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Abstract

Background: Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the
mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this
process is still very limited.

Methodology/Principal Findings: We identified an Anopheles gambiae epithelial serine protease (AgESP) that is
constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the
salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces
Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a
key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells
invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary
gland epithelial cells, AgESP is localized on the basal side–the surface with which sporozoites interact. AgESP expression in
the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing
significantly reduces the number of sporozoites that invade this organ.

Conclusion: Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and
salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to
successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this
process.
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Introduction

Malaria, an infectious disease caused by Plasmodium parasites,

affects 247 million people every year. The Anopheles gambiae

mosquito is the major vector of human malaria in sub-Saharan

Africa, where most malaria episodes (86%) and deaths (91%) occur

[1]. Mosquitoes become infected when they ingest blood from a

vertebrate host that contains Plasmodium gametocytes. Zygotes are

formed following fertilization in the midgut lumen and then

mature into a motile form, the ookinete.

The mosquito midgut epithelium comprises a monolayer of

columnar epithelial cells with an apical microvillar surface that

faces the gut lumen and an intricate permeable membranous

labyrinth on the basal side, which is bathed in hemolymph [2].

Plasmodium ookinetes interact with the luminal surface of the

midgut and traverse epithelial cells without forming a vacuole [3],

coming in direct contact with the cytoplasm of the invaded cell

and causing irreversible damage that leads to apoptosis [4–6].

Ookinete midgut invasion causes differential regulation of more

than 7% of the An. gambiae midgut transcriptome, including several

genes that mediate reorganization of the actin cytoskeleton [7]. A

functional screen of 11 candidate genes involved in cytoskeleton

dynamics identified 4 genes that affect Plasmodium infection [7].

Silencing gelsolin or F-actin capping protein (CP) decreased

P. berghei infection, while ciboulot or Wiskott-Aldrich syndrome

protein (WASP) silencing had the opposite effect, enhancing

infection [7]. These studies indicated that there are critical

interactions between Plasmodium parasites and the cytoskeleton of

midgut epithelial cells that determine the fate of ookinetes in the

mosquito. When ookinetes emerge from epithelial cells, they come

in contact with the basal lamina and transform into oocysts.

During this stage, parasites form a capsule, multiply continuously,
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and eventually release hundreds of sporozoites into the circulating

hemolymph. Sporozoites must cross a second barrier–the salivary

gland (SG) epithelium–before they can reach the salivary duct.

Unlike ookinetes, sporozoites invade the basal side of the SG

epithelial cells by forming a transient parasitophorous vacuole [8].

Malaria transmission takes place when an infected mosquito takes

a blood meal and injects mature sporozoites into the vertebrate

host.

In mosquitoes, serine proteases participate in blood digestion

[9–11] and have also been implicated in antiplasmodial immunity

[12–14]. Serine proteases can also activate signal transduction

pathways by proteolytic cleavage of specific target proteins [15]. A

previous study identified a trypsin-like serine protease that is

differentially expressed in response to Plasmodium infection between

naturally occurring susceptible and refractory Anopheles culicifacies

mosquitoes [13]. In this study, we characterized the putative An.

gambiae ortholog of this protease. Our studies revealed that this

epithelial serine protease (AgESP) has a unique subcellular

localization, regulates expression of gelsolin (an actin-binding

protein involved in remodeling of the cytoskeleton) in midgut

epithelial cells, and is required for Plasmodium midgut and SG

invasion.

Results

AgESP cDNA Sequence, Predicted Protein Sequence, and
Tertiary Structure

The An. gambiae epithelial serine protease (AgESP) gene is located

in the 3R chromosome of An. gambiae (AGAP010240-PA). The

coding region of the AgESP cDNA was cloned and sequenced.

The cDNA is 807-bp long and has a slightly different intron-exon

boundary than the predicted sequence in the latest An. gambiae

genome annotation, resulting in a transcript that is 21 bp shorter.

The cDNA sequence (Accession No. GenBank HQ878386)

revealed a transcript composed of two exons (49 bp and 758 bp)

separated by a 66-bp intron (Fig. 1A). The predicted amino acid

sequence codes for polypeptide of 268 amino acids (aa), including

a 17-aa putative signal peptide (MKLFIVVVLACLAAVQA)

(Fig. 1B, shaded in light blue) and a 19-aa pro-peptide

(REISYQSIVPFREATRSSR) (Fig. 1B, shaded in pink).

AgESP Expression is Induced by Plasmodium Midgut
Invasion

The potential participation of AgESP in midgut epithelium

responses to Plasmodium infection was investigated. AgESP mRNA

is expressed at high levels in the midgut and salivary glands (SGs)

of adult sugar-fed An. gambiae females (Fig. 1C). It is expressed at

low levels in the body wall (with the fat body attached to it), but

cannot be detected in circulating hemocytes (Fig. 1C). AgESP

midgut mRNA level decrease by about 80% 12 h post feeding

(PF), but increase in P. berghei-infected midguts at 24 and 32 h PF

(Fig. 1D). This response was not observed when mosquitoes were

fed on a mouse infected with the P. berghei CTRP knockout (KO)

line that produces ookinetes unable to invade the midgut (Fig. 1E),

indicating that ookinete invasion is required to induce AgESP

midgut expression.

Recombinant AgESP was expressed in the Escherichia coli

system, purified, and used to generate anti-AgESP polyclonal

antibodies. AgESP protein is expressed in sugar-fed midguts as a

single 40-kDa band (Fig. 1F) and follows an expression pattern

similar to that of AgESP mRNA. AgESP protein expression also

decreases to very low levels by 24 h PF in the midgut of

mosquitoes fed on an uninfected mouse (Fig. 1F; C = control)

and is induced in response to Plasmodium infection (Fig. 1F;

I = infected).

Immunofluorescence staining and confocal imaging revealed

that AgESP is highly expressed in sugar-fed midguts (Fig. 2A).

The protein is localized in the luminal side of the cell (Fig. 2A,

shown in green) immediately underneath the microvilli (Fig. 2A).

AgESP has a similar distribution in midgut cells 24 h PF on a

healthy uninfected mouse, but the expression level is much lower

than in sugar-fed females (Fig. 2B). AgESP protein expression is

highly induced in epithelial cells invaded by Plasmodium ookinetes

that have been damaged and are in the process of budding-off

Figure 1. AgESP gene structure and expression. (A) Diagram of
AgESP cDNA with exons shown in blue and the intron in orange. The
size of each region is indicated in base pairs (bp). (B) Deduced amino
acid sequence of AgESP protein showing the predicted signal peptide
(light blue), the pro-peptide (pink), and the amino acids comprising the
catalytic triad (H, D, and S; in beige). (C) Tissue-specific expression of
AgESP mRNA in hemocytes (Hc), body wall (Bw), midgut (Mg), and
salivary glands (Sg) of 5-day-old adult females. (D) AgESP mRNA levels
in midguts of female mosquitoes fed on a healthy mouse (Ctl, control;
grey bars) and Plasmodium berghei-infected (Inf; red bars) at different
times post feeding (PF). (E) AgESP mRNA levels in midguts of
mosquitoes fed on a healthy mouse (Ctl, control; grey bars) or infected
with P. berghei (I, infected; red bars) ANKA 2.34 wild-type and CTRP–

knockout parasites 24 h PF. The unpaired two-tailed t-test was used to
compare the different experimental groups (*, P , 0.05; **, P , 0.01;
***, P , 0.001). (F) AgESP protein expression in midguts from sugar-fed
(SF) females or 24 h after feeding on healthy (C, control) or P. berghei-
infected (I) blood. All expression analysis was confirmed in 2–3
independent biological replicates.
doi:10.1371/journal.pone.0035210.g001

AgESP Mediates Midgut and Salivary Gland Invasion
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from the midgut (Fig. 2, C and D). In cells undergoing apoptosis,

AgESP expression is no longer limited to the luminal side of the

cell but is expressed throughout the cell cytoplasm (Fig. 2, C and

D).

AgESP is Required for Ookinete Invasion and Regulates
Gelsolin Expression in the Midgut

AgESP mRNA and protein expression was efficiently silenced

by dsRNA injection (Fig. 3, A and B). AgESP silencing decreased

the median number of oocysts present 7 days PF by 6-fold

(P , 0.006) and the prevalence of infection from 85 to 65% (x2;

P , 0.001) (Fig. 3C).

As previously reported, expression of the serine protease

inhibitor serpin 6 (SRPN6) is very low in uninfected midguts but

is highly induced in response to ookinete invasion (Fig. 3D),

making SRPN6 a sensitive molecular marker of cell invasion [16].

AgESP silencing reduced SRPN6 expression in Plasmodium-

infected midguts 24 h PF by 70% (Fig. 3E), suggesting a reduction

in ookinete midgut invasion.

To confirm that AgESP is required for ookinete midgut

invasion, we determined the effect of AgESP silencing on the

number of ookinetes present 28 h PF. The decrease in infection

was already apparent (P , 0.0003) at this earlier time point, soon

after most ookinetes have emerged from the midgut (Fig. 3F).

Confocal microscopy revealed that although fewer ookinetes

invaded the midgut of AgESP-silenced females, the parasites were

intact and there was no evidence of ookinete fragmentation

(Fig. 3G). AgESP was also silenced in the An. gambiae refractory (R)

L35 strain, which melanizes parasites in the ookinete-to-oocyst

transition as they emerge from the midgut and come in contact

with the hemolymph [17]. AgESP silencing also reduced the

numbers of parasites that invade the midgut in refractory females

(Fig. 3H; P , 0.0001). All parasites were melanized in both the

dsLacZ and dsAgESP-injected groups, indicating that AgESP does

not participate in melanotic encapsulation. Together, these

findings indicate that AgESP is required for P. berghei ookinetes

to invade the midgut.

Ookinetes are known to interact directly with the cytoplasm of

epithelial cells, because they do not form a parasitophorous vacuole

as they traverse the midgut [3,18]. We investigated whether AgESP

could mediate interactions between Plasmodium ookinetes and the

cytoskeleton of midgut epithelium cells. The effect of silencing

AgESP on the expression of four genes–gelsolin, CP, ciboulot, and

WASP–known to affect P. berghei infection in An. gambiae [7] was

evaluated. AgESP silencing reduced gelsolin mRNA levels by up to

95% (47–95% in three independent experiments) in Plasmodium-

infected midguts 24 h PF (Fig. 3I) but did not affect CP, ciboulot, or

WASP expression. Gelsolin is an actin-binding protein that can

cleave and cap the barbed ends of actin filaments [19]. Gelsolin [7]

and AgESP (Fig. 3, C and F–H) silencing both reduce P. berghei

infection, suggesting that AgESP may modulate cytoskeleton

dynamics by regulating gelsolin expression.

AgESP expression was also induced in the midguts of female

mosquitoes infected with P. falciparum 12 h PF (Fig. 4A), and

AgESP silencing reduced both the intensity (Fig. 4B; P , 0.0006)

and the prevalence of infection with this human malaria parasite

from 97% to 83% (x2; P , 0.001) (Fig. 4B). SRPN6 expression is

also induced in response to P. falciparum infection (Fig. 4C), and

AgESP silencing (Fig. 4D, left panel) greatly reduces SRPN6

expression (Fig. 4D, right panel) (P , 0.01), indicating that AgESP

also mediates P. falciparum midgut invasion.

AgESP is Required for SG Invasion by Sporozoites
Ookinetes invade the midgut through the luminal side of the

cell and presumably interact with AgESP protein present in the

submicrovillar region during the invasion process. In contrast,

sporozoites invade the SG epithelium through the basal side of

the cell. The subcellular localization of AgESP in the SG was

determined by immunofluorescence microscopy. In the SGs of

adult females, AgESP is expressed in the distal region of the

lateral lobes and medial lobes–the regions of the gland that are

invaded by Plasmodium sporozoites–but cannot be detected in the

proximal lobes (Fig. 5A). The staining is stronger in the medial

lobes than in the lateral lobes (Fig. 5A). AgESP is expressed on

the basal side of the SG (Fig. 5, B and C). Interestingly, this is

the surface of the SG that sporozoites interact with during

invasion. Single confocal sections indicate that, in the distal

lateral lobes, AgESP is expressed on the basal side of the

epithelial cells lining the secretory cavities (Fig. 5D). In the distal

medial lobes, AgESP staining is strong on the basal side, but the

protein is also present in the cell cytoplasm of the cells that

surround the secretory cavities (Fig. 5, B and E, cytoplasmic

staining is indicated by the arrowheads). No significant changes

in the actin cytoskeleton were observed in SGs infected with

sporozoites at 18 days post infection (Fig. 5F), and AgESP had a

similar localization in infected as in uninfected glands (Fig. 5G).

The only difference was the presence of AgESP aggregates in the

infected glands (Fig. 5G, arrowheads), which are not observed in

Figure 2. AgESP immunolocalization and expression in mid-
guts infected with Plasmodium berghei. AgESP protein expression
in midguts from (A) sugar-fed females or (B) 24 h post-feeding (PF) on
healthy mouse. Nucleus (n), microvilli (mv), Basal lamina (mu). AgESP
protein (green), actin (red), and nucleus (blue). (C, D) Immunofluores-
cence staining of P. berghei-infected midguts 28 h PF. AgESP protein
(green), Pbs28 on the ookinete surface (red), and nucleus (blue). Top
views are shown in the upper panels and the corresponding side views
in the lower panels.
doi:10.1371/journal.pone.0035210.g002

AgESP Mediates Midgut and Salivary Gland Invasion
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uninfected controls (Fig. 5, D and E). The AgESP aggregates in

the infected salivary glands probably represent remnants of the

invasion vesicles, suggesting that AgESP is internalized when

sporozoites invade the cells.

The potential role of AgESP in sporozoite SG invasion was

investigated. SG infection with P. berghei (Fig. 6A) or P. falciparum

(Fig. S1) sporozoites induced expression of AgESP mRNA 18

days PF. AgESP SG expression was efficiently silenced by

injecting mosquitoes with dsRNA 14 days after they were

infected with P. berghei, reducing endogenous mRNA levels 4

days after dsRNA injection by 95% (Fig. 6B). AgESP silencing

significantly reduced the number P. berghei sporozoites present in

Figure 3. Effect of AgESP silencing on Plasmodium berghei
infection. AgESP mRNA (A) and protein (B) silencing in the mosquito
midgut by systemic dsRNA injection. (C) Effect of AgESP silencing on
the number of P. berghei oocysts present in the midgut 7 days post
infection. (D) Effect of P. berghei infection on SRPN6 expression. SRPN6
mRNA levels in midguts of mosquitoes fed on a healthy mouse
(C, control; grey bar) or a P. berghei-infected mouse (I, infected; red bar).
(E) Effect of AgESP silencing on expression of AgESP (blue bars) or
SRPN6 (red bars) 24 h after ingestion of a Plasmodium-infected blood
meal. (F) A significant reduction in number of parasites that invaded
mosquito midgut was already observed in AgESP-silenced mosquitoes
28 h post feeding (PF). (G) Immunostaining of the ookinete surface with
anti-Pb28 antibodies (red) and nuclear staining with DAPI (blue). There
are fewer ookinetes in AgESP-silenced midguts, but no evidence of
parasite fragmentation was observed. (H) Effect of AgESP silencing in
the refractory Anopheles gambiae L35 strain on the number of
melanized parasites (black dots). Each dot represents the number of
parasites on an individual midgut. Live parasites are shown in green and
melanized parasites in black. The red line indicates the median.
Distributions were compared using the Mann-Whitney test. (I) Effect of
silencing AgESP (blue bars) on the expression of gelsolin, Ciboulot,
Wiskott-Aldrich syndrome protein (WASP), and F-actin capping protein

(CP) 24 h PF on a P. berghei-infected mouse. The unpaired two-tailed t-
test was used to compare the different experimental groups (*, P , 0.05;
**, P , 0.01; ***, P , 0.001). All expression analysis was confirmed in 2–
3 independent biological replicates. Infection phenotypes were con-
firmed in 2–3 independent experiments.
doi:10.1371/journal.pone.0035210.g003

Figure 4. Effect of AgESP silencing on Plasmodium falciparum
midgut infections. (A) AgESP mRNA levels in midguts from
uninfected (Ctl, control; grey bars) and P. falciparum (3D7)-infected
(Inf, infected; red bars) mosquitoes at different times post feeding (PF).
(B) Effect of AgESP silencing on the number of P. falciparum (3D7)
oocysts present 7 days PF. Each orange dot represents the number of
live oocysts in an individual midgut; the black (–) line indicates the
median. Distributions were compared using the Mann-Whitney test.
(C) Effect of P. falciparum infection on SRPN6 expression. SRPN6 mRNA
levels 12 h PF in midguts of mosquitoes fed uninfected blood
(C, control; grey bars) or a P. falciparum gametocyte culture
(I, infected; red bars). (D) Effect of AgESP silencing on midgut expression
of AgESP (blue bars) or SRPN6 (red bars) in P. falciparum-infected female
mosquitoes 18 h PF. All expression analysis was confirmed in 2–3
independent biological replicates. Infection phenotypes were con-
firmed in 2–3 independent experiments.
doi:10.1371/journal.pone.0035210.g004

AgESP Mediates Midgut and Salivary Gland Invasion
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the SG 21 days PF (P , 0.01) (Fig. 6C) but did not affect gelsolin

expression (Fig. S2).

Discussion

AgESP is constitutively expressed in the mosquito midgut and is

localized in the submicrovillar region of epithelial cells, an area that

ookinetes interact with during invasion. This protease is critical for

Plasmodium midgut invasion, as silencing AgESP greatly reduces

P. berghei and P. falciparum infection in An. gambiae. Transcriptional

analysis of the responses of An. gambiae midgut to P. berghei infection

[7] revealed that the most noticeable class of genes induced in

response to ookinete invasion were those that modulate the

architecture of the actin cytoskeleton. Silencing either gelsolin [7]

or AgESP (Fig. 3C) results in a similar phenotype in which the

intensity and prevalence of Plasmodium infection is greatly reduced.

These observations suggest that the critical role of AgESP during

ookinete invasion may be through induction of gelsolin expression,

as AgESP silencing greatly reduces gelsolin expression (Fig. 3I)

without affecting the expression of other genes thought to be

involved in midgut cytoskeletal modifications in response parasite

invasion, such as CP, Ciboulot or WASP.

The kinetics of AgESP induction in response to Plasmodium

infection is different between P. berghei and P. falciparum-infected

midguts. In P. berghei AgESP expression is induced at 24 h PF. This

transcriptional response requires midgut invasion and SRPN6

expression, a sensitive marker of cell invasion, is also induced at

this time. However, the induction of AgESP and SRPN6

expression is observed much earlier (12 h PF) in P. falciparum-

infected midguts, suggesting that at least a few P. falciparum

ookinetes may begin to invade the midgut earlier than previously

thought. It is also possible that there is a long pre-invasion

interaction of P. falciparum parasites with the midgut surface that

triggers expression of these markers.

Apoptotic responses also trigger major rearrangements in the

actin cytoskeleton [19]. For example, in vertebrates, gelsolin is

cleaved by caspase-3, and microinjection of the cleaved gelsolin

fragment that contains the actin-severing activity triggers rapid

depolymerization of the actin cytoskeleton [20]. AgESP protein

expression is low 24 h PF in the midgut of mosquitoes fed on a

healthy mouse (Fig. 2, B and D), and expression is highly induced

in response to Plasmodium infection (Fig. 2, B–F). This induction

requires cell invasion, as it is not triggered by CTRP– P. berghei

parasites, which form ookinetes that do no invade the midgut

(Fig. 2C). Furthermore, induction of AgESP expression in the

midgut of P. berghei-infected females peaks at 32 h PF (Fig. 2C), a

time when many invaded cells are undergoing apoptosis and

Figure 5. AgESP immunolocalization in Anopheles gambiae
salivary glands (SGs). (A) AgESP is expressed in the distal region of
the lateral lobes (ll) and medial lobes (ml), with a stronger staining in
the medial lobe. AgESP protein (green) in the left panel and actin (red)
in the right panel. (B, C) AgESP protein is expressed on the basal side of
the distal lobes of the SG lobes. (D) In the lateral lobes, AgESP is only
present on the basal surface of the epithelial cells lining the secretory
cavities (SC). (E) In the medial lobes, AgESP is also present in the
cytoplasm of epithelial cells as indicated by the white arrowheads in (B)
and (E). (F) Actin staining in red and sporozoites, GFP in green, in P.
berghei-infected SGs 18 days post feeding (PF). (G) Localization of ESP in
red and sporozoites, GFP in green, in P. berghei-infected SGs (18 days
PF). White arrowheads indicate the presence of ESP aggregates in
infected SGs.
doi:10.1371/journal.pone.0035210.g005

Figure 6. AgESP expression and effect of silencing on
Plasmodium berghei salivary gland (SG) infection. (A) AgESP
mRNA levels in SGs of mosquitoes fed on a healthy mouse (C, control;
grey bars) or a P. berghei-infected mouse (I, infected; red bars) 18 days
post feeding (PF). (B) Effect of AgESP dsRNA injection on AgESP
expression (blue bars). Infected mosquitoes were injected with dsRNA
14 days PF, and mRNA levels were determined 4 days later. (C) Effect of
AgESP silencing on the number of P. berghei sporozoites present in the
SGs (black bars) 21 days PF. The unpaired two-tailed t-test was used to
compare the different experimental groups (**, P , 0.01; ***, P , 0.001).
All expression analysis was confirmed in 2–3 independent biological
replicates. Infection phenotypes were confirmed in 2–3 independent
experiments.
doi:10.1371/journal.pone.0035210.g006

AgESP Mediates Midgut and Salivary Gland Invasion
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AgESP protein is highly expressed in the cytoplasm of cells

undergoing apoptosis (Fig. 2, E and F). This suggests that, besides

its involvement in ookinete midgut invasion, AgESP probably has

a second function and may also mediate the apoptotic response

triggered by parasite invasion. Interestingly, the induction of

AgESP expression is more transient in P. falciparum-infected

midguts, as it is no longer observed between 24 and 48 h PF, a

time when invaded midgut cells are known to be undergoing

apoptosis [21]. This suggests that there may also be functional

differences in the apoptotic responses of midgut cells to invasion by

theses two parasite species.

SRPN6 is a well-studied marker of midgut [16] and salivary gland

[22] parasite invasion. Silencing SRPN6 does not affect AgESP

expression (data not shown), indicating that AgESP acts upstream of

SRPN6. The fact that silencing AgESP significantly reduces SRPN6

expression in the midgut as well as the salivary gland, indicates that

AgESP is required for SRPN6 to be induced. Although it is possible

that SRPN6 could act as a direct inhibitor of AgESP, we believe this

unlikely because silencing SRPN6 does not enhance P. berghei

infection in A. gambiae G3 females [22]. The effect of AgESP on

SRPN6 expression could be indirect, as SRPN6 is not expressed

constitutively in the midgut or salivary gland, and the lack of

invasion when AgESP is absent may prevent activation of the signals

that mediates the induction of SRPN6 by the parasite.

Immunofluorescence staining revealed that AgESP protein is

abundant on the luminal side of the mosquito midgut (Fig. 2, A

and B), while in the SGs, AgESP is present on the basal surface of

the distal lobes (Fig.5, B–E). AgESP is constitutively expressed in

high abundance in the distal lobes, unlike SRPN6 [22], which is

detected only at sites of sporozoite invasion in the lateral lobes.

Sporozoite SG invasion is asynchronous, taking place between 13

and 19 days post infection, and is facilitated by specific receptor-

ligand interactions [23]. AgESP silencing in SGs decreased the

number of sporozoites, indicating that this protease is also involved

in sporozoite SG invasion. Unlike midgut cells, each SG cell is

invaded by numerous sporozoites through the formation of

parasitophorous vacuoles [3]. An increase in the number of

microtubules in the basal region of infected cells has been

documented in transmission electron microscopy studies, but no

signs of apoptosis have been observed [24], probably due to the

‘‘gentler’’ mechanism of parasite invasion in the SG. The fact that

AgESP silencing does not affect gelsolin expression in the SG

suggests that this protease promotes sporozoite invasion through a

mechanism different from that in the midgut, probably not

involving changes in the cytoskeletal architecture mediated by the

induction of gelsolin expression.

Together, our findings indicate that AgESP is expressed on the

surface of the two epithelial barriers that Plasmodium parasites need

to cross to complete their life cycle in the mosquito. Plasmodium

parasites activate a cascade of events in mosquito epithelial cells to

traverse these organs, and AgESP is a major player in the

regulation of the invasion process. The recent development of a

synthetic homing endonuclease gene drive system in An. gambiae

[25] opens the possibility of spreading the disruption of genes such

as AgESP in natural populations. This strategy could result in

mosquitoes with reduced ability to transmit malaria because

Plasmodium parasites would no longer be able to invade the midgut

or the salivary glands efficiently.

Materials and Methods

Ethics Statement
Public Health Service Animal Welfare Assurance #A4149-01

guidelines were followed according to the National Institutes of

Health (NIH) Office of Animal Care and Use (OACU). These

studies were done according to the NIH animal study protocol

(ASP) approved by the NIH Animal Care and User Committee

(ACUC), with approval ID ASP-LMVR5.

Mosquito Rearing
An. gambiae (G3 strain) mosquitoes were raised at 27uC, 80%

humidity under a 12-h light/dark cycle and maintained on a 10%

Karo syrup solution during adult stages.

Synthesis of Double-stranded (ds) RNA
A 500-bp cDNA fragment from the AgESP cDNA was amplified

using the primers Fwd: 59-CTA ACCGCTGCTCACTGTCA-39

and Rev: 59-ACGAAGGACACCACACCAAT-39 and cloned into

the pCRHII-TOPOH vector (Invitrogen, Carlsbad, CA, USA). T7

promoters were introduced at both ends of this fragment using

vector primers M13 Fwd-59-CTCGAGTAATACGACTCACTA-

TAGGGC AGGAAACAGCTATGAC-39 and M13 Rev: 59-

CTCGAGTAATACGACTCACTATAGGGGCCAGTGTGA

TGGATATCTGC-39. The PCR product was used as template

for dsRNA synthesis using the MEGAscript RNAi kit following

the instructions of the manufacturer (Ambion, Austin, TX,

USA). The eluted dsRNA was further purified and concentrat-

ed to 3 mg/ml in sterile H2O using a Microcon YM-100 filter

(Millipore, Bedford, MA, USA). A similar strategy was used to

synthesize dsLacZ using primers: LacZ Fwd: 59-GAGTCA

GTGAGCGAGGAAGC-39 and LacZ Rev: 59-TATCCG

CTCACAATTCCACA-39. The pIISRPN6.3 plasmid contain-

ing two T7 promoters flanking the cloned SRPN6 fragment,

generously provided by Dr. Kristin Michel, was used as a

template to generate a PCR product using primers with T7

promoter regions; Fwd: 59-TAATACGACTCACTATAGGGG

GCAACGCTCACCGGCAAGATG-39 and Rev: 59-TAA-

TACGACTCACTATAGGGGGAGCGGCGCACTAA

ATAAATAACGAG-39. This product was used to synthesize

SRPN6 dsRNA using the same protocol described above.

Gene Silencing in An. Gambiae
To silence AgESP and SRPN6 midgut expression, 4- to 5-day-

old female mosquitoes were cold anesthetized, and 69 nl of 3 mg/

ml of dsRNA were injected into the thorax using a nano-injector

(Nanoject; Drummond Scientific, Broomall, PA, USA). The

control group was injected with dsLacZ. Mosquitoes were allowed

to recover for 36 h post injection (PI) and then fed on a mouse

infected with P. berghei or on a P. falciparum gametocyte culture

provided in an artificial membrane feeding system. Mosquitoes

were dissected 24 h PI to determine the effect of midgut AgESP

silencing on expression of various genes or at 8 days PI to

determine the infection level by counting oocysts. Silencing

validation was done using real-time PCR relative to controls

injected with dsLacZ as described below. To silence AgESP in the

SGs, infected mosquitoes (14 day PI) were separated into two

groups, cold anesthetized, and injected systemically with dsLacZ

and dsAgESP by intrathoracic injection. Silencing efficiency was

determined 2 to 3 days PI in pools of 10–14 SGs per treatment.

Recombinant AgESP Protein Expression and Antibody
Production

A 750-bp product of the coding region of AgESP was amplified

from midgut cDNA using the primers Fwd 5-9ATCGTTC-

CATTTCGTGAAGC-39 and Rev 59-TCATTA-

GAAATGGGTGGTGCGTA CAT-39, cloned into the pCRHT7/

NT-TOPOH expression vector (Invitrogen) that includes an N-

terminal His-tag, and transformed into the E. coli strain BL21(DE3)
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pLysS E. coli (Invitrogen). AgESP protein expression was induced by

adding 1 mM IPTG to the bacterial culture and harvesting the cells

4 h later. The recombinant AgESP protein was insoluble and

precipitated with the bacterial inclusion bodies. The protein was

purified under denaturing conditions by affinity chromatography on

a Ni-NTA resin following the manufacturer’s instructions (Qiagen,

Valencia, CA, USA) and was injected into rabbits to generate

polyclonalantibodiesatPrimmBiotech, Inc. (Cambridge,MA,USA)

using a standardized immunization protocol followed by the

company.

Western Blot Analysis
Midguts were dissected from sugar-fed females or from

mosquitoes fed on blood from a healthy or an infected mouse.

The blood meal was removed and the tissue homogenized in PBS

buffer containing protease inhibitors (complete protein inhibitor

cocktail tablets; Roche, Mannheim, Germany). Equal amounts of

protein (10 mg) from the different samples were loaded onto a

NuPAGEH Novex Bis-Tris Gel (Invitrogen) and subjected to SDS

electrophoresis under reducing conditions. Proteins were trans-

ferred to a nitrocellulose membrane (Invitrogen), which was

incubated with freshly prepared 1 mM levamisole (Sigma,

St. Louis, MO, USA) solution (in water) for 1 h to inhibit any

internal phosphatase activity. Membrane was washed and then

blocked with 5% BSA plus TBS-Tween (10 mM Tris-HCl,

150 mM NaCl, 0.05% Tween 20, pH7.6) at 4uC overnight. After

three washes with TBS-Tween of 10 min each, the membrane was

incubated with anti-AgESP rabbit antibody (1:300) in 3% BSA

plus TBS-Tween at 4uC for 3–4 h. Membranes were washed and

incubated for 2 h at room temperature with secondary anti-rabbit

alkaline phosphatase-conjugated antibody (1:7500) (CalBiochem,

San Diego, CA, USA). AgESP was detected using Western Blue

substrate for alkaline phosphatase (Promega Corporation, Madi-

son, WI, USA) following the manufacturer’s instructions.

P. Berghei GFP Infections
GFP P. berghei (ANKA 2.34 strain) was maintained by serial

passage in 3- to 4-week-old female BALB/c mice from frozen

stocks. Mouse parasitemias were determined using light micros-

copy by methanol fixation of air-dried blood smears and staining

with 10% Giemsa. Female mosquitoes (4–5 days old) were fed on

gametocytemic mice 2–3 days after blood inoculation from

infected donor mice when parasitemias were between 3–6% and

1–2 exflagellations/field. Midguts were dissected 7–8 days PI,

fixed in 4% paraformaldehyde solution, rinsed in 16PBS, and

mounted in VectaShield mounting medium (Vector Laboratories

Inc., Burlingame, CT, USA). Infection levels were established by

counting the number of live oocysts using fluorescent microscopy;

melanized parasites were detected using light microscopy. The

distribution of the number of parasites that infected individual

mosquitoes from the different experimental groups was compared

using the nonparametric Mann-Whitney statistical test. Infection

phenotypes were confirmed using 2 or 3 independent biological

replicates.

Infections with P. Falciparum 3D7 Strain
An. gambiae (G3) female mosquitoes were infected artificially by

membrane feeding with a P. falciparum gametocyte culture.

P. falciparum 3D7 strain was maintained in O+ human erythrocytes

using RPMI 1640 medium supplemented with 25 mM HEPES,

50 mg/l hypoxanthine, 25 mM NaHCO3, and 10% (v/v) heat-

inactivated type O+ human serum [26,27]. Gametocytogenesis

was induced as previously described [28]. Mature gametocyte

cultures (stages IV and V) 14–16 days old were used to feed

mosquitoes using warmed membrane feeders (37uC) for 30 min.

Oocyst intensities in infected mosquitoes were determined by

staining the dissected midguts in 0.1% mercurochrome solution

and counting oocysts under light microscope. Infection phenotypes

were confirmed using 2 or 3 independent biological replicates.

Sporozoite Quantification
SGs were dissected from pools of 10–14 dsLacZ control and

dsAgESP-silenced mosquitoes and homogenized in a total volume

of 100 ml of PBS using a mini glass tissue homogenizer (Kontes

Glass Co., Vineland, NJ, USA). Sporozoites were counted by light

microscopy using a hemocytometer with the method described by

Pinto et al. [17]. Infection phenotypes were confirmed using 2 or 3

independent biological replicates.

RNA Extraction and Real-time PCR
Midguts or SGs from pools of 10–12 mosquitoes were dissected

and placed in RNAlater. Total RNA was extracted using the

RNeasy kit (Qiagen), and cDNA was synthesized using the

QuantiTect reverse transcription kit (Qiagen) that includes a

genomic DNA removal step. Gene expression was assessed by

SYBR green quantitative real-time PCR (qPCR) (DyNAmo HS;

New England Biolabs, Beverly, MA, USA) in a Chromo4 system

(Bio-Rad, Hercules, CA, USA). PCR involved an initial

denaturation at 95uC for 15 min, 44 cycles of 10 sec at 94uC,

20 sec at 56uC, and 30 sec at 72uC. Fluorescence readings were

taken at 72uC after each cycle. A final extension at 72uC for 5 min

was completed before deriving a melting curve (70–95uC) to

determine the quality of the amplicon. All qPCR measurements

were made in duplicate. Relative quantitation results were

normalized with An. gambiae ribosomal protein S7 as internal

standard and analyzed by the 2–DDCt method [29]. The complete

set of genes screened with corresponding qPCR primers is listed in

Table S1. All expression analysis was confirmed in 2–3

independent biological replicates.

Midgut and SG Immunostaining and Confocal
Microscopic Analysis

Midguts were dissected from adult female mosquitoes fed on

sugar or 28 h after feeding them on healthy (C = control) or

Plasmodium-infected (I = infected) mice. The midgut contents were

removed, and the ME was fixed at room temperature in 4%

paraformaldehyde as previously described [5]. Midguts were

permeabilized and blocked by incubating with PBT (PBS with 1%

BSA and 0.1% Triton X-100) at room temperature. Samples were

incubated overnight at 4uC with anti-AgESP rabbit polyclonal

serum (1:300) (described above) or anti-PbS21 mouse mAb (1:300).

Midguts were washed three times with PBT, incubated for 3 h at

room temperature with the secondary antibody (1:300) (Alexa 488-

conjugated or Alexa 555-conjugated anti-mouse or anti-rabbit

antibodies; Molecular Probes; Invitrogen). After two washes in

PBT and one in PB (PBS with 1% BSA), midguts were incubated

with Alexa-488- or Alexa-555-labeled phalloidin (Molecular

Probes) (1:40 dilution in PB) for 20 min. SGs were dissected from

adult females fed on sugar or fed on mouse infected with GFP-P.

berghei at 18 days PI. SGs were stained using the same protocol and

antibodies described above (for midguts). Tissues were mounted in

VectaShield containing DAPI (Vector Laboratories, Inc.). Micros-

copy was performed using a Leica SP2 confocal microscope.

Experimental Description and Statistical Analysis
Each experiment in this study was performed as three or more

independent replicates. The unpaired two-tailed t-test was used to
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compare mRNA expression profiles in different experimental

groups. The median intensities of oocyst and ookinete distributions

were compared using the Mann-Whitney test.

Supporting Information

Figure S1 Effect of Plasmodium falciparum salivary
gland (SG ) infection on AgESP expression. AgESP mRNA

levels in SGs of mosquitoes fed on a healthy (C, control; grey bar) or

on a Plasmodium berghei-infected mouse (I, infected; red bar) 18 days

post feeding. The unpaired two-tailed t-test was used to compare the

different experimental groups (**, P , 0.01). All expression analysis

was confirmed in 2–3 independent biological replicates.

(TIF)

Figure S2 Effect of AgESP silencing on gelsolin expres-
sion in salivary glands (SGs). Effect of LacZ or AgESP

dsRNA injection on AgESP (blue bars) and gelsolin (red bars)

mRNA levels in SGs. Plasmodium berghei-infected mosquitoes were

injected with dsRNA 14 days post feeding, and the SGs were

collected 4 days later. The unpaired two-tailed t-test was used to

compare the different experimental groups (***, P , 0.001). All

expression analysis was confirmed in 2–3 independent biological

replicates.

(TIF)
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