 mM histone H4, 1 mM tBID, and 1 mM p53. Panel B: effect of
cyclosporin A on the histone-induced release of cytochrome c and Smac/DIABLO. Panel C: accessibility of AIF and LACTB to trypsin hydrolysis in the
presence of histones.
doi:10.1371/journal.pone.0035357.g003
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has the potential to impact on cell function. Nucleosomes are

dynamic entities undergoing continuous restructuring with

repositioning and unwrapping [32,33]. DNA lesions promote

nucleosome disassembly both through distortion of the DNA helix

and through histone modifications [34]. A cell may withstand

about 105 DNA lesions per day under normal circumstances, but

this figure becomes substantially higher after exposure to

genotoxic agents [1]. A brief exposure to ionizing radiation causes

a major perturbation in nucleosome organization with release of

5–10% of the total amount of histone H1 to the cytosol [12],

resulting in an estimated cytosolic concentration at the order of

1024 M. Viral infection can lead to massive nucleosome

disassembly triggered by expression of viral DNA-binding proteins

[35]. Our findings indicate that a histone concentration of 1026–

1025 M is sufficient to cause dramatic effects on mitochondrial

function. This raises the possibility that histones may be directly

involved in nucleus-to-mitochondria signaling and that this

function is not restricted to genotoxic stress events but extends

to other forms of genome damage.

PARP-1 is highly expressed in the nucleus and plays a dual role

during the DNA damage response. PARP-1 catalyses the transfer

of poly(ADP-ribose) from NAD+ to several nuclear target proteins

[36]. During DNA damage repair the activity of PARP-1 increases

substantially and this is of key importance for maintaining genome

integrity. However, massive PARP-1 activation leads to cell death,

possibly through depletion of the cytosolic and the mitochondrial

NAD+ pools, resulting in a bioenergetic crisis and a mobilization of

mitochondrial pro-apoptotic proteins such as AIF [37]. However,

the mechanism through which PARP-1 activation causes a

depletion of the mitochondrial NAD+ has remained an enigma.

We hypothesize that release of linker histone H1 may serve to

mobilize the large mitochondrial pool of NAD+ that is required for

the PARP-1 reaction. Under conditions of limited DNA damage

the action of linker histone H1 may be restricted to perinuclear

mitochondria resulting in release of a quantum of NAD+ sufficient

for the DNA-repair to take place, leaving peripherally located

mitochondria intact and allowing for continuous ATP supply.

However, under conditions of extensive DNA-damage a massive

release of linker histone H1 may act on a majority of the

mitochondria, resulting in a bioenergetic crisis and mobilization of

mitochondrial pro-apoptotic factors. In this scenario, release of

core histones would act in parallel to trigger a full-scale apoptotic

response resulting in a rapid removal of the cells irreversibly

committed to death.

Release of mitochondrial intermembrane space proteins can

occur after opening of the mitochondrial PTP [22] and through

outer membrane permeabilization by the BCL-2 protein pathway

[37,20]. In this setting, the action of linker histone H1 shares

several key features with the PTP while, in contrast, core histones

act in a similar way to the BCL-2 proteins. Therefore, it is

tempting to speculate that linker histone H1 is acting, at least in

part, through PTP opening and, likewise, that core histones are

acting through the BCL-2 family protein pathway. However, the

lack of effect of the PTP inhibitor cyclosporin A argues against an

involvement of the PTP, although the possibility that linker histone

H1 renders the PTP insensitive to cyclosporin A cannot be ruled

out. Analogously, the finding that core histones were effective at

releasing cytochrome c under these conditions, while the powerful

BCL-2 pathway activator tBID was not, suggests that activation of

the BCL-2 pathway is not necessary for selective outer membrane

permeabilization, and that core histones act by a mechanism

distinct from the BCL-2 protein pathway. We hypothesize that

histones, due to their high positive charge density, interact

primarily with cardiolipin (CL), a negatively charged phospholipid

unique to mitochondria. An electrostatic mechanism may explain

why the different core histones, sharing a common fold but little

primary sequence similarity, exert similar effects on mitochondria.

The organization and distribution of CL between the mitochon-

drial membranes influences the activity of a number of

mitochondrial membrane proteins including components of the

apoptosis machinery, and therefore, any perturbation in the CL

Figure 4. Release of pyridine nucleotides from mitochondria. Mitochondria were incubated as described in the legend of fig. 2, whereupon
they were sedimented by centrifugation. The supernatants were collected for measurement of pyridine nucleotides by fluorescence spectroscopy
after enzymatic conversion of NAD+ to NADH. Panel A: emission spectra of mitochondrial supernatants with the excitation wavelength set to 360 nm.
Trace a shows control mitochondria. The mitochondrial suspension was supplemented with 50 mM Ca2+ in trace b, 5 mM histone H1.2 in trace c, and
1 mM NAD+ in trace d. Panel B: amounts of pyridine nucleotides released from mitochondria calculated from the fluorescence spectra. The
experimental conditions were as in panel A (n = 4, error bars show S.E.M.).
doi:10.1371/journal.pone.0035357.g004
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dynamics can potentially impact on both mitochondrial function

and ultrastructure [38].

Our findings underscore the existence of multiple molecular

mechanisms for activation of the mitochondrial pathway to

apoptosis. It is therefore possible that release of histones functions

as an express route to trigger cell death under conditions of

extensive DNA damage. Furthermore, these results demonstrate

that cytochrome c can be released from mitochondria by

physiological stimuli (i) through mechanisms not requiring major

alterations in membrane architecture, as for core histones, or (ii) as

a consequence of a disruption of the membrane architecture, as for

linker histone H1. Therefore, the involvement of histone H1 in the

cell death process, or the lack thereof, may provide a potential

explanation to contradictory findings and views as to whether

mitochondrial membrane remodeling is a prerequisite for, or

consequence of cytochrome c release [39,40].

Materials and Methods

Preparation of rat liver nuclei and mitochondria
Male Wistar rats (200–300 g) were killed by cervical dislocation

under CO2 anaesthesia. The permit for use of laboratory rats was

issued by the Helsinki University Laboratory Animal Center

(permit number KEK11-011). The livers were excised and cut into

pieces in isolation medium containing 250 mM sucrose, 10 mM

Hepes-KOH, and 1 mM EGTA pH 7.4. The liver pieces were

homogenized for 4 min in a Teflon potter (0.2 mm) maintained on

ice-water mixture. The liver homogenate was filtered through

cheesecloth and centrifugated at 8006 g for 8 min. The pellets

containing nuclei were collected and stored at 280uC. The

supernatants were collected and mitochondria were isolated as

previously described [23].

Extraction of histones
Nuclear pellets from five rat livers were thawed, combined and

supplemented with complete Protease Inhibitor Cocktail (Roche

Diagnostics, Germany) according to manufacturer’s instructions.

The nuclear suspension was centrifugated at 10 0006g for 10 min

and the resulting pellets were collected and divided into 10 ml

aliquots which were suspended in 10 ml lysis medium containing

10 mM Tris-Cl pH 8.0, 1 mM KCl, 1.5 mM MgCl2, and 1 mM

DTT supplemented with complete Protease Inhibitor Cocktail.

The suspension was centrifugated at 10 0006 g for 10 min. The

resulting pellet was collected and resuspended in 10 ml lysis

medium followed by centrifugation at 10 0006 g for 10 min. The

pellet was resuspended in 16 ml 0.2 M H2SO4 and mixed on a

rotator for 3 h. The suspension was then centrifugated at 16 0006
g for 10 min to remove insoluble material. The supernatant was

collected and concentrated to a volume of 2 ml using a 3000

MWCO Amicon centrifugation filter (Millipore). The resulting

2 ml retenate was washed 6 times with 12 ml H2O in the same

centrifugation filter. The retenate was then lyophilized and stored

at 280uC. All extraction steps were carried out at +4uC.

Purification of histones by HPLC
Histones were purified as described in [41] with the following

modifications. Lyophilized nuclear protein extracts were dissolved

in H2O. The solution was filtered through a 0.2 mm filter CA

(FP30/0.2 mm Schleicher & Schuell) and then injected into a

100 ml HPLC sample loop. HPLC-UV analysis was carried out

using an Äkta 10 HPLC system (Amersham Pharmacia Biotech,

US) equipped with a P903 piston pump, a P900 UV detector, and

a Frac-900 fraction collector using the UNICORN 5.10 software

package. HPLC separation was performed using the conditions

described by Naldi et al., 2006, with minor modifications. The

column was a Phenomenex Jupiter 5U C18 300A 15064.6 mm

with SecurityGuard Cartridges Widepore C18 463.0 mm. Eluant

A consisted of 0.04% heptafluorobutyric acid in H2O, and eluant

B of 0.04% heptafluorobutyric acid in acetonitrile. The flow rate

was 0.4 ml/min with a linear gradient from 38% B to 62% B

lasting for 115 min. Proteins were detected at an absorption

wavelength of l= 206 nm. Fractions of interest were collected and

concentrated to 1/3 of the initial volume (SpeedVac Concentra-

tor, Savant). The fractions were then diluted with 3 volumes of

H2O whereupon residual heptafluorobutyric acid was removed by

repeated centrifugation through 3000 MWCO Amicon centrifu-

gation filters (Millipore) until the pH was neutral. HPLC peaks

were quantified using commercially available calf thymus histone

H1 as standard. HPLC fractions were stored at a protein

concentration of 100–200 mM at 280uC. A typical HPLC

chromatogram is shown in Fig. 1A.

Figure 5. Translocation of histone H3 following DNA damage
in mtRFP-HeLa cells. HeLa cells stably expressing mtRFP were
incubated with etoposide and chemically fixed for immunofluorescence
microscopy. A and A9: nuclei visualized with bisbenzimide staining
(excitation 350 nm, emission 460 nm), B and B9: mitochondria visualized
with mtRFP (excitation 553 nm, emission 574 nm), C and C9: anti-
histone H3 antibody visualized with anti rabbit IgG Alexa 488 conjugate
(excitation 485 nm, emission 531 nm), D: overlay of images B and C, and
D9: overlay of images B9 and C9. The scale bar is 5 mM.
doi:10.1371/journal.pone.0035357.g005
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Mass spectrometry
For analysis of protein masses samples containing about 1 mg

protein were mixed with 1 ml of a saturated solution of sinapinic

acid in 33% acetonitrile and 0.1% trifluoroacetic acid. The

mixture was applied on the target plate and the solvent was

allowed to evaporate. Matrix assisted laser-induced ion desorption

and time-of-flight (MALDI TOF) analyses were performed using a

Bruker Autoflex III mass spectrometer. Spectra were acquired

with the linear detector operating in positive mode. Calibration

was performed with bovine trypsin and horse cytochrome c as

standard. Mass spectra of purified histones are shown in Fig. 1B.

For analysis of peptide fragment masses samples containing about

10 mg protein were dried under vacuum and dissolved in 30 ml

10 mM ammonium phosphate pH 8.0, supplemented with 0.1 mg

modified trypsin (Promega). The solution was incubated for

16 hours at +4uC whereupon the reaction was stopped by addition

of 0.1% formic acid. Mass spectra of fragmented peptides deriving

from the different histones are listed in Table 1.

Mitochondrial functional measurements
Mitochondria were suspended at a concentration of 0.5 mg

protein/ml in measurement medium containing 125 mM KCl,

10 mM Hepes-Tris, pH 7.4, 2 mM Pi, 100 mM EGTA, and 2 mM

rotenone. Mitochondrial swelling was measured as the turbidity at

l= 540 nm. For measuring the mitochondrial membrane poten-

tial the suspension was supplemented with 0.5 mM of the

fluorescent dye tetramethyl rhodamine (TMRM). The excitation

wavelength was l= 550 nm and emission was detected at

l= 575 nm. Turbidity and fluorescence was measured using a

Cary Eclipse Fluorescence Spectrophotometer (Varian). Samples

were removed from the fluorimeter cuvette and centrifugated at

10 0006 g for 5 min. The resulting mitochondrial pellets and

supernatants were used for immunoblotting and analysis of

pyridine nucleotides. To measure binding of histones, tBID and

p53 to mitochondria 1 mM of each protein was added to the

mitochondrial suspension. After 10 min the suspension was

centrifugated at 10 0006 g for 5 min. The resulting pellet and

supernatant were collected and used for immunoblotting.

Functional measurements were performed at room temperature.

Determination of pyridine nucleotides
To convert NAD+ to NADH samples were supplemented with

22 mM ethanol and 0.1 U/ml alcohol dehydrogenase. NADH

was quantified by fluorescence at an excitation wavelength of

l= 339 nm and an emission wavelength of l= 460 nm using

solutions with known NADH concentration as standard.

Gel electrophoresis and immunoblotting
Mitochondrial pellets and supernatants were collected after

incubations with histones, tBID, and p53. The supernatants were

concentrated by centrifugation using Amicon (Millipore) ultracen-

trifugation filters with a molecular weight cut-off of 3 kDa.

Mitochondrial pellets and concentrated mitochondrial superna-

tants were then resuspended to a final volume of 100 ml in H2O

and solubilized by addition of 100 ml Laemmli gel sample buffer

containing 125 mM Tris-HCl, 4% SDS, 20% glycerol, and 10%

b-mercaptoethanol. Equal volumes of solubilized mitochondrial

pelletes and supernatants were loaded onto 10% or 15%

polyacrylamide gels. For each experimental condition used,

mitochondrial pellets and supernatants were loaded onto the

same gel. The running buffer was Tris/Glycine/SDS 106 (Bio-

Rad). Gels were stained by Coomassie brilliant blue solution or

used for electrotransfer onto a polyvinylidene fluoride membrane.

Immuno-blotting was performed as previously described [29] and

immunoreactive bands were visualized by chemoluminescence

using the using the ECL system (Amersham Biosciences).

Electron microscopy
Samples were removed from the fluorimeter cuvette and mixed

with an equal volume of measurement medium supplemented with

6% DMSO and 5% glutaraldehyde. Samples were incubated for

2 min at room temperature and then centrifugated at 10 0006 g

for 10 min. The resulting pellet was detached from the

centrifugation tube wall and incubated for 12 h at room

temperature. Samples were prepared for transmission electron

microscopy as previously described [29]. Thin-sections were

viewed under a JEOL 1200 EX II electron microscope.

Immunofluorescence microscopy
The HeLa cell line stably expressing mtRFP was generated as

previously described [29]. Cells cultured on coverslips in

Dulbecco’s Modified Eagle’s Medium supplemented with 10%

fetal bovine serum were incubated with 100 mM etoposide

dissolved in DMSO for 16 h to induce DNA strand breaks.

Control cells were incubated with an equal amout of DMSO. Cells

were then rinsed with PBS solution and chemically fixed with 4%

paraformaldehyde for 20 min at room temperature. Cells were

incubated with a rabbit polyclonal anti-histone H3 antibody

diluted 1:50 for 12 h at 4uC, followed by incubation with anti-

rabbit IgG Alexa 488 conjugate diluted 1:300 for 1 h at room

temperature. The nuclear DNA was stained by incubation with

bisbenzimide for 2 minutes at room temperature. Cells were then

mounted and viewed under a Leica DM4500 B fluorescence

microscope.

Antibodies, recombinant proteins and chemicals
Polyclonal anti-histone H1 antibody, polyclonal anti-histone

H2A antibody, and polyclonal anti-histone H2B antibody were

from Santa-Cruz Biotechology, polyclonal anti-histone H3

antibody was from Cell Signaling Technology, polyclonal anti-

histone H4 antibody, monoclonal anti-cytochrome c antibody, and

polyclonal anti-AIF antibody were from Millipore, polyclonal anti-

endonuclease G antibody was from Serotec, polyclonal anti-

HtrA2/Omi antibody was from Alexis Biochemicals, polyclonal

anti-Smac/DIABLO antibody was from Stressgen, polyclonal

anti-LACTB antibody was prepared as previously described [29],

anti-rabbit IgG peroxidase conjugate and anti-mouse IgG

peroxidase conjugate were from Sigma, and anti-rabbit IgG Alexa

488 conjugate was from Invitrogen. Recombinant human wt p53

protein was from BD Pharmingen and recombinant human tBID

was from Enzo Biosciences. Heptafluorobutyric acid was pur-

chased from Fluka, histone H1 from Upstate, and TMRM from

Molecular Probes. Organic solvents were purchased from Merck.

Other chemicals and reagents were of highest grade and

purchased from Sigma-Aldrich.
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