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Abstract

Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from
complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing
hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are
unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2
(FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show
that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and
propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by
butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on
body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of
Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent
insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut
hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut
microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional
mediators are required for these beneficial effects.
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Introduction

Short-chain fatty acids (SCFAs) are produced by microbiota in

the colon and the distal small intestine from resistant starch,

dietary fiber, and other low-digestible polysaccharides in a

fermentation process [1]. Acetate, propionate, and butyrate are

the predominant SCFAs in the gut lumen in humans and rodents,

and are present at high mM levels [2]. Once produced, SCFAs are

readily absorbed by colonocytes. Butyrate is largely utilized by the

colonic epithelium as an energy source, and propionate is

primarily utilized by the liver, whereas a significant amount of

acetate enters systemic circulation and reaches peripheral tissues.

In addition to acting as energy sources, SCFAs are also signaling

molecules. The G protein-coupled receptors Free fatty acid

receptor 2 (FFAR2, GPR43) and FFAR3 (GPR41) have been

identified as endogenous receptors for SCFAs. Acetate preferen-

tially activates FFAR2 in vitro; propionate displays similar

agonism on FFAR2 and FFAR3; and butyrate preferentially

activates FFAR3 [3,4].

It is well established that supplementing resistant starch and

dietary fibers in diet, which raises intestinal and circulating SCFAs,

confers metabolic benefits in humans. In rodent models of genetic

or diet-induced obesity, supplementation of butyrate in diet [5]

and oral administration of acetate [6] was shown to suppress

weight gain independent of food intake suppression. Activation of

Adenosine 5’-monophosphate-activated protein kinase (AMPK)

[5,7] and increased mitochondrial function [5] were observed in

these models, but only after chronic SCFA treatment when body

weight was already significantly reduced compared to controls.

Thus, the primary mechanism underlying the resistance to obesity

remains obscure. Propionate was reported to inhibit food intake in

humans [8], but the molecular mediators have not been identified.

The SCFA receptors FFAR2 and FFAR3 are both expressed in

the intestine and colocalize with a subset of enteroendocrine cells

in the mucosal epithelium that express Peptide YY (PYY) [9,10].

FFAR3 deficiency in mice was associated with an attenuated

microbiota-induced increase in plasma PYY [11]. FFAR2 and

FFAR3 are also expressed in other enteroendocrine subtypes [11].

PYY and other peptide hormones secreted by enteroendocrine

cells, such as the incretins Glucagon-like peptide 1 (GLP-1) and

Glucose-dependent insulinotropic polypeptide (GIP), are key

modulators of energy homeostasis and glucose metabolism.

Intracolonic and ileal infusions of mixed SCFAs were previously

reported to increase PYY [12,13], but the individual contribution
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of each SCFA was not determined. In addition, the effects of

SCFAs on GLP-1 and other gut hormones have not been studied.

In this study, we examine the effects of SCFAs on body weight,

glucose metabolism, and gut hormones in wild-type and Ffar3

knockout mice. We show that butyrate and propionate suppress

food intake, protect against high-fat diet-induced weight gain and

glucose intolerance, and stimulate gut hormone secretion pre-

dominantly via FFAR3-independent mechanisms. We also show

that FFAR3 is not required for normal body weight and glucose

homeostasis.

Results

SCFAs Suppress Diet-induced Obesity through Distinct
Mechanisms

To determine the effects of chronic SCFA treatment on the

development of diet-induced obesity, three-month-old lean

C57BL/6N mice were put on HFD supplemented with molari-

ty-matched sodium salts of butyrate (5% w/w), propionate (4.3%),

and acetate (3.7%) for four weeks. As expected, mice on control

HFD gained weight steadily over time. Dietary supplementation of

butyrate and propionate completely blocked HFD-induced weight

gain, while acetate led to a 40% suppression of excess weight gain

(Figure 1A). At the end of four weeks, propionate-fed mice showed

reduced fasting glycemia, and both butyrate- and propionate-fed

mice showed significantly improved oral glucose tolerance, while

the acetate-fed group did not (Figure 1B). In addition, fasting

insulin and leptin levels were significantly reduced by chronic

supplementation of all three SCFAs (Figure 1C, D). These data are

consistent with improvements in insulin sensitivity secondary to

body weight reduction. In a separate cohort, food intake and

locomotor activity were measured for nine days after mice were

switched to control or SCFA-supplemented HFD. Butyrate

significantly inhibited food intake on the first two days

(Figure 2A), leading to a 22% reduction in nine-day cumulative

food intake compared to control diet (Figure 2B). Propionate-fed

mice also showed an initial reduction in food intake, resulting in a

non-significant 9% reduction in nine-day cumulative food intake.

In contrast, the acetate-fed group showed a non-significant 23%

increase in cumulative food intake. Locomotor activity was not

altered by butyrate or acetate, and tended to be increased by

propionate feeding (Figure 2C). An eight-day dose titration study

showed that the minimum efficacious dose for suppression of

weight gain is 2.5% for butyrate and 2.2% for propionate

(Figure 2D), and that for food intake inhibition is 5% and 4.3% for

butyrate and propionate, respectively (Figure 2E). Acetate did not

lead to a significant inhibition of weight gain during the first week

(Figure 1A) and was not included in the dose titration study.

Collectively, these data indicate that butyrate and propionate

inhibit weight gain partially via suppressing food intake, while the

inhibition of weight gain by acetate is independent of changes in

food intake and locomotor activity, suggesting increased metabolic

rate or reduced absorptive efficiency.

Butyrate and Propionate Acutely Stimulate Gut
Hormones

The colocalization of FFAR2 and FFAR3 with enteroendocrine

cells in the intestine prompted us to examine the acute effects of

SCFAs on gut peptides and other hormones. We selected the dose

in the acute studies to match the amount of SCFAs consumed in a

typical meal in the dietary supplementation experiment. Normal

mice were reported to eat approximately 300mg HFD per meal ad

libitum, or 10mg/g BW [14,15]. Thus acetate, propionate, and

butyrate (supplemented at 3.7 to 5%) were likely consumed at 370

to 500mg/kg per meal in the supplementation study. We therefore

chose the dose of 400mg/kg for acute SCFA challenge. Plasma

levels of the incretins GLP-1 and GIP were reported to peak at

approximately ten minutes after an oral glucose challenge [16] and

at 0.5 to 2 hours after an oral lipid challenge [17], respectively. We

therefore examined gut hormones at ten minutes and one hour

after oral SCFA challenge. Oral administration of sodium butyrate

in mice significantly increased plasma levels of GLP-1 and GIP ten

minutes after dosing (Figure 3A-C), and levels of both hormones

normalized to baseline by sixty minutes post-dosing (data not

shown). PYY also showed a moderate increase ten minutes after

oral butyrate administration (Figure 3D). These changes were

associated with elevated plasma insulin and amylin (Figure 3E, F)

in butyrate-treated mice, consistent with stimulation of pancreatic

b cells by incretins. Sodium propionate significantly increased

GIP, insulin, and amylin, but not GLP-1 or PYY. An SCFA

admixture mimicking the endogenous proportions present in colon

(acetate 260mpk, propionate 80mpk, and butyrate 60mpk) also

elicited a modest increase in GIP. In contrast, none of the

hormones examined were significantly altered by sodium acetate

dosed at either 400mg/kg (Figure 3) or 300mg/kg (molarity-

matched to the sodium butyrate challenge, data not shown). In

addition, the medium-chain fatty acid octanoic acid (OA) and the

long-chain fatty acid a-linolenic acid (LA) also showed no

significant effect. It’s worth noting that the rank order of butyrate

. propionate . acetate in the stimulation of anorexigenic

peptides GLP-1, PYY, and amylin is consistent with their effects

on food intake inhibition, with butyrate being the most potent

(Figure 2A).

Butyrate and Propionate Suppress Diet-induced Obesity
in Ffar3 Knockout Mice

Since butyrate and propionate, the SCFAs that preferentially

activate FFAR3, are more effective than acetate in suppressing

weight gain and stimulating gut hormones, we examined the

contribution of FFAR3 to these effects. Ffar3 knockout mice

showed no significant difference in body weight compared to wild-

type littermates on standard chow diet and after one week of HFD

feeding (Figure 4A). The mice were then switched to HFD

supplemented with butyrate and propionate for eight days. Both

butyrate and propionate inhibited weight gain and food intake in

Ffar3 knockouts to the same extent as in wild-type mice (Figure 4B-

D). Interestingly, although Ffar3 knockouts on control HFD

showed no difference in body weight compared to wild-type

littermates, they showed a modest 9% increase in food intake

(Figure 4E), consistent with reduced energy harvest efficiency from

diet reported in a separate Ffar3 knockout line [11].

Ffar3 Knockout Mice Show Normal GIP and Attenuated
GLP-1 Induction by SCFAs

FFAR3 mRNA is expressed in the intestinal mucosa, and highly

abundant in GLUTag cells, an immortalized murine L cell line,

whereas it’s undetectable in the intestinal smooth muscle layer

(Figure 5A). This expression pattern is consistent with a potential

role in peptide secretion from L, K, and other enteroendocrine

cells. Ffar3 knockouts showed normal fasting total and active GLP-

1 levels, but butyrate induced total GLP-1 secretion was

attenuated in the absence of FFAR3 (Figure 5B, C). GIP levels

in Ffar3 knockouts trended lower than wildtype controls under

basal and butyrate-stimulated conditions, but the degree of

stimulation by butyrate was similar between genotypes, and that

by propionate showed a slight increase in knockouts (Figure 5D,

E). Stimulation of PYY and insulin by butyrate was blunted in this

SCFAs Regulate Gut Hormones and Obesity
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cohort, likely due to exposure to HFD for four weeks, and showed

no significant difference between genotypes (Figure 5F, G). These

data suggest butyrate stimulation of GLP-1 secretion from L cells is

partially mediated by FFAR3, whereas the stimulatory effects of

butyrate and propionate on GIP secretion from K cells are

FFAR3-independent. Interestingly, butyrate significantly reduced

plasma ghrelin levels in Ffar3 knockouts, while this effect did not

reach statistical significance in control mice (Figure 5H).

Normal Body Weight and Glucose Homeostasis in Ffar3
knockout Mice

Both chow-fed (Figure 4A) and HFD-fed Ffar3 knockout mice

showed normal body weight, adiposity (Figure 6A), and plasma

leptin levels (Figure 6B, C) compared to wild-type littermates. In

addition, Ffar3 knockout mice maintained on HFD showed normal

glycemia (Figure 6D), oral glucose tolerance (Figure 6E), and

insulin tolerance (Figure 6F). These data suggest that FFAR3 is

dispensable for normal energy homeostasis and glucose metabo-

lism.

Discussion

The integral role of gut microbiota in the physiological

regulation of host energy metabolism has attracted considerable

attention. A number of studies have shown that obesity and

metabolic disorders are associated with profound changes in gut

microbiota [18]. However, mechanistic insights are lacking, and

whether microbiota dysfunction plays a causal role in the

pathogenesis of metabolic diseases is unclear. In particular, how

microbiota-derived metabolites, such as SCFAs, interact with

host nutrient sensing pathways to modulate energy metabolism is

poorly understood. Although SCFAs have been postulated to

regulate gut hormone secretion, in vivo evidence was scant, and

the downstream signaling pathway was not characterized. In this

study, we systematically examined the effects of each major

SCFA naturally present in the colon–butyrate, propionate, and

acetate–on energy metabolism and gut hormones. We found that

all three SCFAs protected against diet-induced obesity, with

butyrate and propionate being more effective than acetate.

Butyrate and propionate regulate body weight at least partially

by inhibiting food intake, consistent with their stimulatory effects

on anorexigenic gut hormones. In contrast, acetate inhibited

weight gain independent of food intake suppression and had no

acute effect on gut hormones. Our finding on the hypophagic

effect of butyrate differs from a previous report, which concluded

butyrate supplementation led to hyperphagia [5]. As Gao et al.

presented weekly food intake normalized to body weight, which

was already significantly lower in butyrate-fed mice after the first

week of diet switch, the acute hypophagic effect of butyrate may

have been masked in that study. However, the current data

cannot rule out potential impact on food intake due to altered

palatability by butyrate and propionate supplementation. Al-

though mice fed SCFA-supplemented diets did not display overt

signs of malaise, additional studies will be required to formally

address this possibility. In addition to effects on food intake,

changes in energy expenditure likely also contribute to body

weight regulation by SCFAs. Butyrate-treated mice showed an

increased capacity for cold-induced adaptive thermogenesis [5].

Systemic administration of propionate acutely increases heart

rate [19]. And acetate-treated rats were reported to have

Figure 1. Effects of dietary SCFAs on body weight and glucose homeostasis. Three-month-old lean C57BL/6N mice were switched to HFD
containing molarity-matched sodium salts of butyrate (5% w/w), propionate (4.3%), and acetate (3.7%) for four weeks. (A) Body weight was measured
weekly, and four-week cumulative weight gain is expressed as a percentage of initial body weight. (B) Oral glucose tolerance test was performed in
overnight fasted mice four weeks after diet switch. Blood glucose levels and total glucose area-under-the-curve (AUC) are shown. (C, D) Plasma levels
of insulin and leptin were determined in overnight fasted mice four weeks after diet switch. Data are mean 6 SEM. N = 8. *P,0.05, **P,0.01,
***P,0.001, ****P,0.0001 vs. control HFD.
doi:10.1371/journal.pone.0035240.g001
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increased oxygen consumption [20]. Future studies will be

needed to determine the contributions of these mechanisms to

energy homeostasis in the chronic setting.

SCFA levels in the gut lumen were reported to reach high mM

levels in the colon of human and pigs, but are much lower in

jejunum and ileum [21]. In the current study, the doses of SCFAs

chosen were in the high mM range, likely achieving supraphys-

iological levels in vivo, especially in the proximal intestine. Thus,

the effects on gut hormones may not reflect physiological action of

SCFAs, but suggest potential benefit of pharmacological SCFA

treatment. Orally administered SCFAs can likely reach the

proximal small intestine within 10 minutes–the early time point

chosen for the acute studies–as gastric emptying of a liquid bolus in

mice is very rapid and can exceed 80% within 15 minutes [22].

However, it’s unlikely that the oral SCFA bolus would reach the

distal small intestine and colon within 10 minutes. Therefore, the

effects on GLP-1 and GIP may reflect direct stimulation of

enteroendocrine cells in the proximal small intestine, where both

L cells and K cells can be found. On the other hand, L cells that

express PYY are only present in the colon and distal small

intestine, suggesting an indirect mode of action of butyrate on this

gut hormone.

Butyrate- and propionate-dependent inhibition of food intake

and weight gain was intact in Ffar3 knockout mice, implicating

other endogenous mediators in these effects. It’s worth noting that

Ffar3 knockouts on control HFD showed modest hyperphagia but

had normal body weight and adiposity. This is consistent with a

previous report showing accelerated intestinal transit and

increased fecal energy excretion in an independent Ffar3 knockout

line [11], suggesting FFAR3 is required for normal gut motility

and nutrient absorption. The mechanisms responsible for

increasing food intake and body weight normalization in the

absence of FFAR3 are unknown. SCFAs were shown to regulate

leptin secretion from the adipose tissue. However, the role of

FFAR3 in mediating these effects remains controversial [23,24].

We showed that Ffar3 knockouts maintain normal plasma leptin

levels, suggesting that leptin has no major role in normalizing

energy homeostasis in Ffar3 knockouts. Ffar3 knockout mice were

recently reported to have reduced resting heart rate and

sympathetic activity [19]. However, this effect is expected to

reduce energy expenditure and cannot explain the reduced feed

efficiency of Ffar3 knockouts.

Despite an intact anorectic response to butyrate, Ffar3

knockouts showed an attenuation of butyrate-stimulated GLP-1

release. Fasting GLP-1 levels were normal in Ffar3 knockouts.

These data suggest FFAR3 plays a role in nutrient sensing in L

cells but is not required for basal GLP-1 release. Conversely, Ffar3

knockouts showed largely normal GIP stimulation by butyrate and

propionate and an increased sensitivity to acute ghrelin suppres-

sion by butyrate. One potential explanation is that alterations in

gastrointestinal motility in Ffar3 knockouts may differentially affect

delivery of orally administered SCFAs to enteroendocrine cell

types along the proximodistal axis of the gut, contributing to the

different sensitivities of various gut hormones to FFAR3

Figure 2. Effects of dietary SCFAs on food intake and locomotor activity. (A-C) Three-month-old lean C57BL/6N mice were switched to HFD
containing sodium salts of butyrate (5%), propionate (4.3%), and acetate (3.7%) for nine days. Daily food intake, cumulative food intake, and
cumulative locomotor activity are shown. L: light phase. D: dark phase. (D, E) Dose titration of sodium butyrate and sodium propionate in HFD was
performed in three-month-old lean C57BL/6N mice. Eight-day cumulative body weight change and food intake are shown. Data are mean 6 SEM.
N = 8. *P,0.05, **P,0.01, ***P,0.001, ****P,0.0001 vs. control diet.
doi:10.1371/journal.pone.0035240.g002
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deficiency. Alternatively, FFAR3 may act as the primary butyrate

sensor in L cells, while FFAR2 or additional SCFA sensors may

play a more important role in other enteroendocrine cell types.

Although butyrate displays poor agonism against FFAR2 in vitro,

the local level present in the gut lumen after an oral administration

may be sufficient to activate FFAR2 in the intestinal epithelium. In

contrast to the adipose tissue, where FFAR2 expression tended to

be reduced in FFAR3-deficient mice [25], we found FFAR2

mRNA expression to be normal in intestinal mucosa in Ffar3

knockouts (data not shown). However, we cannot rule out the

possibility that, in the absence of FFAR3, FFAR2 expression may

be selectively up- or down-regulated in enteroendocrine cells,

which only account for ,5% of the intestinal epithelium. A recent

report showed Ffar2 knockout mice on HFD are protected from

diet-induced obesity, most likely due to increases in energy

expenditure and fecal energy output [26]. Future studies will be

needed to determine the effects of SCFAs on body weight

regulation and gut hormones in Ffar2 knockouts.

Butyrate is a well-known histone deacetylase inhibitor and

affects gene transcription [27]. Butyrate was also shown to regulate

autophagy in colonocytes by acting as an energy source [28].

However, these mechanisms are unlikely to impact gut hormone

release acutely on the scale of minutes. The niacin receptor

GPR109A can also be activated by butyrate in the mM range and

is expressed on the apical surface of colonic epithelium [29]. Its

role in the regulation of gut hormone secretion and body weight

remains to be determined.

In summary, the present findings demonstrate butyrate and

propionate regulate gut hormone release, suppress food intake,

and protect against diet-induced obesity. We also show that

FFAR3 is required for maximal GLP-1 induction by butyrate, but

is dispensable for butyrate- and propionate-dependent effects on

body weight and GIP stimulation. As enteroendocrine nutrient-

sensing and the incretin axis are subjects of intense interest in drug

discovery for metabolic disorders [30], future studies to determine

the signaling mechanisms responsible for SCFAs’ beneficial effects

may have a major impact on the development of novel therapies

for diabetes and obesity.

Materials and Methods

Animals
C57BL/6N male mice were obtained from Taconic Farms

(Germantown, NY), single-housed, and maintained in a 12h light/

12h dark cycle. Diets used were either standard chow diet: Teklad

7012 (Harlan Teklad, Indiana, IN) or high-fat diet (HFD): D12492

(60% kcal from fat, Research Diets, New Brunswick, NJ). Ffar3-/-

mice were obtained from Deltagen, Inc. (San Mateo, CA) and

backcrossed to C57BL/6N for 6 generations. Knockouts and wild-

type littermates were derived from heterozygote by heterozygote

mating. Three primers were used to differentiate the mutant allele

from the wild-type allele by PCR from tail DNA: 5’-GTGTAGG-

CAGTGTAGACAGCAATCT-3’, 5’-GCAGAAGATGAAGGG-

CAGAAGCCAT-3’, and 5’-GACGAGTTCTTCTGAGGG-

Figure 3. Effects of orally administered fatty acids on incretins and other hormones. (A-F) Three-month-old lean C57BL/6N mice were
fasted overnight and orally dosed with saline, sodium butyrate, sodium propionate, sodium acetate, an SCFA admixture (65% sodium acetate, 20%
sodium propionate, 15% sodium butyrate), octanoic acid (OA), or a-linolenic acid (LA), all at 400mg/kg body weight. Plasma levels of total GLP-1,
active GLP-1, GIP, PYY, insulin, and amylin were measured 10 minutes after dosing. Intra-assay CV% was below 8.9% for all immunoassays. Data are
mean 6 SEM. N = 8. *P,0.05, **P,0.01, ***P,0.001, ****P,0.0001 vs. saline. NS: not significant.
doi:10.1371/journal.pone.0035240.g003
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GATCGATC-3’, which generate 609- and 357-bp amplicons

from mutant and wild-type alleles, respectively. Male mice were

used for all analyses. All animal procedures were approved by the

Merck Research Laboratories Institutional Animal Care and Use

Committee (Rahway, NJ) under permit numbers 10–058–07/11,

11–090–07/13, and 11–018–02/13.

Figure 4. Effects of butyrate and propionate on energy homeostasis in Ffar3 knockout mice. (A) Body weight of three-month-old Ffar3
knockouts and wild-type littermates on standard chow diet and one week after switching to HFD. N = 34–41. (B-D) After one week of HFD feeding,
Ffar3 knockouts and wild-type littermates were switched to HFD containing sodium butyrate (5%) or sodium propionate (4.3%) for eight days.
Cumulative body weight change and daily food intake are shown. Data are mean 6 SEM. N = 8–13. *P,0.05, **P,0.01, ***P,0.001 vs. control diet.
#P,0.05 vs. wild-type mice on control diet. NS: not significant.
doi:10.1371/journal.pone.0035240.g004

SCFAs Regulate Gut Hormones and Obesity
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Acute Challenge and Dietary Supplementation Studies
Sodium butyrate, sodium propionate, sodium acetate, octanoic

acid, and a-linolenic acid were obtained from Sigma-Aldrich (St.

Louis, MO). For acute studies, mice were fasted overnight and

dosed p.o. at 6ml/kg with compounds dissolved in saline. For

dietary supplementation studies, sodium salts of SCFAs in solid

form were thoroughly blended into high-fat diet using a food

processor at 300–400rpm, formed into 50–60g balls, and used

immediately. Control diet was similarly processed without the

addition of SCFAs. In studies longer than 10 days, fresh diet was

made and replenished weekly. For acute studies in Ffar3 knockout

mice and wildtype littermates, the same cohort that was used for

the 8-day dietary supplementation study was returned to normal

HFD for 3 weeks, then re-randomized and used for the acute

butyrate/propionate challenge experiments due to limited animal

availability. The magnitude of stimulation of active GLP-1 and

GIP by butyrate was similar between wildtype mice on regular

chow diet and those on 4wk HFD.

Figure 5. Effects of butyrate and propionate on gut hormones in Ffar3 knockout mice. (A) Ffar3 mRNA expression determined by
quantitative RT-PCR in the mucosal and smooth muscle (SM) layers of different intestinal segments from lean C57BL/6N mice and in GLUTag cells.
Data are normalized against Rplp0 mRNA. N = 3. (B-H) After four weeks of HFD feeding, five-month-old Ffar3 knockout mice and wild-type littermates
were fasted overnight and dosed with saline, sodium butyrate, or sodium propionate (400mg/kg). Plasma levels of total GLP-1, active GLP-1, GIP, PYY,
insulin, and ghrelin were measured 10 minutes after dosing. Intra-assay CV% was below 7.6% for all immunoassays. N = 8. Data are mean 6 SEM.
*P,0.05, **P,0.01, ***P,0.001, NS: not significant.
doi:10.1371/journal.pone.0035240.g005

SCFAs Regulate Gut Hormones and Obesity
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Plasma Measurements
Blood was collected via cardiac puncture or submandibular

bleeds into EDTA-tubes containing DPP4 inhibitor (Millipore,

Billerica, MA) and protease inhibitor cocktail (Sigma-Aldrich).

Total GLP-1 and active GLP-1 were measured using immunoas-

says from Meso Scale Discovery (Gaithersburg, MD). Total GIP,

active PYY, insulin, amylin, leptin, and total ghrelin were

measured using the Milliplex gut hormone panel (Millipore).

Figure 6. Normal body composition and glucose homeostasis in Ffar3 knockout mice. (A) Body composition was determined by
quantitative NMR in Ffar3 knockouts and wild-type littermates after five months of HFD feeding. (B, C) Plasma leptin levels were determined in
overnight fasted Ffar3 knockouts and wild-type littermates maintained on standard chow diet or HFD. (D) Blood glucose was measured in ad libitum
fed mice maintained on HFD three hours after the start of the light phase. (E) Oral glucose tolerance test after overnight fasting and (F) intraperitoneal
insulin tolerance test after five-hour daytime fasting in Ffar3 knockouts and wild-type littermates maintained on HFD. Data are mean 6 SEM. N = 8–
14.
doi:10.1371/journal.pone.0035240.g006

SCFAs Regulate Gut Hormones and Obesity
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Metabolic Analyses
Glucose tolerance test (3g/kg p.o.) was performed following an

overnight fast in C57BL/6N mice that had been fed SCFA-

supplemented HFD for four weeks and in five- to six-month-old

Ffar3-/- and wild-type littermates that had been fed HFD for six

weeks. Insulin tolerance test (0.75U/kg i.p.) was performed in six-

to seven-month-old Ffar3-/- and wild-type littermates on HFD for

ten weeks following a 5hr day-time food removal. Glucose was

measured from tail blood with a OneTouch Ultra meter (LifeScan,

Milpitas, CA). Body composition was determined with a Bruker

minispec NMR (Bruker Optics, Billerica, CA) in eight-month-old

Ffar3-/- and wild-type littermates that had been fed HFD for

twenty weeks. Locomotor activity was measured using a

comprehensive laboratory animal monitoring system (Columbus

Instruments, Columbus, OH) as previously described [31].

Statistical Analyses
Data were analyzed by Student’s t test or one-way ANOVA

with Bonferroni post test. P values less than 0.05 were considered

significant.
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