
A Cross-Species Analysis of MicroRNAs in the Developing
Avian Face
Kara E. Powder1, Yuan-Chieh Ku1, Samantha A. Brugmann2, Rose A. Veile1, Nicole A. Renaud1,

Jill A. Helms3, Michael Lovett1*

1 Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America, 2 Division of Plastic Surgery, Division of Developmental

Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America, 3 Department of Plastic and Reconstructive Surgery, Stanford University,

Stanford, California, United States of America

Abstract

Higher vertebrates use similar genetic tools to derive very different facial features. This diversity is believed to occur through
temporal, spatial and species-specific changes in gene expression within cranial neural crest (NC) cells. These contribute to
the facial skeleton and contain species-specific information that drives morphological variation. A few signaling molecules
and transcription factors are known to play important roles in these processes, but little is known regarding the role of
micro-RNAs (miRNAs). We have identified and compared all miRNAs expressed in cranial NC cells from three avian species
(chicken, duck, and quail) before and after species-specific facial distinctions occur. We identified 170 differentially
expressed miRNAs. These include thirty-five novel chicken orthologs of previously described miRNAs, and six avian-specific
miRNAs. Five of these avian-specific miRNAs are conserved over 120 million years of avian evolution, from ratites to
galliforms, and their predicted target mRNAs include many components of Wnt signaling. Previous work indicates that
mRNA gene expression in NC cells is relatively static during stages when the beak acquires species-specific morphologies.
However, miRNA expression is remarkably dynamic within this timeframe, suggesting that the timing of specific
developmental transitions is altered in birds with different beak shapes. We evaluated one miRNA:mRNA target pair and
found that the cell cycle regulator p27KIP1 is a likely target of miR-222 in frontonasal NC cells, and that the timing of this
interaction correlates with the onset of phenotypic variation. Our comparative genomic approach is the first comprehensive
analysis of miRNAs in the developing facial primordial, and in species-specific facial development.
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Introduction

Vertebrates exhibit many species-specific morphological differ-

ences in craniofacial structures, particularly those derived from the

embryonic frontonasal prominence (FNP). In birds these differ-

ences are frequently dramatic and result from intense selective

pressure to inhabit specific environmental niches. One of the best

known examples of this is seen in Darwin’s finches [1]. The

evolutionary conservation of early vertebrate facial development,

coupled with the wide range of different adult beak shapes in birds,

has made them an ideal model system for exploring the genetic

differences that specify facial variation. In many cases these genetic

differences pinpoint genes that are also relevant to human

development and craniofacial disorders [2,3,4,5].

Despite differences in the final adult structures, vertebrate

embryos look remarkably similar at early stages of facial

development [3,6,7]. Facial structures then diverge through

changes in gene expression and in the delineation of discrete

regions of responsiveness in the facial primordia [2,3,6,8,9,10].

Vertebrates appear to use essentially the same genetic ‘‘tool box’’

to build facial structures [2,4,5,11,12], and differences in

morphology have been correlated with quantitative, temporal,

and/or spatial changes in gene expression [13,14].

NC cells give rise to all the major tissues and structures of the

vertebrate face [15,16,17], and in avians have been shown to

contain species-specific patterning information [18]. We previous-

ly determined that the frontonasal NC cells of the duck, chicken,

and quail are morphologically similar at one developmental stage

(Hamburger-Hamilton stage 20 [HH20]), but develop different

growth trajectories by HH25 [3,19]. These differences in growth

eventually give rise to the broad, flat bill of the duck versus the

narrow, deep beak of the chicken and quail. We and others have

shown that changes in the Calmodulin, TGF-beta/BMP, and Wnt

signaling pathways contribute to these morphological changes in

the adult bill shape [2,3,8,9,10,20]. By employing genomic

methods we previously showed [3] that the expression levels for

these pathways and most transcription factors (TFs) are established

prior to morphological differentiation. They appear to remain

relatively invariant within a given bird species during the critical

HH20-HH25 developmental window [3]. Thus, we hypothesized

that differential expression of post-transcriptional regulators, such

as miRNAs, may also affect morphological alterations of the FNP.

miRNAs have been implicated in a wide range of regulatory

roles in development and differentiation, including cellular

proliferation, migration, differentiation, apoptosis, and epithelial-
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mesenchymal transitions (all of which occur in the developing face)

[21,22,23]. Indeed, conditional knockout of the miRNA process-

ing gene Dicer in Wnt1-expressing tissues (which include the NC)

results in severe craniofacial malformations in mice due to nearly

complete ablation of all NC-derived facial bones [22,24,25,26,27].

NC cells migrate normally in these Dicer mutant animals,

demonstrating that miRNAs are probably necessary for other

processes such as neural crest survival, proliferation, and

differentiation during facial development [27]. One previous

study [28] described an analysis of some of the miRNAs expressed

in one area of the developing vertebrate face. Using microarrays,

70 miRNAs were detected in the developing mouse palate from

embryonic stages E12–E14. Many of these miRNAs were

developmentally regulated and potentially regulate mRNAs

involved in cell proliferation, differentiation, apoptosis, and other

processes necessary for normal facial development [28].

In the current study we used deep miRNA sequencing to

identify all miRNAs that are expressed in the avian FNP, which

gives rise to the upper bill in birds, and to the structures of the

upper face in humans. By employing genome-wide bioinformatic

approaches we identified 186 miRNAs expressed in frontonasal

NC cells of ducks, chickens, and quails. Thirty-five of these are

novel orthologs of previously described vertebrate miRNAs and six

are newly described avian-specific miRNAs. At least five of this

latter group are conserved within all avian species tested from

ratites (large flightless birds such as the ostrich) to chickens and

songbirds. The majority of the craniofacial miRNAs are

differentially expressed between the FNP NC in ducks, quails

and chickens. In marked contrast to our previous analyses of TF

mRNA gene expression in the FNP [3], we found large changes in

miRNA expression between stages when the developing beak is

acquiring species-specific morphology.

We also found that the expression of one differentially expressed

miRNA, miR-222, was inversely correlated with the protein

expression of its known target, p27KIP1, during morphological

differentiation of the FNP. During this same time period, steady

state levels of p27KIP1 mRNA did not change. p27KIP1 is a cell

cycle inhibitor that remains at lower levels in the duck, but is

increased in the chicken FNP. This is consistent with a model in

which p27KIP1 acts as a modulator of proliferation in NC cells, but

in the duck NC is down regulated by miR-222 leading to more

sustained cell proliferation.

Our unbiased genome-wide approach is the first analysis of

miRNAs in the developing facial primordia, the first comparative

investigation of the role of miRNAs in species-specific facial

development and the first description of species-specific miRNAs

conserved across all avian lineages.

Results

Next-Generation sequencing to detect miRNAs in the
frontonasal NC cells of chickens, ducks, and quails

To identify the miRNAs that are expressed in the cranial neural

crest we micro-dissected the FNP mesenchyme from 40 duck,

quail and chicken embryos at two stages of embryonic develop-

ment, HH20 and HH25 [3]. Our initial samples were exactly the

same RNA preparations employed in our previous study (3).

Unlike other facial prominences, FNP mesenchyme consists of a

pure population of neural crest cells, rather than a combination of

neural crest and mesoderm [29]. HH20 represents a stage at

which the facial morphologies of all three species are virtually

indistinguishable. By HH25 clear, species-specific morphological

differences have arisen [3]. Short RNAs were purified from these

cellular populations and analyzed by Next-Generation miRNA

sequencing (miRNA-seq) on the Illumina GAIIX platform.

Figure 1 illustrates the analysis pathway used to annotate the

resulting sequence reads.

Sequencing yielded between 3.10 and 10.89 million reads per

sample (after removing adapter reads) with 98.45% of reads

mapping to either the chicken genome or to known miRNA

orthologs (see below, Figure 1, Figure S1). Technical replicate

sequence runs had correlation coefficients of .95% (data not

shown). Sequence runs on second biological samples had

correlation coefficients of .80%.

The majority of miRNA reads (56.36%) could be clearly

identified as representing 122 previously annotated chicken

miRNAs (www.mirbase.org, version 16) [30]. However, the

computational annotation of chicken miRNAs is clearly incom-

plete. An additional 1.02% of reads mapped to 31 star (*) strands

of known chicken miRNAs for which there were no annotated star

activities in current databases (Figure 1 and Figure S1). Star

strands are usually found at lower steady state levels than their

partner strands, but many have been shown to be biologically

active and relevant [31,32]. These miRNAs are listed with the

suffix ‘‘ukstar’’ in Table S1 and Table S2 to indicate that the star

strand was previously unknown in the chicken, although in all 31

Figure 1. Schematic of analysis pipeline to annotate small RNA
reads from frontonasal neural crest cells. At the top are shown
representative images of embryonic facial images of the three avian
species at either HH stage 20 or 25. The area of dissection is shown in
red and is marked with a ‘‘f’’. The maxillary processes are marked by
‘‘mx’’ and the mandibular prominences by ‘‘mn’’.
doi:10.1371/journal.pone.0035111.g001
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cases star activity is annotated in other vertebrates. For simplicity,

in the text below we refer to all star strands with an asterisk (*)

irrespective of whether they are new or previously described.

The Gallus gallus genomic sequence (gga3 genome build) is not

yet gap-free and may be missing as much as 10% in gapped areas

[3,33,34]. This raises the possibility that additional miRNAs may

not be annotated in miRNA databases [30] or are contained

within the sequences that do not map back to the currently

available chicken genome. Therefore, we analyzed reads that did

not map to known chicken miRNAs to assess whether additional

orthologs to known human or zebrafinch miRNAs are present

within this set. Another 11.07% of the total reads had 100%

sequence identity to 29 human mature miRNAs and 2 zebrafinch

miRNAs (Figure 1 and Table S1). These miRNAs are listed in

Table S1 and Table S2 with the prefix ‘‘hsa’’ or ‘‘tgu’’ to indicate

they are newly described avian orthologs of known human or

zebrafinch miRNAs, respectively. We also searched the miRNA

sequences for candidate miRNAs that had slight sequence

divergence from the known human miRNAs by setting our search

algorithms to allow one or two base mismatches outside of the

miRNA seed sequence. This identified 4 additional miRNAs that

are novel orthologs of human miRNAs (Figure 1). Together these

only accounted for 0.09% of total reads. Of the 35 total predicted

novel orthologs, only 4 clearly aligned to the available chicken

genomic DNA sequence, suggesting that the majority of these

miRNAs are not annotated because they fall into gaps in the

current chicken genomic assembly. For example, miR-143 and

miR-143* have not previously been annotated in the chicken, but

we identified multiple reads that matched the human versions of

these miRNAs and confirmed expression of miR-143 in avians

using qRT-PCR (see below).

In total, 68.54% of sequence reads mapped to chicken, human,

or zebrafinch miRNAs (Figure 1 and Figure S1). Within the

remaining reads, 1.03% derive from degraded mRNA transcript,

6.71% map to repetitive sequence families, and 18.57% are tRNA,

rRNA, or snRNA sequences (Figure 1 and Figure S1). The

possibility cannot be discounted that additional data mining of the

remaining reads (5.16% of total reads) may yield novel miRNA

families.

Overall, by the various analyses and filtering steps described

above, we identified 186 mature miRNAs that are detectably

expressed in the frontonasal NC cells of the chicken, duck, and

quail at a normalized read count of .15 sequences per million

mapped reads (PMMR) in at least one sample (Table S1). The 15

PMMR threshold of detection was selected based on the lowest

read counts of miRNAs for which we could reproducibly verify

trends by qRT-PCR (see below).

Identification of avian-specific miRNAs
The studies above represent the first large-scale evaluation of

miRNAs in multiple avian species. Therefore, we assessed whether

any of the miRNAs that are detectably expressed in the

frontonasal NC of chickens, ducks, and quails might be specific

to the avian lineage. Birds and mammals shared a last common

ancestor ,310 million years ago [35], and the earliest divergences

within birds occurred nearly 120 million years ago (Figure 2) [36].

We compiled a list of six mature miRNAs, mapping to 5

miRNA hairpins, that are only annotated in chicken and

zebrafinch in miRBase (www.mirbase.org, version 16) [30], or

were identified in other miRNA deep sequencing projects [37,38].

These sequences are also detectable by sequence alignment

searches only in chicken and/or zebrafinch and, as determined

above, are expressed in the frontonasal neural crest of the chicken,

duck, and quail (Table 1) at relatively high levels. We used PCR to

confirm the lineage-specificity of these miRNAs, and found that

the hairpin precursors of five of these miRNAs are conserved

across, but specific to, the entire avian lineage (,118.6 million

years since last common ancestor) [36], from ratites to galliforms

and passerines (Figure 2). These are the first described examples of

validated avian-specific miRNAs and join several other examples

of miRNAs that have independently evolved within defined species

lineages [39,40,41,42,43].

As yet, there are no known functions for the five miRNAs that

are restricted to the avian lineage (Table 1). These miRNAs may

just be an evolutionary novelty, but they may also influence

Figure 2. Phylogeny and PCR analysis of avian-specific
miRNAs. The top part of this figure shows the phylogenetic tree of
the species that we analyzed with the divergence nodes on a scale of
millions of years (left). At the bottom are shown the results of gel
electrophoresis of PCR products from each genomic DNA for pre-miRNA
hairpin precursors for miR-1559, miR-2131, and miR-2954. Indicating
that they are conserved across, but are specific to, the avian lineage.
The hairpin precursor miR-100 is a positive control that is conserved
across all vertebrates examined. The primers only lane is a negative
control that lacks genomic DNA.
doi:10.1371/journal.pone.0035111.g002
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lineage-specific differences. To evaluate potential functionality of

these six putative avian-specific microRNAs, we identified

potential targets using TargetScan (http://www.targetscan.org/,

version 5.1). Many of these predicted targets encode members of

developmental pathways (e.g. Fgf, Tgfb, and Wnt signaling),

regulate body patterning (e.g. HOX genes), or influence chromatin

modifications (e.g. HDAC4) (Table 2, Table S7). Each predicted

mRNA target was further analyzed by ToppGene software

(http://toppgene.cchmc.org/) to identify enriched GO annota-

tions. A list of significantly enriched GO annotations for individual

avian specific miRNAs is shown in Table S4. These possible

miRNA:mRNA target relationships are attractive follow-up

candidates for investigating lineage-specific control of these

important developmental regulators.

Dramatic changes in miRNAs occur between
developmental stages

In our previous study of these same frontonasal NC samples we

measured changes in steady state mRNA levels for ,2,400 genes

involved in developmental signaling pathways and nearly all

known and predicted transcription factor genes. Although we

found many interesting gene expression differences between

species, gene expression was essentially unchanged between

HH20 and HH25 within a given species, suggesting that the gene

expression profile is established prior to morphological variation

[3]. In remarkable contrast to the relatively unchanged pattern of

mRNA expression, miRNA expression is dramatically different

between the two developmental stages. Of the 186 miRNAs that

were detectably expressed, 170 (91%) were differentially expressed

by at least 2-fold either between the three species or between the

two developmental stages, with fold changes as large as 74-fold

(Table S2). The vast majority (132 or 78%) of the 170 miRNAs

that were differentially expressed showed changes between the

developmental stages in one or more of the species. The specific

miRNAs, patterns and trends of miRNA expression are shown in

detail in Table S2 and Table S7 and the sections below summarize

these trends and relate specific miRNAs to their potential (and in

one case, tested) cellular functions.

miRNAs that regulate stemness, cellular differentiation
and epithelia-mesenchyme transitions are differentially
regulated between the two developmental stages in all
three species

Twelve miRNAs are down-regulated and seventeen are up-

regulated from HH20 to HH25 in all three bird species (Table S7).

The extent of these changes varies depending upon the particular

species. For example, miR-96 is down-regulated at HH25 by 1.81-

fold in duck, by 1.84-fold in quail and by 7.35-fold in chicken NC

cells. Knockdown of this particular miRNA in zebrafish has

previously been shown to result in abnormal cranial cartilage [44].

MiR-302b, miR-302b*, and miR-302c, which are the only

members of the 9-member miR-302 family that are detectable

at either stage, are down-regulated between 2.3- and 7.8-fold at

HH25 in all three species (Table S7). This miRNA family has been

previously associated with ‘‘stemness.’’ They are highly expressed

in embryonic stem cells, and when induced can reprogram somatic

cells into a pluripotent state [45,46].

Of the seventeen miRNAs that are expressed at higher levels at

the later stage of development (HH25) in the chicken, duck, and

quail (Table S7) four belong to the miR-30 family (miR-30a-3p,

miR-30a-5p, miR-30d*, and miR-30e*). These are up-regulated

by between 1.4- to 7.7-fold (Table S7). This family of miRNAs has

been previously implicated in promoting mesenchymal-to-epithe-

lial transitions (MET) [47,48]. While epithelial-to-mesenchymal

transitions (EMT) are crucial for neural crest migration [49] and

later events of facial development such as lip fusion [50], it is

unclear if MET or EMT is occurring in the HH20 to HH25

developmental window. Interestingly, EMT has also been

associated with stemness, while MET is associated with cellular

differentiation [51,52,53]. Thus, up-regulation of the miR-30

family might reflect an increase in cellular differentiation at HH25.

In agreement with this, let-7a, let-7a*, let-7c*, let-7d, let-7f, let-7g,

let-7i, and let-7k are up-regulated by 1.4- to 27.9-fold at HH25 in

all three species, while let-7c is up-regulated at HH25 only in

chicken and quail (Table S7). These miRNAs belong to the 19

member let-7 family of miRNAs, the expression of which has been

associated with cellular differentiation [54]. In all, 9 of 10

detectable members of the let-7 family are up-regulated in chicken

and quail NC by HH25 (Table S7).

Along with let-7c, six additional miRNAs are up-regulated at

HH25 only in chicken and quail, but not in duck NC cells. These

include miR-30c-2*, miR-129-5p which targets the stem cell

regulator SOX4 [55,56], the differentiation-promoting miR-137

[57], and the let-7-related miR-100* and miR-125b-2* [58].

A final set of seven miRNAs are only up-regulated in the duck

NC compared to chicken and quail after morphological variations

are evident at HH25 (Table S7). For example, miR-222 is

expressed at similar levels in the duck, chicken, and quail at

HH20. However, by HH25, it is down-regulated 1.8-fold in the

beaked birds, but remains more highly expressed in duck (Table

S7). This miRNA has been shown to down-regulate the cell cycle

regulator p27KIP1 in a number of systems, including chicken cell

lines [59,60] (see below for more on this).

miRNAs that regulate bone formation and Wnt signaling
are differentially regulated in the duck compared to the
chicken and quail

Twenty-one miRNAs are differentially regulated in the duck

compared to chicken and quail at both developmental stages. Six

miRNAs with unrelated or unknown functions are expressed at

lower levels in NC cells from the flat-billed duck compared to the

conical-beaked chicken and quail (Table S7). Fifteen miRNAs are

more highly expressed in duck NC cells at both stages (Table S7),

including the miR-23a-27a-24-2 cluster, which is negatively

regulated by the osteoblast transcription factor RUNX2 [61].

Expression of each of these miRNAs suppresses bone formation

and directly down-regulates SATB2 [61], which has been

previously implicated in facial development and associated with

morphological variation in the avian beak [3,62].

Table 1. Mature miRNAs that are specific to the avian lineage.

mature miRNA
miRBase
Accession miRNA sequence

gga-miR-1451 MIMAT0007324 UCGCACAGGAGCAAGUUACCGC

gga-miR-1559 MIMAT0007416 UUCGAUGCUUGUAUGCUACUCC

gga-miR-2131 MIMAT0011207 AUGCAGAAGUGCACGGAAACAGC

gga-miR-2131* N/A CUGUUACUGUUCUUCUGAUG

gga-miR-2954 MIMAT0014448 CAUCCCCAUUCCACUCCUAGCA

gga-miR-2954* MIMAT0014623 GCUGAGAGGGCUUGGGGAGAGGA

The name, accession number (where available) and mature miR sequence are
shown.
doi:10.1371/journal.pone.0035111.t001

Cross-Species miRNA Analysis in the Avian Face

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e35111



Additionally, miR-200a, miR-200b, miR-203, miR-27a, and

miR-27b, all of which interact with Wnt signaling components

[63,64,65], are expressed at 1.5- to 58.9-fold higher levels in duck

verses the other species (Table S7). Among this group, miR-200a

and miR-200b are remarkable in both showing greater than 50-

fold changes in expression between duck and chicken at HH25.

We have previously shown that the Wnt pathway regulates

regional growth in facial structures and its activation correlates

with differences in beak morphology [3]. MiR-200a and 200b

have also been shown to regulate MET via direct repression of

ZEB1 and ZEB2 [66,67], though, as stated above, it is at present

unclear if MET is occurring in the HH20 to HH25 developmental

window.

In situ hybridization and qRT-PCR validate the
sequencing data

We confirmed miRNA trends from the sequencing data both in

vitro and in vivo. First, we conducted quantitative real-time

polymerase chain reaction (qRT-PCR) on mature miRNAs using

a second biological sample of NC cells from HH20 and HH25

ducks and chickens. For nine of ten miRNAs examined, qRT-

PCR confirmed expression trends identified by Next-Generation

sequencing (Table S1 and Table S5). One miRNA, gga-miR-215,

showed a slight discrepancy between qRT-PCR and miRNA-seq

data. By sequencing, this miRNA is expressed at higher levels in

chicken than duck NC cells at both developmental stages (Table

S1). However, by qRT-PCR we only confirmed differential

expression at HH20 (Table S5). This miRNA has lower read

numbers than most of the other miRNAs confirmed by qRT-PCR,

which may account for this discrepancy. Furthermore, absolute

changes in miRNA expression did not always agree between

sequence data and qRT-PCR as the only commercially available

primers for miRNA qRT-PCR are designed from human, not

chicken, orthologs. Some sequence differences exist between the

miRNAs across that evolutionary period—approximately 310

million years [35]—and this may account for the differences

observed between the sequencing and RT-PCR data.

For one of the differentially expressed miRNAs, miR-222, we

performed RNA in situ to assess the approximate expression level

and pattern of the mature miRNA in FNPs from duck and chicken

(Figure 3). In both duck and chicken, this miRNA is expressed

throughout the facial prominences, but most robustly in the

maxillary prominences and around the nasal pits. Though they

have similar spatial patterns, miR-222 is expressed at higher levels

in the duck, especially within the mandibular prominence, in

agreement with our sequencing data (Figure 3).

Expression of miR-222 correlates with changes in the cell
cycle regulator p27KIP1 but not with its steady state
mRNA levels

Previous studies in multiple species, including chicken, have

identified the cell cycle regulator p27KIP1 as one target of miR-222

[59,60]. miR-222 is expressed at similar levels in the chicken,

duck, and quail at HH20. However, by HH25, miR-222 has been

down-regulated 1.8-fold in both chicken and quail, but it remains

at high levels in duck neural crest cells (Table S7). We sought to

determine whether miR-222 may be altering p27 levels in the

Table 2. Selected predicted targets of miRNAs that are limited to the avian lineage.

miRNA Total targets predicted Predicted target Gene description

gga-miR-1451 8 HOXA10 homeobox A10

ONECUT2 one cut homeobox 2

gga-miR-1559 2 HDAC4 histone deacetylase 4

gga-miR-2131 142 ACVR2A activin A receptor, type IIA

ACVR2B activin A receptor, type IIB

CALM2 calmodulin 2

EN2 engrailed homeobox 2

FGF9 fibroblast growth factor 9

FZD10 frizzled homolog 10

HMGA2 high mobility group AT-hook 2

ONECUT2 one cut homeobox 2

SMAD2 SMAD family member 2

TWIST1 twist homolog 1

ZEB1 zinc finger E-box binding homeobox 2

ZEB2 zinc finger E-box binding homeobox 2

gga-miR-2131* 44 CALM2 calmodulin 2

LRP6 low density lipoprotein receptor-related protein 6

gga-miR-2954 20 HMGB1 high-mobility group box 1

gga-miR-2954* 54 CTNNB1 beta-catenin

LRP6 low density lipoprotein receptor-related protein 6

NUP153 nucleoporin 153 kDa

ONECUT2 one cut homeobox 2

Targets were predicted using TargetScan (http://www.targetscan.org/) and the seed sequence (nt 2–8) for each of the avian-specific miRNAs. For a complete list of
predicted targets see Table S3.
doi:10.1371/journal.pone.0035111.t002
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developing face by measuring levels of p27 protein across a time

course using western blots in chicken and duck FNPs from HH17,

when NC cell have completed migration into the facial

prominences, to HH31, when the adult beak is taking shape

[19,68].

From HH17 to HH23, when the duck and chicken embryos are

morphologically similar [3], p27 protein is present at similar levels

(Figure 4A). However, once the chicken and duck morphologically

diverge at HH25, we observed changes in the levels of p27 protein.

At HH25, the levels of p27 increase in the chicken but remain

relatively constant in duck FNP (Figure 4A). This correlates with

the observed increase in miR-222 in the duck (above and Figure 3).

The levels of p27 remain at higher levels in chicken FNP through

to the end of the time course at HH31.

The increased levels of p27 protein we observed are not

accounted for by a corresponding increase in p27KIP1 mRNA

levels. By RT-PCR, steady state levels of p27KIP1 transcripts

remain relatively constant from HH17 to HH27 in both chicken

and duck FNPs (Figure 4B), indicating that post-transcriptional

regulation probably accounts for the observed decrease in p27

protein (Figure 4A) and adding another piece of evidence that

changes in miR-222 may account for changes in p27 protein.

Discussion

MiRNAs have an interesting evolutionary history. While the

transcription factor and signaling pathway spectrums are largely

conserved from sponges to humans [69,70], miRNAs have been

continuously added during the metazoan lineage

[71,72,73,74,75,76]. The rate of acquisition of new miRNAs has

increased at key periods in evolution including the advent of

bilaterians, vertebrates, eutherians, and primates [72,73,76]. This

has lead to the hypothesis that miRNA innovation might have

contributed to increases in the morphological complexity of

metazoans [72,75,76,77]. Given that this study is the first

investigation of miRNAs in multiple avian species, we began by

asking whether any of the 186 miRNAs that we detected in the

frontonasal neural crest of the chicken, duck, and quail might be

specific to the avian lineage. We identified six mature miRNAs

that appear to be specific to the avian lineage which has been

evolving for nearly 120 million years (Table 1) [36]. We used PCR

to confirm that five of these (miR-1559, miR-2131, miR-2131*,

miR-2954, and miR-2954*) are conserved across, but are specific

to, the entire avian lineage. These are the first described examples

of validated avian-specific miRNAs and join several other

examples of miRNAs that have independently evolved within

defined vertebrate lineages [39,40,41,42,43]. However, for most

species-specific miRNAs it still remains to be determined whether

they are an evolutionary dead-ends or have functional roles in

development.

Intriguingly, miRNAs might also have a role in species-specific

diversification. While humans [78] and mice [79] show negative

selection against mutations that destroy conserved miRNA binding

sites, the morphologically divergent cichlids of Lake Malawi have

increased levels of polymorphism in predicted miRNA binding

sites within 39 UTRs [80]. However, the divergence times within

these lineages varies drastically—approximately 370,000 years for

humans [81], 23 million years for mice [82], and 1–2 million years

for cichlids [83].

In remarkable contrast to the relatively unchanged pattern of

mRNA expression we previously observed in these neural crest

samples [3], miRNA expression is dramatically different between

developmental stages before (HH20) and after (HH25) morpho-

logical variation in the beak is evident. The patterns of

differentially expressed miRNAs (Table S7) are consistent with

the following model (summarized in Figure 5). At HH20, both the

chicken and the duck have a multipotent, proliferative NC

population that expresses high levels of the miR-302 family as well

as high levels of miR-222 (Table S7). These miRNAs promote an

undifferentiated fate, in the case of miR-302 [45,84], and

proliferation via repression of p27KIP1, in the case of miR-222

[59,60]. By HH25, chicken NC cells have adopted molecular

signatures of differentiation. At the same time as the miR-302

family and miR-222 are down-regulated, eleven miRNAs related

to the let-7 family are up-regulated, as well as 2 additional

miRNAs associated with cellular differentiation (Table S7) [54].

By HH26, chicken facial primordia express molecular markers of

the bones and skeleton that will eventually form the adult face

[85].

Duck NC cells at HH25 have down-regulated the miR-302

family and up-regulated some of the miRNAs associated with

cellular differentiation (i.e. the let-7 family), though not as many as

chicken NC (Table S7). However, in contrast to the chicken, duck

NC still express high levels of miR-222, and this may act to

maintain a higher proliferation rate via continued repression of

p27KIP1 [59,60]. The duck also has higher levels of the miR-23a-

27a-24-2 cluster (Table S7). Each of these miRNAs can

independently repress the bone-promoting transcription factor

SATB2 [61,86], and thus the duck may also have a delay in bone

formation, as NC cells continue to proliferate.

Taken together, these miRNA changes, including differential

expression of let-7, miR-302, and miR-30 families (Table S7),

indicate that the HH20 to HH25 developmental window may be a

critical transition phase in which multipotent NC cells begin to

differentiate to form the various tissues of the face. In addition,

given that a number of miRNAs related to let-7 and cellular

differentiation are only up-regulated in the chicken and quail at

HH25 (Table S7), the timing of this transition may be slightly

delayed in the morphologically different duck, perhaps allowing a

more prolonged period of proliferation. This is consistent with

current theories that differential regions and levels of proliferation

can influence the depth, width, and curvature of the beak [9,10]

and that miRNAs function during the transitions between different

cellular states [87].

Figure 3. in situs validate sequencing data for gga-miR-222 in
HH25 chickens and ducks. RNA in situ hybdridizations are shown to
HH Stage 25 embryos (cf Figure 1). Upper facial images are shown for
duck and chicken comapred to a scrambled control. The lower part of
each figure shows the developing mandibular processes. Only the FNP
area in the center of each image was the target of dissections (cf
Figure 1).
doi:10.1371/journal.pone.0035111.g003
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We evaluated one miRNA:mRNA target pair. We speculated

that differences in miR-222 levels in the duck versus chicken at

HH25 could regulate morphological differences in the beak via its

target, the cell cycle regulator p27KIP1 [59,60]. Our hypothesis was

that higher levels of miR-222 in HH25 duck, and the resulting

decrease of p27 protein, would result in an increased proliferation

level. On the other hand, lower miR-222 levels in the beaked

chicken and quail could lead to a release of p27 repression and a

consequent decrease in proliferation. This model is in agreement

with previous analyses that identified higher proliferation levels in

HH26-HH31 duck bills compared to chicken beaks [9,10]. Our

analyses of p27 protein and mRNA levels agree with this model: p27

protein is expressed at similar levels in the FNP of the chicken and

duck while they are morphologically similar. By HH25, when

species-specific morphologies are evident, p27 protein levels are

dramatically different in the chicken and duck, in patterns consistent

with alterations in miR-222 expression levels. These protein

changes are not associated with changes in p27 mRNA, indicating

that post-transcriptional mechanisms (such as miRNA inhibition)

are important for proper regulation of this cell cycle regulator.

While it is clear that changes in mRNA levels of the BMP/

TGF-beta, calmodulin, and Wnt signaling pathways influence

beak morphology [2,3,8,9,10,20], and it is very likely that many

more mRNAs differ across this developmental window, miRNAs

add another layer to the regulation of species-specific morpho-

genesis. Our study provides the first insights into which specific

miRNAs play roles in facial morphogenesis and the developmental

processes that they may regulate.

Materials and Methods

miRNA isolation, sequencing, and analysis
Tissue and total RNA were isolated from the frontonasal

mesenchyme of ducks, chickens and quails as previously described

Figure 4. p27KIP1 protein, but not mRNA, is differential between birds at the onset of morphological divergence. (A) Western blot
analysis of p27 protein (lower doublet) relative to alpha-tubulin loading control (upper band) in a time course of microdissected samples from HH17-
HH31 chicken and duck frontonasal prominences. (B) Levels of p27KIP1 mRNA transcripts relative to GAPDH control in chicken and duck frontonasal
prominences, as measured by qRT-PCR.
doi:10.1371/journal.pone.0035111.g004
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[3] for 40 or 5 embryos for the first and second biological samples,

respectively. Fertilized duck (Anas platyrhynchos domestica), chicken

(Gallus gallus domesticus), and quail (Coturnix japonica) eggs were

obtained through AA Farms (Westminster, CA, USA) and

incubated at 37uC until embryos reached stage 20 or stage 25

according to Hamburger-Hamilton criteria [19]. The FNP was

dissected at both developmental stages by collecting the tissue

rostral to the eyes and between the nasal pits. Mesenchyme—

which, in the FNP, is a pure population of neural crest cells [29]—

was isolated by incubating FNPs in 1.26 U dispase, and removing

surface ectoderm and forebrain neuroectoderm using sharpened

tungsten needles. Samples designated as ‘‘first biological sample’’

were derived from exactly the same total RNA samples previously

analyzed for transcription factor gene expression [3]. Adapters

were ligated to mature miRNAs using the Illumina Small RNA

Sample Prep Kit per manufacturer’s instructions (v1.5 sRNA 39

Adapter). RNA species from 20–40 bp were size selected using a

6% Novex TBE Page gel (Invitrogen) and sequenced on a GAIIX

platform (Illumina). Reads were mapped to known chicken and

human mature miRNAs, allowing zero to two mismatches, using

the miRanalyzer program (http://web.bioinformatics.cicbiogune.

es/microRNA/miRanalyser.php, release version 1) [88]. For one

sample, the second biological sample of HH25 chicken neural

crest (Chick HH25 BS2), data from two replicate sequencing runs

were combined after verifying that runs correlated .95% (data

not shown). All sample preparation parameters and sequencing

data are available through http://www.ncbi.nlm.nih.gov/geo/

under accession number GSE30716.

Differential Expression
miRNAs were considered to be differentially expressed if they

passed a .2-fold change and had a normalized read count of .15

PMMR in at least one library. IDEG6 software was used to

determine statistically differentially expressed miRNAs within this

set (http://telethon.bio.unipd.it/bioinfo/IDEG6/readme.html)

[89]. Fisher’s exact test (significance threshold ,0.05) with a

Bonferroni correction to account for multiple testing was

implemented to calculate the p-values between libraries [90,91].

DESeq [92] confirmed the fold change and significance trends

(Table S6).

Avian-specific miRNAs
A list was compiled of those mature miRNAs only annotated in

miRBase (http://mirbase.org/, release version 16) [30] for

chicken (Gallus gallus, WASHUC2 genome build) and/or zebra-

finch (Taeniopygia guttata, taeGut3.2.4 genome build). Potential

specificity to the avian lineage was assessed by BLAT analysis

against genomic sequences of zebrafish (Danio rerio, danRer 7

genome build), lizard (Anolis carolinensis, anoCar1 genome build),

frog (Xenopus tropicalis, xenTro2 genome build), Caenorhabditis elegans

(ce6 genome build), Drosophila melanogaster (dm3 genome build),

platypus (Ornithorhynchus anatinus, ornAna1 genome build), cow (Bos

Taurus, bosTau4 genome build), dog (Canis lupus familiaris,

canFam2 genome build), mouse (Mus musculus, mm9 genome

build), and human (Homo sapiens, hg19 genome build). PCR was

conducted on DNA from birds that span the avian lineage

(Figure 2) [93]. Primers were designed against the mature and

mature star strands of the pri-miRNA hairpin, avoiding the 59 and

39 nucleotides of each strand to account for their decreased

conservation [76]. Species analyzed were Black-footed Albatross

(Phoebastria nigripes), Common Nighthawk (Chordeiles minor), Green

Warbler Finch (Certhidea olivacea), Groove-billed Ani (Crotophaga

sulcirostris), Ostrich (Struthio camelus), Rhinoceros Hornbill (Buceros

bicornis), and Tinamou (Spotted Nothura, Nothura maculosa).

Quantitative real-time Polymerase Chain Reaction
Reverse transcription was performed with Taqman MicroRNA

Reverse Transcription reagents (Applied Biosystems), and a

quantitative real-time polymerase chain (qRT-PCR) reaction was

carried out using the Applied Biosystems Prism 7500 per

manufacturer’s instructions. The levels of miRNA gene expression

Figure 5. A model of differences in neural crest differentiation and bone formation in duck and chicken. Based on miRNA expression
changes, HH20 to HH25 may be the developmental window when multipotent, proliferative neural crest cells (yellow) gain the molecular signatures
of differentiation (green) before becoming the cartilage and bones of the face.
doi:10.1371/journal.pone.0035111.g005
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were determined by normalizing to the spliceosomal RNA

RNU6B. All reactions were performed in triplicate.

In situ hybridization
Chicken (Gallus domesticus, Charles River Labs) and duck (Anas

platyrhynchos, Metzer Farms, Gonzales, CA) embryo heads were

dissected in cold PBS and fixed in 4% paraformaldehyde in PBS

overnight at 4uC. Embryos were serially dehydrated to 100%

methanol for storage, and rehydrated in PBS before in situ

hybridization. Whole mount in situ hybridization were then

performed as previously described [3] on stage-matched embryos

with 40 nM 59 DIG-labeled miRCURY LNA probe (Exiqon).

p27 Western
For western blotting, embryos were staged according to

Hamburger-Hamilton criteria [19]. FNPs were isolated in cold

PBS and lysed in 16 RIPA buffer supplemented with Complete

Mini Protease Inhibitor Cocktail (Roche). Samples were resolved

by 10% SDS/PAGE, transferred to nitrocellulose membrane,

probed with mouse anti-p27KIP1 monoclonal antibody (BD

Transduction Laboratories) and horseradish peroxidase-conjugat-

ed goat anti-mouse IgG (Sigma-Aldrich), and visualized by ECL

(Pierce). The mouse anti-alpha-tubulin monoclonal antibody

(Santa Cruz Biotechnology) was used as a loading control.

Supporting Information

Figure S1 Classification of Next-Generation short RNA
sequencing (miRNA-seq) reads from all samples. Reads

are annotated as ‘‘mapped’’ if they can be located within the

current version of the chicken genome (Gallus gallus, gga3 genome

build).

(TIF)

Table S1 miRNAs detectably expressed in avian fronto-
nasal neural crest cells at HH20 and HH25. MiRNAs

expressed in chicken, quail, and ducks samples at a normalized

read count of .15 PMMR in at least one sample. Genomic

locations are mapped to the gga3 build of the Gallus gallus genome.

(XLS)

Table S2 miRNAs differentially expressed among
chicken, quail, and duck frontonasal neural crest cells.
Fold changes are on a log2 scale, with expression in duck relative

to chicken or quail, in quail relative to chicken, or HH25 relative

to HH20. For example, a negative number is expressed at a lower

level in the duck versus chicken. Comparisons in bold typeface

pass .2-fold change and normalized read count of .15 PMMR

criteria. DC, duck/chicken comparison; DQ, duck/quail compar-

ison; QC, quail/chicken comparison.

(XLS)

Table S3 Complete list of predicted targets of miRNAs
that are limited to the avian lineage. Targets were predicted

using TargetScan (http://www.targetscan.org/) and the seed

sequence (nt 2–8) for each of the avian-specific miRNAs.

(XLS)

Table S4 Complete list of enriched GO annotations of
avian specific miRNAs. Predicted targets of individual miRNA

were further searched for GO annotation enrichment by the

ToppGene software suite (http://toppgene.cchmc.org/). Due to

the limited number of predicted downstream targets for gga-miR-

1559 (two predicted targets, see Table S3) it was not included for

enrichment analyses. Statistically significant GO annotations (p

value,0.05 after Bonferroni correction) are listed for individual

miRNAs.

(XLSX)

Table S5 qRT-PCR validation of miRNA sequencing
data. Delta Ct (cycle threshold) values for all miRNAs relative to

RNU6B input control. Note that values are on a log2 scale, with

more positive values being more highly expressed.

(XLS)

Table S6 DESeq analysis of differentially expressed
miRNAs. Accompanying each miRNA are fold changes (FC) on

a log2 scale and a p-value. The analysis was conducted with

DESeq [92] using default parameters with the following options

used to estimate the dispersions: (1) the ‘‘fit-only’’ sharingMode

was used for all datasets, (2) the ‘‘blind’’ method was used only for

the quail dataset, and (3) a ‘‘local’’ fitType was used only when

estimating dispersions with stage 25.

(XLSX)

Table S7 Differentially expressed miRNAs with dis-
cernable trends among chicken, duck, and quail.
Accompanying each miRNA are fold changes (FC) on a log2

scale and Fisher’s exact p-values (see Methods). The Bonferroni

corrected threshold for significance is ,1.97e-05. Values in the

table that fail to reach this threshold are marked with {. For a

complete list of differentially expressed miRNAs, see Table S2.

(XLSX)
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