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Abstract

Large-scale cancer genome projects, such as the Cancer Genome Atlas (TCGA) project, are comprehensive molecular
characterization efforts to accelerate our understanding of cancer biology and the discovery of new therapeutic targets. The
accumulating wealth of multidimensional data provides a new paradigm for important research problems including cancer
subtype discovery. The current standard approach relies on separate clustering analyses followed by manual integration.
Results can be highly data type dependent, restricting the ability to discover new insights from multidimensional data. In
this study, we present an integrative subtype analysis of the TCGA glioblastoma (GBM) data set. Our analysis revealed new
insights through integrated subtype characterization. We found three distinct integrated tumor subtypes. Subtype 1 lacks
the classical GBM events of chr 7 gain and chr 10 loss. This subclass is enriched for the G-CIMP phenotype and shows
hypermethylation of genes involved in brain development and neuronal differentiation. The tumors in this subclass display
a Proneural expression profile. Subtype 2 is characterized by a near complete association with EGFR amplification,
overrepresentation of promoter methylation of homeobox and G-protein signaling genes, and a Classical expression profile.
Subtype 3 is characterized by NF1 and PTEN alterations and exhibits a Mesenchymal-like expression profile. The data
analysis workflow we propose provides a unified and computationally scalable framework to harness the full potential of
large-scale integrated cancer genomic data for integrative subtype discovery.
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Introduction

Cancer genomes harbor a plethora of somatically acquired

aberrations. DNA copy number aberrations are key characteristics

of cancer, contributing to genomic instability and gene deregula-

tion [1,2] such as oncogene activation by gene amplification or

tumor suppressor loss as a result of gene deletion. Epigenetic

aberrations such as DNA methylation are also widespread in the

cancer genome [3]. Genome-wide hypomethylation causes

genome instability, and hypermethylation of CpG islands has

been associated with inactivation of tumor suppressor genes. Many

of these genomic changes in the DNA may affect the expression

level of messenger RNA (mRNA) as well as non-coding

microRNAs, alter the function of the gene product, and ultimately

lead to abnormal cellular and biological functions that contribute

to tumorigenesis.

Large-scale cancer genome projects including the Cancer

Genome Atlas (TCGA) and the International Cancer Genome

Consortium (ICGC) are generating an unprecedented amount of

multidimensional data using high resolution microarray and next-

generation sequencing platforms. With the accumulating wealth of

multidimensional data, there is a great need for methods geared

toward integrative analysis of multiple genomic data sources. New

methods for this type of analysis have been developed. Several

recent studies consider pathway and network analysis using

multidimensional data [4,5]. A number of others [6–11] suggest

using canonical correlation analysis (CCA) to quantify the

correlation between two data sets (e.g., gene expression and copy

number data). None of these methods are specifically designed for

tumor subtype analysis in an integrative fashion.

The clinical and therapeutic implications for many existing

molecular subtypes of cancer remain largely unknown. Prioritiza-

tion of candidate markers relies to a great extent on existing

knowledge of cancer biology. To that end, integrating multiple

data types (e.g., copy number and gene expression) can provide

key information to pinpoint the genomic alterations that

characterize disease subtypes of biological and clinical importance

(e.g., HER2 oncogene activation through concordant DNA

amplification and mRNA overexpression). Individually, none of

the data types completely capture the complexity of the cancer

genome or precisely pinpoint the cancer driving mechanism.

Collectively, however, integrative genomic studies provide a new
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paradigm for the discovery of novel cancer subtypes and

associated cancer genes.

The current standard analysis involves separate clustering of

different genomic data types followed by a manual integration of

the cluster assignments. Results can be highly data type

dependent, restricting the ability to discover additional insights

from multidimensional data. Correlation between data types

cannot be utilized in a separate clustering approach, causing

substantial loss of information. Another challenge with standard

clustering algorithms is that feature selection is not part of the

clustering procedure. Typically, all features that pass some initial

variance filtering step are included for clustering. The result can be

high variable due to noise accumulation in estimating the

population cluster centroids in high dimensional feature space.

An example can be seen in Supplementary Figure S1E. As a result,

sparse clustering has generated much attention in recent statistical

literature [12–16], assuming a small fraction of the features are

directly relevant for class discovery. Statistical inference in high

dimensional data setting becomes more reliable with the sparsity

assumption. Correct selection of the class-discriminant features

crucially affects model interpretation, statistical accuracy, and

computational complexity. Yet most widely applied clustering

methods are decoupled from the procedure of selecting cluster-

discriminant features.

In a previous publication [17], we introduced an integrative

clustering method called iCluster based on a Gaussian latent

variable model with lasso [18] type penalty terms to induce

sparsity in the coefficient matrices toward feature selection. In this

paper, we present an integrative analysis workflow using iCluster

and demonstrate its utility in defining molecular subtypes of

glioblastoma multiforme (GBM) by simultaneously clustering

genome-wide DNA copy number, methylation, and gene

expression data derived from the TCGA GBM samples. We

implemented a modified algorithm using a variance weighted

penalty term that is proportional to the error variance associated

with each feature. As a result, coefficients will be more heavily

penalized for features demonstrating high variance. We discuss the

details of the weighted shrinkage estimates in the Methods Section.

Results

A unified framework for clustering, data integration,
dimension reduction, and feature selection

Supplementary Figure S1 illustrates the workflow of an

integrative clustering analysis. The iCluster method simultaneous-

ly achieves data integration and dimension reduction through a

joint latent variable model. The goal is to identify a set of driving

factors that define biologically and clinically relevant subtypes of

the disease. This is best explained by an example. In the well-

known HER2 breast tumor subtype, the driving characteristic of

the subtype is the HER2 oncogene activation through concordant

DNA amplification and mRNA overexpression of genes within the

HER2 amplicon (Supplementary Figure S1D). Based on existing

knowledge on the driving factors (HER2 in this case) in a certain

cancer type and the observed data for each tumor, we can model

the patients’ multidimensional genomic profile as functions of the

driving factors for effective data integration and dimension

reduction. However, in the general problem of class discovery,

the driving factors are not known and need to be identified from

the multidimensional data space. This motivates us to consider a

latent variable modeling framework.

The model induces complex dependence structures among

different genomic data types using latent variables that represent

the underlying cancer driving factors. Integration and dimension

reduction is achieved through simultaneous projection of the

multidimensional data space of different dimensions and scales

onto a lower dimensional latent subspace of unified dimension and

scale (Figure 1). The resulting latent subspace reveals cluster

structures among the sample points. The coefficient matrix

determines the relationship between the original features and the

latent variable. A variance-weighted adaptive shrinkage method is

applied to impose sparsity on the loading matrix (many entries are

zero) for selecting cluster-discriminant features as part of the

iCluster procedure. Revisiting the HER2 subtype example, the

loading vector associated with the HER2 subtype will only have

nonzero values for genes within the HER2 amplicon and zeros

everywhere else (Supplementary Figure S1F).

Comparison to separate clustering and naive integration
using simulation

Separate clustering followed by manual integration remains the

most frequently applied approach to analyze multiple omics data

sets in the current literature for its simplicity and the lack of a truly

integrative approach. Using simulation analysis, we demonstrate

that separate clustering can fail drastically in estimating the true

number of clusters, classifying samples to the correct clusters, and

selecting cluster-associated features. In Table 1, the simpler

method (separate K-means) chooses the correct number of clusters

(k) only 60% of the time with an average cluster reproducibility of

0.68. By contrast, iCluster estimates the correct number of clusters

90% of the time with an average cluster reproducibility of 0.81. In

a second simulation scenario with a more sparse data structure in

which only two features are relevant to define the clusters, the

iCluster method outperforms the competing approach by a

substantial margin in terms of the ability to choose the correct

number of clusters (40% vs 92% accurate), cross-validated error

rates (0.11 vs 0.01), and cluster reproducibility (0.48 vs 0.98)

(Simulation Scenario 2 in Table 1). This simulation analysis

indicates that care should be taken in the current standard practice

when interpreting results from separate clustering of multidimen-

sional data sets.

We also compared iCluster to a principal component analysis

(PCA) based integration. PCA is known to reveal cluster structures

in a lower dimensional latent subspace. Given multiple data types,

we applied PCA to the combined data matrices. Using simulated

data, Figure 2 shows that such naive integration cannot separate

the subgroups with high accuracy. By contrast, iCluster clearly

outperforms the naive integration as well as the separate

clusterings in discriminating the true clusters.

iCluster Identifies Three Distinct Molecular Subtypes of
Glioblastoma

In recent TCGA publications on glioblastoma subtypes,

Verhaak et al. (2010) [19] identified four distinct expression

subtypes: Proneural, Neural, Classical and Mesenchymal using

1,740 most variable genes. In addition, Noushmehr et al. (2010)

[20] reported a Glioma-CpG Island Methylator Phenotype (G-

CIMP) based on 1,503 methylation features. We hypothesize that

an integrative subtype analysis would be a more powerful

approach to characterize subtypes with coordinated genomic,

epigenomic, and transcriptomic alterations. To that end, we

applied the iCluster algorithm for a joint analysis of copy number,

methylation and gene expression on a subset of 55 glioblastoma

samples (see Data Set Section).

The number of reproducible subtypes (K) and model sparsity

(number of subtype-discriminant features) are determined using a

resampling-based scheme as described in the Methods Section.

iCluster
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Within each iteration of the algorithm, a reproducibility index (RI)

is computed for each point drawn from the parameter space based

on a uniform sampling design. An RI close to 1 indicates perfect

cluster reproducibility and an RI close to 0 indicates poor

reproducibility. Table 2 indicates highly reproducible solutions by

integrative clustering. Both K = 2 and K = 3 are highly reproduc-

ible with RI = 1.00 and 0.93 respectively. We further examine the

cluster separability plots (see Methods) in Figure 3, which reveals

that K = 3 gives the best diagonal block structure. Overall, we find

combining the cluster reproducibility and separability measure is

an effective way for choosing the number of clusters given complex

data structures. In Figure 4, iCluster outperforms the competing

methods in revealing subgroup structure in the lower dimension

latent subspace. The standard PCA and a sparse PCA approach

[9] applied to the concatenated data matrix did not achieve

satisfactory results (Figure 4B and 4C).

Figure 5 reveals the major characteristics for each of the three

integrated GBM subtypes. The most notable feature of the

Glioblastoma subtype 1 identified by iCluster is the lack of chr7

gain and chr10 loss (the classical GBM events), and shows a

‘‘sporadic’’ profile of copy number alterations. This subclass is

enriched for the G-CIMP phenotype and shows hypermethylation

of genes involved in brain development and neuronal differenti-

ation including DLC1, JAG2, and ALDH1A3 (Supplementary Table

S1). The expression phenotype of the tumors in this subclass is

predominantly Proneural. This subclass of patients show signifi-

cantly better survival (P = 0.01) than the other two clusters

(Figure 6). Subtype 2 is characterized by a near complete

association with EGFR amplification, gains of chr 19 and 20,

methylation of homeobox genes including IRX2 and BARHL2 and

G-protein signaling genes including CXCL6 and DRD5, and a

classical-enriched expression profile. Subtype 3 is characterized by

NF1 and PTEN alterations and exhibits mesenchymal-like

expression.

Joint feature selection reveals coordinated genomic and
epigenomic regulation

As mentioned earlier, feature selection is an integral part of the

iCluster algorithm and is accomplished via an adaptive shrinkage

estimation of the coefficient matrix. A genomic feature is

associated with a subtype if the corresponding shrinkage-based

coefficient (factor lading) estimate is nonzero. As a result,

clustering variability can be substantially reduced by effectively

removing noninformative features by forcing their coefficients to

zero. As mentioned earlier, Table 1 clearly shows that the sparse

models, as a result, lead to significantly better cluster reproduc-

ibility than their nonsparse counterparts. The performance of the

latter using all features is degraded by noise accumulation. The full

lists of selected features arranged in the corresponding gene cluster

can be found in Supplementary Tables S1 and S2.

Mutual information I(X,Y) is a measure of dependence between

two random variables that is considered more general and robust

than correlation. It is a nonnegative measure with I(X,Y) = 0

indicating independence. [21] used mutual information to quantify

on a global level the extent to which entropy increase in one

random variable (DNA copy number) leads to an entropy increase

in another (gene expression). Figure 7 shows the distribution of all

pair-wise mutual information between DNA methylation and gene

Figure 1. The iCluster framework.
doi:10.1371/journal.pone.0035236.g001

Table 1. Comparing separate clustering and iCluster performance using simulation.

Simulated Scenario 1

Method Freq estimating the correct K Error Rate RI

Separate K-means 60% 0.08 (0.04) 0.68 (0.18)

Sparse iCluster 90% 0.04 (0.02) 0.81 (0.08)

Simulated Scenario 2

Separate K-means 40% 0.11 (0.06) 0.48 (0.20)

Sparse iCluster 92% 0.01 (0.01) 0.98 (0.04)

Simulation scenario 1 consists of a pair of matched data sets of 200 features (20 of which are relevant to clustering and 180 are noisy features) in 100 samples belonging
to two distinct clusters. Scenario 2 represents an extremely sparse data structure with only 2 cluster-associated features and 198 noisy features. RI is the resampling-
based cluster reproducibility criterion and ranges between 0 and 1. A value close to 1 indicates perfect cluster reproducibility, and a value close to 0 indicates poor
reproducibility. Separate K-means has two sets of numbers associated with each criterion because of separate model fits. The numbers are similar and therefore
averaged in the table. The number in parentheses is the standard deviation over 50 simulations.
doi:10.1371/journal.pone.0035236.t001

iCluster
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expression (7A), and between DNA copy number and gene

expression (7B). The unselected feature space (all features) is

dominated by features with low mutual information content,

whereas the iCluster selected feature space is substantially enriched

for features with high mutual information content with the

distribution considerably shifted to the right.

Discussion

Integrative genomic studies given multiple omic dimensions

carry the promise of more power to characterize, classify, and

predict outcomes in cancer than the conventional genomic study

involving gene expression data alone. We present a unified data

analysis framework that conducts clustering, data integration,

feature selection, and dimension reduction simultaneously to

harness the full potential of large-scale integrated cancer genomic

data. As we illustrated using the TCGA GBM data set, a strength

of an integrative clustering analysis is the ability to discover and

visualize coordinated patterns of genomic alterations, providing a

biologically comprehensive context for subtype discovery.

A practical challenge for validating integrated clusters is the

availability of independent data sets with all data types available.

With the accumulating number of integrated genomic profiling

studies, we expect this problem will become less severe over time.

In the GBM data set, each data type shows distinct cluster-

discriminating patterns (Figure 5). A natural question then arises as

to what degree a single data type (e.g., copy number) can

reproduce the integrated subtype label generated by iCluster. To

that end, we conducted an internal cross-validation (CV) based on

the copy number profile alone using a k-nearest neighbor method.

In leave-one-out cross-validation, we find the k nearest neighbors

of the left-out sample (based on the Euclidean distance of the copy

Figure 2. Comparing iCluster to a naive integration via PCA
using simulated data. Two-dimensional plots of the sample points in
the latent subspace by different methods. A set of 150 subjects are
simulated belonging to three clusters (indicated by black, blue, and
orange dots). Each subject has a pair of synthetic molecular profiles
representing two data types each consisting of 1,000 features. A
common set of 5 correlated features in both data type 1 and 2 defines
the black subtype. Another set of 5 features specific to data type 2
defines the blue subtype. The remaining features are noise.
doi:10.1371/journal.pone.0035236.g002

Figure 3. Cluster separability plots in the GBM data set.
Proportion of deviation (POD) is calculated as the proportion of
deviation from a block diagonal structure. K = 3 has the best block-
diagonal structure.
doi:10.1371/journal.pone.0035236.g003

Table 2. Integrated subtype reproducibility and number of
subtype-discriminant features.

Reproducibility
Index CN features Methyl features Exp features

1.00 104 74 91

0.93 308 240 228

0.54 713 272 285

0.63 550 631 488

0.41 453 672 237

doi:10.1371/journal.pone.0035236.t002

iCluster
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number profiles) and then classify the left-out sample to the

corresponding class label with the majority votes. We iterate this

procedure until all the samples are left out once and assigned a

corresponding class label. The CV error rate is then computed as

the percentage of misclassified subtype memberships. The k

chosen is the one that minimizes this CV error rate. The

procedure can be similarly applied to other data types. Using this

internal cross-validation procedure, we found using copy number

data alone could assign 77% of the samples to the correct

integrated subtype. Through a similar procedure, we obtained an

87% accuracy using the expression data alone, and a 93%

accuracy using the methylation data alone for classifying the

samples to the correct integrated subtype label.

Given the reasonably good cross-validation performance, we

then applied this single data type validation approach using an

independent set of 136 samples from the same TCGA GBM

cohort that were not included in the integrative clustering analysis

for reasons discussed in Materials and Methods. We assigned

cluster membership for each of the 136 samples based on the

majority voting of the k-nearest neighbor approach based on copy

number profiles alone (Supplementary Figure S2) and based on

their gene expression profile alone (Supplementary Figure S3).

Both clearly indicate that the distinct copy number and gene

expression patterns in Figure 5 can be validated in the

independent sample set.

In general practice, a validation study requires the availability of

all data types used for the discovery of the integrated subtypes.

However, as we have shown here, an internal cross-validation can

be used to assess the degree to which each single data type alone

can reproduce the integrated cluster membership. If a single data

type can replicate the integrated subtypes with sufficient accuracy,

then it may not be necessary to collect all of the data types in

subsequent validation experiments.

Figure 4. Comparison of the iCluster method to PCA approaches in the GBM data set. Two-dimensional plots of the sample points in the
latent subspace spanned by A) the first two joint latent factors obtained using iCluster, B) the first two principal components (PCs) from the
concatenated data matrix, C) the first two sparse PCs from the concatenated data matrix, D) the first two PCs from the mRNA expression data alone,
E) from the copy number data alone, and F) from the methylation data alone.
doi:10.1371/journal.pone.0035236.g004

iCluster
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Figure 5. iCluster reveals three distinct glioblastoma integrated subtypes. iCluster was applied using 1,599 copy number features, 1,515
DNA methylation features, and 1,740 expression features. Heatmap display of the subset of cluster-discriminant features reveals highly coordinated
pattern of alteration in copy number, methylation, and expression. Integrated subtype 1 shows a ‘‘sporadic’’ profile of copy number alterations;
hypermethylation of genes involved in brain development and neuronal differentiation, and a proneural expression profile. Integrated subtype 2 is
characterized by a near complete association with EGFR alteration, gains of chr 19 and 20, methylation of homeobox genes, and a classical-enriched

iCluster
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Materials and Methods

Data set
A description of the TCGA data types, platforms and analyses

can be found in TCGA (2008). The GBM data set were

downloaded from the Cancer Genome Atlas public data portal,

and from the cBio Cancer Genomics Portal (http://cbioportal.

org/) at the Memorial Sloan-Kettering Cancer Center. For copy

number data (n = 206), ‘‘level 3’’ normalized and segmented data

from Agilent 244 K CGH arrays were used. In a typically data

pre-processing step, we use CGHregion [22] to reduce multi-

sample array CGH data to 1 K–5 K unique regions. In this study,

however, we use the gene-centric data generated using RAE [23]

to facilitate interpretation and comparison with published results.

For mRNA expression data (n = 202), unified gene expression data

across three microarray platforms (Affymetrix Human Exon 1.0

ST GeneChips, Affymetrix HT-HG-U133A GeneChips, and

custom designed Agilent 244 K array) as described in [19] were

used. A final set of 1,740 most variable genes were used for the

analysis. The GBM methylation data were generated on two

different platforms: Illumina Infinium and GoldenGate. We used

the higher resolution data from the Infinium 27 K platform in this

study (n = 91). A set of 1,515 most variable probes (beta values)

were used for the analysis. The final ‘‘triplet’’ dataset for

integrative analysis (copy number, expression, methylation)

consists of a total of 55 samples where all three data types as

described above are available.

Sparse joint latent variable model
Suppose t~1, � � � ,m different genome-scale data types (DNA

copy number, methylation, mRNA expression, etc.) are obtained

in i~1, � � � ,n tumors. Let xit~(xi1t, � � � ,xiptt)’ denote a pt-

dimensional genomic data vector. Each element xijt,j~1, � � � ,pt,

represents the observation associated with the jth genomic feature

of type t measured in tumor i. To facilitate the discussion of

feature selection in this paper, we use genomic feature as a general

term to refer to protein-coding genes as well as non-coding genetic

and genomic elements depending on the platform and data type.

The details of the integrative clustering method can be found in

[17,24]. Briefly, the sets of m genomic data vectors fxtgm
t~1 are

related to a common (shared) set of latent variables zi using the

following model

xit~W tzizeit, i~1, � � � ,n; t~1, � � � ,m,

where W t denotes the coefficient (loading) matrix associated with

data type t, and eit denotes the error term with mean zero and a

diagonal covariance matrix Yt~diag(s2
1t, � � � ,s2

ptt), representing

the residual variance.

The iCluster framework simultaneously achieves data integra-

tion and dimension reduction. The concept of the model is

depicted in Figure 1 and Supplementary Figure S1. The common

latent variable vector zi represents the underlying driving factors in

tumor i that can be used for disease subtype assignment. It is also a

key instrument for inducing complex dependence structures

between data types and as a result renders an effective integration

scheme across multiple correlated data sources. At the same time,

dimension reduction is achieved through projecting the multidi-

mensional data space to a low dimensional integrated subspace:

expression profile. Integrated subtype 3 is characterized by NF1 and PTEN alterations and exhibits mesenchymal-like expression. The TCGA
expression subtype and the G-CIMP subtype memberships are aligned on top of the integrated subtype membership as color-coded labels. PI3K
pathway activity is shown at the bottom of the figure.
doi:10.1371/journal.pone.0035236.g005

Figure 6. Kaplan-Meier plot. The three integrated subtypes of
glioblastoma identified by iCluster show survival differences.
doi:10.1371/journal.pone.0035236.g006

Figure 7. Mutual information.
doi:10.1371/journal.pone.0035236.g007

iCluster
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fX tgm
t~1?Z, where X t~(x1t, � � � ,xnt) is the data matrix of

dimension pt|n and Z~(z1, � � � ,zn) is the latent factor matrix of

dimension g|n. Typically, g%
P

t pt, providing a low-rank joint

approximation to the original data sets. We assume a rank-g
approximation where g~K{1 for separating K clusters among

the n data points.

Parameter Estimation
The EM algorithm [25] is used for parameter estimation. Given

Gaussian error terms eit*N(0,Yt), the Expectation step (E-step)

entails computing the posterior mean and variance of the latent

factors, and the Maximization step (M-step) leads to estimates of

the coefficient matrix and the error covariance matrix. The

algorithm iterates between E-step and M-step until convergence.

Sparsity in the estimate of fW tgm
t~1 are important for balancing

between model fit and model complexity. In the original paper

[17], we proposed to use a lasso approach that penalizes the ‘1

norm of the coefficient vectors and continuously shrinks the

coefficients associated with noninformative genes toward zero. Let

wjkt denote the element in row j and column k of the coefficient

matrix W t, we considered the following shrinkage estimates:

w
(qz1)
jkt ~sign(~ww(q)

jkt) D~ww(q)
jkt D{

lt

2

� �
z

,

where w
(q)
jkt is the standard maximum likelihood estimates at the q-

th EM iteration, and (:)z denotes the positive part. When the

penalty parameter lt is sufficiently large, many of the coefficient

estimates will be exactly zero. If wjkt~0, feature j in data type t

has has no bearing on the kth latent factor. A sparse W t with lots

of zero elements is more interpretable and provides a framework

for selecting cluster-discriminant features.

In this paper, we consider an adaptive-type penalty that is

proportional to the variance of each feature in the following form:

w
(qz1)
jkt ~sign(~ww(q)

jkt) D~ww(q)
jkt D{

lt

2
s2(q)

jt

� �
z

,

where the shrinkage term is proportional to the variance s2
jt

associated with genomic feature j in data type t. Coefficients will be

more heavily penalized for features demonstrating high variance.

Choice of Tuning Parameters
We use a cluster reproducibility index (RI) as described in [24]

for choosing the number of clusters (K ) and the degree of sparsity

(l) in the genomic feature space. It entails repeatedly partitioning

the samples into a learning and a test set and evaluating the degree

of agreement between the predicted and the fitted (‘‘observed’’)

cluster assignment using an adjusted Rand index. The procedure

is depicted in Supplementary Figure S1. Values of RI close to 1

indicate perfect cluster reproducibility and values of RI close to 0

indicate poor cluster reproducibility. In this framework, the

concept of prediction error that typically applies to classification

analysis where the true cluster labels are known now becomes

relevant for clustering [26–28].

For visualization of the sample similarity matrix, Shen et al.

(2009) [17] described a cluster separability plot based on the

product matrix of the posterior mean of the latent factors. Perfect

cluster separability (non-overlapping clusters) would lead to an

exact diagonal block matrix with diagonal blocks of ones for

samples belonging to the same cluster and off-diagonal blocks of

zeros for samples in different clusters. The corresponding

proportion of deviance (POD) measure is between 0 and 1. Small

values of POD indicate strong cluster separability, and large values

of POD indicate poor cluster separability.

Sampling design
In the integrative space, an exhaustive grid search for the optimal

combination of (K,l) that maximizes cluster reproducibility is

inefficient and computationally prohibitive. To overcome this

obstacle, we use the uniform sampling design (UD) approach of

Fang and Wang (1994) [29] to generate experimental points that

scattered uniformly across the search domain. It has been shown

that UD has superior convergence rate than the traditional grid

search over the parameter space [29]. Suppose we apply iCluster on

two data types (t~1,2) with a parameter tuning process that

involves finding the best values for (l1,l2), the sparsity-inducing

penalty parameters as described earlier. Each of the penalty

parameters ranges between 0 and 1, with 0 representing the null

model where no features are selected and 1 representing the full

model where all features are included. Supplementary Figure S4

shows an example of the UD sampling pattern where n here denotes

the number of ‘trials’ in which we fit the iCluster model with the

chosen combinations of (l1,l2) uniformly sampled from the search

domain D. A key theoretic advantage of the uniform design over the

traditional grid search is the uniform space filling property that

avoids wasteful computation at close-by points. As we can see in

Supplementary Figure S4, each value of (l1,l2) only appears once in

the UD design, an important characteristic for efficient model

selection. The parameter points used to generate UD sampling

patterns are chosen by number-theoretic methods (Fang and

Wang,1994) that achieve uniform and space-filling properties.

The UD tables can be found at the following link: http://www.

math.hkbu.edu.hk/UniformDesign/.

Mutual information
Mutual information is a general measure of certain functional

dependence (unrestricted to linear dependence) between two

random variables. van Wieringen and van der Vaart (2011) [22]

uses mutual information to quantify the extent to which entropy

increase in one random variable (DNA copy number) leads to an

entropy increase in another (gene expression). The classic

definition of mutual information between two random variable is

I(X ,Y )~

ð ð
f(X ,Y )(x,y)log

f(X ,Y )(x,y)

f(X )(x)f(Y )y
dxdy, ð1Þ

where f(X ,Y )(x,y) is the joint density function of X and Y , and

f(X )(x) and f(Y )(y) are the marginal density functions. Mutual

information of two Gaussian random variable is known to be

I(X ,Y )~{
1

2
log(1{r2) where r is the correlation which is what

we used in Figure 7.

Supporting Information

Figure S1 Integrative Clustering Analysis Workflow.

(PDF)

Figure S2 Validation using copy number data alone.

(PDF)

Figure S3 Validation using gene expression data alone.

(PDF)

Figure S4 Two-dimensional uniform sampling.

(PDF)
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Table S1 Selected methylation features and functional
annotations using DAVID.
(XLSX)

Table S2 Selected expression features and functional
annotations using DAVID.
(XLSX)
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