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Abstract

Psoriasis is characterized by hyperplasia of the epidermis and infiltration of leukocytes into both the dermis and epidermis.
IL-23, a key cytokine that induces TH17 cells, has been found to play a critical role in the pathogenesis of psoriasis. Apilimod
is a small-molecule compound that selectively suppresses synthesis of IL-12 and IL-23. An open-label clinical study of oral
administration of apilimod was conducted in patients with psoriasis. Substantial improvements in histology and clinical
measurements were observed in patients receiving 70mg QD. The expression of IL-23p19 and IL-12/IL-23p40 in skin lesions
was significantly reduced in this dose group, with a simultaneous increase in IL-10 observed. A decrease in the levels of TH1
and TH17 cytokines/chemokines in skin lesions followed these p19 and p40 changes. In parallel, a reduction in skin-
infiltrating CD11c+ dendritic cells and CD3+ T cells was seen, with a greater decrease in the CD11c+ population. This was
accompanied by increases in T and B cells, and decreases in neutrophils and eosinophils in the periphery. This study
demonstrates the immunomodulatory activity of apilimod and provides clinical evidence supporting the inhibition of IL-12/
IL-23 synthesis for the treatment of TH1- and TH17-mediated inflammatory diseases.
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Introduction

Psoriasis vulgaris is one of the most prevalent cell-mediated

inflammatory diseases in humans [1] and serves as a model in

which the activity and immune mechanisms of new therapeutics

can be readily evaluated in affected tissues. Recent data from

inflammatory skin models suggests that IL-23 and TH17 T cells,

which produce IL-17 and IL-22, could be key inducers of

epidermal hyperplasia and altered epidermal differentiation in

psoriasis [2,3]. This pathway is implicated by a marked increase in

IL-23 synthesis [4] and TH17 T cells are found in psoriasis lesions

[5,6]. Genetic study has demonstrated the association of the IL-

23/Th17 pathway with susceptibility to psoriasis [7]. A decrease in

expression of p19 and p40 mRNAs (encoding IL-23) was observed

in patients responding to some immune-modulating treatments

[8,9]. Clinically significant efficacy in the treatment of moderate to

severe chronic plaque psoriasis was recently demonstrated by

ustekinumab (CNTO-1275) and briakinumab (ABT-874), which

both target the common p40 subunit of IL-12 and IL-23,

confirming the major role of IL-12 and IL-23 in the pathophys-

iology of the disease [10,11,12,13,14]. Another newly recognized

feature of psoriasis is that skin lesions are highly infiltrated by

CD11c+ dendritic cells termed TIP-DCs (TNF- and iNOS-

producing DCs), which also synthesize IL-20 and IL-23 in skin

lesions [4,15,16]. Hence psoriasis brings together inflammatory

pathways driven by CD11c+ DCs, TH1, and TH17 T cells, but in

the context of an accessible human organ in which effective

suppression of inflammation can fully reverse disease-defining

pathology and restore normal cell growth and gene expression

[17].

Successful clinical trials with antibodies directed against IL-12/

IL-23 support the approach of modulating inflammation in

psoriasis or other T cell mediated diseases by selectively blocking

production of IL-12 and IL-23. Although antibodies can provide

medical benefit, an orally available small-molecule IL-12/IL-23

inhibitor is also highly desirable. Apilimod (formerly STA-5326) is

a small molecule that was developed from a novel triazine

derivative identified through high-throughput IL-12 inhibitor

screening [18]. Apilimod effectively suppresses synthesis of IL-12

and IL-23 in myeloid leukocytes and oral administration of

apilimod led to a suppression of the TH1 but not TH2 immune

response in mice [18]. In vivo studies demonstrated that oral

administration of apilimod markedly reduced inflammatory

histopathologic changes. A striking decrease in IFN-c production

was observed in ex vivo culture of cells harvested from animals

treated with apilimod, indicating a down-regulation of the TH1

response by this compound.

In this study, patients with stable psoriasis vulgaris skin plaques

were treated orally with a range of apilimod doses. Skin biopsies

and whole blood were collected throughout a 12-week treatment
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course, and extensively analyzed by immunohistochemistry, RT-

PCR, cytometry, and cytokine production levels in ex vivo cell

culture, to measure inhibition of p40 cytokines and downstream

products in the local site of inflammation as well as in the

periphery. Our results establish that apilimod not only suppresses

synthesis of IL-12, IL-23, and multiple downstream cytokines in

the lesional skin, but also concomitantly increases synthesis of the

anti-inflammatory cytokine IL-10. This study also presents an

overall view of the action of this IL-12/IL-23 blocker, and

provides additional evidence for critical links between IL-23

synthesis, production of IL-17 at elevated levels in psoriasis, and

resulting histopathological alterations in the skin.

Results

Apilimod Treatment of Human whole Blood In Vitro
Leads to a Concurrent Decrease of IL-12 and Increase of
IL-10 and GM-CSF

It was previously reported that apilimod treatment inhibited IL-

12 production in human PBMCs, monocytes, monocyte-derived

dendritic cells, and the human monocytic cell line THP-1 with

IC50 values below 20nM, while not significantly suppressing the

production of other cytokines [18]. The selectivity of the

compound was further evaluated using SAC-stimulated human

whole blood. In this assay IL-12 production was consistently

inhibited by apilimod with the IC50 ranging from 20 to 200nM

(Fig. 1). Interestingly, IL-10 and GM-CSF production was

reproducibly enhanced by the compound (Fig. 1). The increase

of IL-10 and GM-CSF was dose-dependent and reached greater

than 2-fold at drug concentrations above 200 nM. IL-6 produc-

tion was neglibly affected in this assay.

Decreased IL-12 and Increased IL-10 and GM-CSF in Ex Vivo
Stimulated whole Blood Cells Drawn 2h Post Oral
Administration of Apilimod

Apilimod was tested in a Phase 2a multi-center, open-label

clinical trial in psoriasis patients in which the focus was a variety

of biomarker-based measures of biological response. Patients with

moderate to severe chronic plaque psoriasis received apilimod at

doses of 21mg BID, 35mg QD, 35mg BID, or 70mg QD orally

for 12 weeks. First, to confirm that the potency and selectivity of

apilimod was similar to the in vitro results above, whole blood was

collected pre- and 2 h post-dose to measure cytokine production

in response to ex vivo SAC stimulation. The 2 h time point

represents the approximate time at which the maximum

apilimod concentration in plasma was observed (mean 6 SD

plasma levels at 2 h post-dose were 41 6 41nM (n = 16), 122 6

82nM (n = 16), 115 6 60nM (n = 14), and 265 6 183nM (n =

15) at the doses of 21mg BID, 35mg QD, 35mg BID, and 70mg

QD, respectively). Figure 2 shows the changes in cytokine

production levels in the ex vivo culture with the whole blood

containing orally absorbed apilimod from the patients receiving

the highest dose of 70mg. IL-12 production was decreased at 2 h

post-dose compared to the pre-dose samples in several patients in

the dose group (median change of -27%), while GM-CSF and

IL-10 were concurrently increased (median change of +147%

and +71%, respectively). A decrease in IL-12 compared to the

corresponding pre-dose whole blood was also consistently

observed in the other dose groups (data not shown). GM-CSF

and IL-10 were also increased in the 35 mg apilimod cohort

(both QD and BID), but not 21 mg. This is in agreement with

the in vitro increases of these cytokines at a relatively high drug

concentration compared to the concentration which caused a

reduction in IL-12. The changes in cytokine production were not

correlated with patient response, indicating that this ex vivo assay

of peripheral blood at the apilimod Cmax is not sufficient to

predict clinical response.

Clinical Response to Apilimod Treatment
The primary efficacy endpoint of this biomarker study was the

proportion of patients with an improvement in the histological

assessment of skin biopsies. Frozen skin biopsies from non-lesion

skin and psoriatic lesions were analyzed for routine histopathology,

expression of keratin 16 (K16) and IL-12/IL-23p40, and numbers

of CD3+ T and CD11c+ dendritic cells. Given the typical

histopathology of baseline psoriasis, the grading system for the

histological assessment of epidermal hyperplasia is: (1) not

improved; (2) good improvement (reduction in hyperplasia and

normalized differentiation, but most suprabasal keratinocytes still

express K16); or (3) excellent improvement (reduction in

hyperplasia, normalized differentiation, absent K16 expression

or small foci of residual keratin expression). Patients with good or

excellent improvement at week 12 were considered responders.

Any patient missing data at week 12 was treated as a non-

responder. Figure 3 shows a representative example of a responder

who achieved excellent improvement. Overall clinical responses

based on histological assessment of skin biopsies and other clinical

measures in the four dose groups are shown in Table 1. There was

a clear trend towards better clinical outcomes at the dose of 70 mg

QD with half of patients showing significant histological

improvement at week 12. Comparisons between dose groups in

the clinical measures of PASI (Psoriasis Area and Severity Index)

and sPGA (static Physician’s Global Assessment) also favored the

70mg QD cohort. Similar to the histological improvement, around

half of patients achieved a 50% improvement in their PASI scores

and showed a 2-point or greater improvement in PGA from week

0 to week 12 in this dose group (Table 1). Overall, 13 of 15 total

patients with less than 30% reduction in PASI score at week 12

were defined as non-responders in histological assessment, and 9

patients with at least a 70% reduction in PASI score were all

histological responders, indicating a close correlation between the

histological assessment and the clinical measures.

Infiltrating T Cells and Dendritic Cells Post-apilimod
Treatment

Immunohistochemisty of skin lesions demonstrated that the

histological improvement was paralleled by progressive decreases

in the number of infiltrating CD3+ (a marker of T cells) and

CD11c+ (a marker of dendritic cells) cells (Fig. 3, Table 2). The

number of CD3+ cells in both the epidermis and dermis was

decreased at week 12 from baseline in histological responders

(mean change 6 SD: 246 6 47% and 238 6 49%, respectively),

while no change was seen in non-responders (+5 6 78% and +10

6 69%, respectively). A dramatic decrease was seen in the number

of CD11c+ cells in the responders (278 6 36% in epidermis and

252 6 39% in dermis), while the decrease in non-responders was

not significant (221 6 69% in epidermis and 22 6 59% in

dermis). The differences between responders and non-responders

at week 12 were statistically significant for CD3+ cells and CD11c+

cells in both the epidermis and dermis (Table 2). Among the dose

groups, the decreases in the infiltrating cells was most prominent in

the 70mg QD cohort (n = 12) for all of dermal CD3+ (229%),

epidermal CD3+ (231%), dermal CD11c+ (229%), and epidermal

CD11c+ (243%) cells at week 12. Within the 70mg QD dose

group, the largest decrease was observed in epidermal CD11c+

cells with almost complete clearance in all responders (296 6 8%)

(Fig. 4).

Activity of Apilimod in Psoriasis
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Figure 1. In vitro effect of apilimod on IL-12p70, IL-10, GM-CSF, and IL-6 in human whole blood cells. Human whole blood from a normal
volunteer was stimulated with 0.1% SAC in the presence of different concentrations of apilimod. Supernatants were tested for IL-12p70 (circles), IL-10
(triangles), GM-CSF (diamonds) and IL-6 (squares). Results are representative of one of three individual experiments with whole blood from different
volunteers each time.
doi:10.1371/journal.pone.0035069.g001

Figure 2. Ex vivo stimulation of whole blood drawn 2h post 70mg dose as compared to the pre-dose in cytokine production. Whole
blood drawn pre-dose and 2h post 70mg dose (n = 10) were stimulated with 0.1% SAC within 24h of the draw, and the supernatants were analyzed
for IL-12p70 (a), IL-10 (b), and GM-CSF (c). *, p #0.05; statistically significant differences between pre- and 2h post-dose.
doi:10.1371/journal.pone.0035069.g002

Activity of Apilimod in Psoriasis
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Gene Expression in Lesions Post-apilimod Treatment
To determine the in vivo effects of apilimod on the expression

of the target genes IL-12 and IL-23, as well as their downstream

targets at the local site of inflammation, we conducted RT-PCR

on skin biopsies collected before and after treatment. The level of

gene expression in each biopsy was normalized to human acidic

ribosomal phosphoprotein PO (hARP). This protein, whose

mRNA level is stable regardless of treatment, was used to

confirm the quality of the samples [19]. The level of IL-12/IL-

23p40 and IL-23p19 expression at baseline was remarkably

higher in psoriatic skin lesions (median normalized gene

expression of 51.3 and 38.0, respectively, n = 54) compared to

corresponding normal skin (0 and 7.9, respectively). Significant

decreases in p40 and p19 at week 2 from baseline were

demonstrated in the 70mg QD group with median percent

changes of 265% and 245%, respectively (Fig. 5). In contrast,

IL-10 was increased with a +98% median percent change

relative to the baseline (n = 9) (Fig. 5). Two patients (1035 and

1046) excluded in the analysis of the percent change in IL-10 (as

the baseline value was 0) also showed a dramatic increase in IL-

10 (23 and 59 from 0). The IL-10 decrease seen in patient 1045

was accompanied by a decrease in epidermal CD11c+ cells at

week 2, suggesting that decreased IL-10 was likely due to the loss

of IL-10 producing cells in the epidermis, still consistent with

increased IL-10 expression by apilimod treatment when no

change in the infiltrating cell population is apparent.

At week 12, the gene expression of IL-12/IL-23p40 and IL-

23p19 was further reduced from baseline in the 70mg QD

group (median changes of 274% and 281%, respectively, n =

7). IL-10 gene expression remained higher than the baseline in

the dose group (+141%, n = 5). As predicted from the

biological effects of IL-12/IL-23, one would expect inhibition of

the downstream T cell and inflammatory pathways affected by

IL12/IL-23 follows inhibition of these cytokines. Consistent with

this view, a marked reduction in the gene expression of K16,

iNOS, IL-8, IL-17, TNF-a, and IFN-c was observed at week 12

(median changes of 251%, 258%, 261%, 223%, 243%, and

250%, respectively, n = 7) while only small and inconsistent

decreases were seen at week 2. Moreover, a nearly complete

reduction in K16 and TH1/TH17 cytokines and chemokines

was demonstrated in most of histological responders with the

median gene expressions at week 12 comparable to the levels of

non-lesional skin (Fig. 6). In contrast, no significant changes

were seen in non-responders.

Effect of Apilimod Treatment on Peripheral Cell Profile
It is known that peripheral immune cells are recruited to sites

of local inflammation [20,21,22]. To determine the effect of

apilimod on the trafficking of immune cells, whole blood

samples from patients were analyzed for immune cell profiling

side-by-side with samples from normal controls. Neutrophil,

eosinophil, and monocyte counts (mean 6 SD cells/mL) at

baseline were significantly higher in psoriasis patients than in

normal controls (4476 6 1699 vs. 3066 6 947; p = 0.001, 231

6 152 vs. 138 6 102; p = 0.008, 420 6 128 vs. 316 6 123; p

= 0.004, n = 60 and 16, respectively). In contrast, CD4+ T cell

counts were slightly lower in psoriasis patients than in controls

(742 6 276 vs. 843 6 283; p = 0.125). There was no

significant difference in CD8+ T and B cell counts between

psoriasis patients and normal controls (354 6 168 vs. 367 6

135; p = 0.679 and 220 6 138 vs. 225 6 78; p = 0.200,

respectively). After 12 weeks of treatment with apilimod,

neutrophil and eosinophil counts were decreased in the 70mg

QD cohort, while the counts of CD4+ T, CD8+ T, and B cells

were significantly increased (Fig. 7). The increase of CD4+ T,

CD8+ T, and B cells is more pronounced when expressed as a

percentage of whole blood cells (mean change 6 SD: +33 6

Figure 3. Histological improvement by apilimod treatment.
Histology and immunohistochemistry of one patient (1046) showing
improved histology and clinical measures (58% reduction in PASI score)
at week 12 in the 70mg QD apilimod treated group. Skin biopsies from
non-lesions (left) and lesions (middle) at baseline and lesion at week 12
(right) were stained with H&E, K16, anti-CD3 Ab, anti-CD11c Ab, or anti-
IL-12p40 Ab. Cells staining positive for CD3, CD11c and IL-12p40 are
indicated (arrows).
doi:10.1371/journal.pone.0035069.g003

Table 1. Clinical response based on assessment of skin
biopsies and PASI and PGA.

21 mg BID
n = 17
n (%)

35 mg QD
n = 17
n (%)

35 mg BID
n = 16
n (%)

70 mg QD
n = 15
n (%)

Histological
Improvement

3 (18) 4 (24) 3 (19) 7 (47)

PGA Clear/
Almost Clear

1 (6) 1 (6) 1 (6) 2 (13)

PASI 75 0 0 1 (6) 2 (13)

Mean Improvement
in PASI

15% 29% 40% 46%

PASI 50 3 (18) 5 (29) 8 (50) 7 (47)

2 pt Improvement
in PGA

3 (18) 4 (24) 5 (31) 8 (53)

doi:10.1371/journal.pone.0035069.t001

Activity of Apilimod in Psoriasis
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35%; p = 0.002, +34 6 45%; p = 0.039, and +42 6 41%; p

= 0.0005, respectively). These results indicate that apilimod

treatment resulted in a shift toward the normal state. There was

no significant change in the monocyte counts (Fig. 7) or

percentage (+4 6 21%, p = 0.622) after apilimod treatment.

Similar increases in peripheral CD4+ T, CD8+ T, and B cells,

and a decrease in neutrophils after treatment with apilimod

were also observed in histological responders (mean change 6

SD in the percentage: +34 6 58%, +33 6 44%, +41 6 53%,

and 26 6 13%, n = 15), although the difference from non-

responders (+13 6 24%, +15 6 28%, +25 6 38%, and 21 6

9%, n = 28) did not achieve statistical significance in any

cellular subset.

Discussion

Apilimod is an orally available small molecule that selectively

and potently inhibits IL-12 and IL-23 production. The IL-12 p35

and p40 promoter driven luciferase assay indicated that the

compound inhibits transcription of both p35 and p40 genes [18].

Investigation of regulatory factors revealed that nuclear accumu-

lation of c-Rel, but not other NF-kB family member p65 or p50,

was impaired by apilimod (Y. Wada, unpublished data). It was

recently shown that c-Rel specifically regulates expression of IL-

12p35, IL-12/IL-23p40, and IL-23p19 [23,24,25,26]. The

findings adequately explain the selective inhibition of these genes

by apilimod. Upregulated expression of c-Rel has been shown in

Figure 4. Changes in epidermal CD11c+ cells in responders and non-responders in 70mg QD apilimod cohort. Results shown are the
number of epidermal CD11c+ cells in individual patients categorized as either responders (left, n = 7) or non-responders (right, n = 7) in the 70mg
QD cohort at baseline (week 0), week 2, 6, and 12.
doi:10.1371/journal.pone.0035069.g004

Table 2. Mean skin-infiltrating T cell and dendritic cell numbers.

Population1 wk0 wk2 wk6 wk12

Epidermal CD3+ cell Mean cell number non-responder 74 79 68 65

responder 68 63 44 25

p value between group 0.631 0.267 0.127 0.001

Dermal CD3+ cell Mean cell number non-responder 112 112 95 109

responder 123 115 73 64

p value between group 0.464 0.889 0.177 0.008

Epidermal CD11c+ cell Mean cell number non-responder 47 44 38 32

responder 40 41 20 8

p value between group 0.555 0.800 0.039 0.002

Dermal CD11c+ cell Mean cell number non-responder 142 141 127 118

responder 140 154 93 56

p value between group 0.929 0.623 0.158 0.001

1Mean cell numbers of epidermal CD3+ (T cell) cells, dermal CD3+ cells, epidermal CD11c+ (dendritic cell) cells, and dermal CD11c+ cells per low-power field during
treatment, with patients classified by response. There were 17 responders and 30 non-responders in the analysis.
doi:10.1371/journal.pone.0035069.t002

Activity of Apilimod in Psoriasis
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DCs and other myeloid cells [26], further supporting the targeted

activity of apilimod in these populations.

An elevation of IL-12/IL-23p40 mRNA and protein levels as

well as IL-23p19 mRNA has been reported in psoriatic skin

lesions [4,27,28]. Here, we show a consistent decrease in p40

and p19 mRNA in psoriatic lesions as early as week 2 following

the initiation of apilimod treatment in the highest dose group.

There was no notable decrease in infiltrating cells at this early

Figure 6. Changes in the expression levels of TH1, TH17, and other inflammatory genes at week 12 in responders and non-
responders. RT-PCR was performed with biopsies obtained from non-lesion skin and psoriatic lesions. Results shown are the percentile range (25th–
75th%, medians indicated) of histological responders (n = 11) and non-responders (n = 27) for IL-12/IL-23p40, IL-23p19, K16, IL-8, IL-17, IFN-c, iNOS
and TNF-a. There were 26 non-responders for IL-17, and 10 responders and 23 non-responders for IL-10 in the analysis of the change due to 0 value at
baseline. *, p , 0.05; **, p ,0.01; statistically significant differences between before (week 0) and after (week 12) apilimod treatment in responder and
non-responder groups.
doi:10.1371/journal.pone.0035069.g006

Figure 5. Changes in the expression levels of IL-12/IL-23p40, IL-23p19, and IL-10 at week 2 in 70mg QD apilimod cohort. RNA was
prepared from biopsies obtained from the psoriatic skin lesions at baseline (week 0) and week 2, and RT-PCR was performed for IL-12/IL-23p40 (a), IL-
23p19 (b), and IL-10 (c). The expression levels were normalized to house keeping gene, hARP. Results shown are the expression levels of individuals in
70mg QD cohort (n = 11, 3 histological responders, 8 histological non-responders). *, p #0.05; **, p #0.01; statistically significant differences
between baseline and week 2.
doi:10.1371/journal.pone.0035069.g005

Activity of Apilimod in Psoriasis
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time point, suggesting that the mRNA changes are due to direct

effects of apilimod on cytokine expression in cells, and not a

result of changes in the cell number itself. At week 12, marked

reductions in the gene expression including TH1/TH17

cytokines and chemokines paralleled the clearance of infiltrating

cells in the responders, suggesting that mRNA reduction is

partially due to the loss of cytokine-producing cells. Since CD3+

T cells were not totally cleared, the dramatic reductions in the

levels of TH1/TH17 genes are likely due to a selective clearance

of TH1/TH17 cells from the lesions and/or a marked

suppression of the gene expression as a consequence of the

clearance of IL-12/IL-23 producing CD11c+ cells. Importantly,

clinical response correlated with the suppression of TH1/TH17

and downstream genes at week 12, validating the relevance of

targeting this pathway for disease improvement.

In this study, a near-complete clearance of epidermal CD11c+

cells from lesions was observed in the responders in the 70mg QD

group at week 12. A statistically significant reduction of CD3+ T

cells in the responder group was also seen, however the reduction

in CD3+ T cell numbers was less than the reduction of CD11c+

cells in both the epidermis and dermis. It is noteworthy that

psoriasis clinical studies of ustekinumab [29], alefacept (CD2

binding portion LFA-3)[8], and etanercept (TNF-receptor fusion

protein)[9] all showed greater decreases in CD3+ T cells compared

to CD11c+ cells. A comparative reduction in CD3+ T cells and

CD11c+ cells was achieved in a clinical study of efalizumab (anti-

CD11a) [15]. The preferential reduction in CD11c+ cells by

apilimod seen in the responders may be a consequence of its

primary effect on this population. Because a good correlation

between hyperplasia improvement and CD11c+ cell numbers in

skin lesions has been consistently observed [8,9,15], clearance of

CD11c+ cells is expected to result in faster resolution of psoriatic

lesions and may help achieve better clinical outcome in

combination with other agents that primarily target T cells.

Interestingly, we found that baseline levels of TNF-a and IFN-c
mRNA were higher in responders than non-responders (Fig. 6).

The difference in baseline TNF-a was also pronounced in 70mg

QD group (mean 6 SD: 198 6 108, n = 3 vs. 59 6 42, n = 7). A

similar correlation of TNF-a mRNA at baseline with response to

treatment was seen in the ustekinumab trial [29]. The consistent

observation of a correlation in two independent studies suggests

that when inhibiting IL-12/IL-23, baseline TNF-a level may

represent a potential molecular predictor of response.

IL-10 was reproducibly increased in in vitro culture following

apilimod treatment as well as in lesions and ex vivo culture of whole

blood cells following oral administration. No similar increase was

Figure 7. Cellular phenotype in normal controls and psoriasis patients before and after 70mg QD treatment. Whole blood cells
from normal controls and psoriasis patients were analyzed by cytometry for the cellular phenotype. Results shown are the percentile ranges based on
cell counts (cells/mL) of peripheral CD4+ T cells, CD8+ T cells, B cells, monocytes, eosinophils and neutrophils from normal controls (n = 16) and
psoriasis patients in 70mg QD cohort (n = 12) at baseline (week 0) and week 12. Plot: bottom line, 10th%; bottom box, 25th%; top box, 75th%; top line,
90th%. *, p , 0.05; **, p ,0.01; statistically significant differences between before (week 0) and after (week 12) 70mg QD apilimod treatment in
psoriasis patients.
doi:10.1371/journal.pone.0035069.g007

Activity of Apilimod in Psoriasis
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observed in the clinical study of ustekinumab [29], suggesting that

IL-10 modulation is due to a direct effect of apilimod, not

secondary to the inhibition of IL-12/IL-23. A significant increase

in the expression of GM-CSF by apilimod was also seen in vitro and

ex vivo. Increased IL-10 and GM-CSF levels have been reported to

be beneficial in the treatment of inflammatory disease [30,31].

Clinical efficacy with IL-10 treatment in psoriasis patients was

reported, with immunohistologic improvement [32,33], as well as

lowered incidence of relapse and prolonged disease-free interval

[34]. Thus, the enhanced IL-10 effects of apilimod are expected to

add benefit to clinical outcome.

We investigated multiple dose groups in this study, and

identified the highest responses in the 70mg QD dose cohort for

both histological and clinical improvements. Despite the fact that

the range of apilimod doses in the four groups was narrow, the

difference between 70mg QD group and 21mg BID group was

apparent in gene expression of IL-23p19 in skin lesions at week 12

(281% vs. +20%, p = 0.192). The two doses are more distinct in

the Cmax than the total AUC and Ctrough. In addition, the 70mg

QD group demonstrated a better clinical response than the 35mg

BID group despite the similar AUC0–24h in the 70mg QD and the

35mg BID cohorts, suggesting that a sufficiently high drug plasma

concentration for a short duration rather than the total AUC

determines efficacy. As the IL-12/IL-23 producing CD11c+ cells,

the target of apilimod, are localized in the inflamed skin [4], the

superior response of 70mg QD group implies that a higher drug

level may have been achieved and maintained in the skin layers at

this dose compared to others.

Ustekinumab has demonstrated great clinical success and has

been approved for psoriasis treatment. How does apilimod differ

from this antibody in terms of clinical response based on PASI 75?

In a dose-escalating study in which patients received an i.v.

infusion of 0.1, 0.3, 1, or 5 mg/kg of ustekinumab, significant

improvement was observed at the two highest dose levels [29].

However, the mean PASI reduction shown by a sub-optimal

0.3mg/kg dose of the antibody was approximately 50% at week 12

[29], similar to the mean PASI reduction achieved by the 70mg

QD apilimod dose. In addition, both ustekinumab and apilimod

demonstrated reduction of skin infiltrated CD11c+ or CD3+ cells

in responders with the reduction appearing slower for apilimod (6

weeks vs. 2 weeks for ustekinumab) [29]. It is reasonable to suggest,

therefore, that the lower therapeutic activity of apilimod is likely

due to insufficient drug levels to achieve an optimal clinical

response. In this regard apilimod dosing is limited to 70 mg BID as

CNS-related adverse events (headache, flushing, hypoesthesia,

dizziness and paresthesia) were observed at a 105 mg BID dose

level in a previous Phase I study (Y. Wada, unpublished data).

This report does however highlight the therapeutic promise of a

small molecule IL-12/IL-23 inhibitor. The clear dose-response

reduction in production/expression of IL-12/IL-23, number of

infiltrating immune cells, as well as the clinical measures of PASI and

PGA, implies that removing the dose-limiting toxicity with a

derivative of apilimod and increasing the dose might produce

improved clinical effects similar to the IL-12/IL-23 antibody.

Moreover, the pronounced effects on dendritic cells over T cells

andonIL-10production/expression areunique toapilimodandmay

be biologically advantageous. In general, an orally available small

molecule provides superior convenience and cost effectiveness for

application, particularly in a chronic disease state such as psoriasis. In

lightof thesepotentialadvantagesoveranIL-12/IL-23antibodysuch

as ustekinumab, several apilimod derivatives with improved safety

and pharmacokinetics are currently under investigation.

Animportantconsiderationofour findings relates to theprolonged

therapeutic targeting of this pathway. Studies in mice deficient in c-

Rel and IL-12 demonstrated that they are defective in TH1 [35], and

have increased risk of infections for which TH1 and IL-12 are

protective suchasLeishmaniamajor [36,37], raisingaquestion forriskof

opportunistic infections by suppressing TH1 response. However, no

evidence of immune-suppression was noted in comprehensive

immune-toxicology evaluations of ustekinumab [38], supporting

potential of long-term treatment with IL-12/IL-23 modulators.

In summary, here we have demonstrated the immunomodulatory

activity of apilimod through extensive biomarker studies conducted

in patients with moderate-to-severe psoriasis, by analyzing both local

skin and peripheral blood samples using multiple methods in

comparison with normal controls. The results provide an overall

view of the action of apilimod. This novel agent suppressed the

expression of IL-12/IL-23 in skin lesions and simultaneously

enhanced IL-10. The expression of TH1 and TH17 cytokines/

chemokines was reduced, accompanied by clearance of CD11c+

dendritic cells and CD3+ T cells from the skin lesions. Blocking the

recruitment of immune cells to the skin resulted in an increase of their

populations, and a decrease of granulocytes, in the periphery. This

study clearly demonstrates the activity of the small molecule apilimod

in psoriasis patients and further supports the critical roleof the IL-23/

TH17 pathway in the etiology of this disease.

Materials and Methods

Reagents
Apilimod was synthesized by Synta Pharmaceuticals Corp.

(Lexington, MA).

Clinical and Non-clinical (Normal Control) Study Design
Patients with moderate to severe chronic plaque psoriasis were

enrolled in the multi-center, open-label, multiple oral dose

outpatient study of apilimod (Protocol No. 5326–05). Eligible

patients included men and women, age 18–70 years old, who had

stable chronic plaque psoriasis (diagnosed at least 6 months before

screening) and who had psoriasis affecting $ 10% of body surface

area. Patients received apilimod 21mg BID, 35mg QD, 35mg

BID, or 70mg QD orally for 12 weeks. Skin punch biopsies were

collected for analysis of immunohistochemistry and RT-PCR at

baseline (both non-lesional and lesional skin) and week 2, 6, and 12

(lesional). Whole blood was collected in sodium-heparin tubes for

ex vivo cytokine production immediately before the administration

and 2h post-dose on day 1, pre-dose on week 2 and 12. Whole

blood was also collected in EDTA tubes for cell phenotype analysis

pre-dose at baseline (week 0), week 2 and 12. Sixty-five patients

were enrolled, and 45 (69.2%) patients completed the study. The

per-protocol population consisted of 51 patients: 16, 11, 12, and

12 in the 35mg QD, 21mg BID, 35mg BID, and 70mg QD dose

groups, respectively. The biopsy specimens were divided into two

samples; one sample was frozen OCT media for immunohisto-

chemistry, and the other was snap frozen in liquid nitrogen for

RT-PCR. Both samples were stored at -70uC. Histological

improvement of epidermal hyperplasia was defined by epidermal

thickness, rete elongation, differentiation status of keratinocytes,

and expression of K16 [negative in normal epidermis [39]].

Clinical response was assessed using the Psoriasis Area and

Severity Index (PASI) and the static Physician’s Global Assessment

(sPGA).

As an untreated control for the evaluation of biologic response,

whole blood was collected independently from 18 normal

volunteers at Synta Pharmaceuticals for analysis of ex vivo cytokine

production and cell phenotype with the schedule matched with the

blood collection from patients.
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Both studies in patients and normal volunteers were conducted

in compliance with the Declaration of Helsinki Protocols. Prior to

study initiation, Schulman Associates Institutional Review Board

approval (21 Code of Federal Regulations, Part 56; Cincinnati

OH) was obtained for the original protocol and amendments. All

patients provided written informed consent.

Immunohistochemistry
Tissue sections were stained with hematoxylin (Fisher) and eosin

(Shandon, Pittsburgh) and purified mouse anti-human mAbs to

K16 (Sigma), CD3 (Becton Dickinson), CD11c (BD Pharmingen)

and IL-12/IL-23p40 (R&D Systems). Biotin-labeled horse anti-

mouse antibody (Vector Laboratories) was detected with avidin–

biotin complex (Vector Laboratories) and developed with

chromogen 3-amino-9-ethylcarbazole (Sigma Aldrich). Epidermal

thickness measures were computed by using National Institutes of

Health software (NIH IMAGE 6.1), and positive cells were

counted using computer-assisted image analysis, as previously

described [40].

Analysis of Tissue mRNA Gene Expression
RNA was extracted from tissues frozen in liquid nitrogen by

using the RNeasy Mini Kit (Qiagen, Valencia, CA). The primers

and probes for TaqMan RT-PCR assays for K16, IFN-c, TNF-a,

iNOS, IL-8, IL-10, IL-17, IL-12/IL-23p40, and IL-23p19 were

generated with the PRIMER EXPRESS algorithm, version 1.0.

All primers and probes were purchased from Applied Biosystems.

The RT-PCR was performed with EZ PCR Core Reagents

(Applied Biosystems) according to the manufacturer’s directions.

The samples were amplified and quantified on an Applied

Biosystems PRISM 7700 by using the following thermal cycler

conditions: 2 min at 50uC; 30 min at 60uC; 5 min at 95uC; and 40

cycles of 15 sec at 95uC followed by 60 sec at 60uC. The human

acidic ribosomal phosphoprotein PO (hARP) gene, a housekeep-

ing gene, was used to normalize each sample and each gene. The

data were analyzed and quantified using the software provided

with the Applied Biosystems PRISM 7700 (SEQUENCE

DETECTION SYSTEMS, version 1.7). Skin biopsies that had

degraded RNA defined by , 500 hARP or showed irregular

mRNA amplification curves were excluded from the analysis [41].

In Vitro and Ex Vivo Stimulation of whole Blood Samples
for Cytokine Production

In vitro assay was conducted in the presence or absence of

apilimod prepared in DMSO with the final DMSO concentration

adjusted to 0.25% in all cultures, including the compound-free

control. Ex vivo assay was conducted with whole blood in collection

tube shipped at ambient temperature overnight from the clinical

sites. Within 24h of collection, whole blood was stimulated with

equal volumes of RPMI 1640 media containing a final

concentration of 0.1% of Staphylococcus aureus Cowan I (SAC)

(Calbiochem, La Jolla, CA) for 22–24h. The supernatants were

harvested on the next day, and analyzed for IL-12, IL-10, and

GM-CSF using Bio-Plex assays (Bio-Rad). In the ex vivo assay, the

level of IL-12 was also confirmed using high sensitivity Quantikine

ELISA Kit (R&D Systems).

Cellular Phenotyping
The protocol included 49 three-color cell surface assays

performed by microvolume laser scanning cytometry (MLSC) on

the SurroScanTM system (Biomarker Discovery Sciences, PPD,

formerly SurroMed) [42,43]. Briefly, monoclonal antigen-specific

antibodies were purchased from various commercial vendors,

coupled to red emitting fluorophores and developed into cellular

assays. Phenotypes were determined based on the presence of the

following antigens: CD4+, T cells; CD8+, T cells; CD19+/CD20+,

B cells; CD14+, monocytes; CD66b+, eosinophils; CD16+,

neutrophils. Staining began within 30 h of sample collection.

Aliquots of whole blood or red blood cell-lysed blood from EDTA

collection tubes were added to 96-well micro-titer plates

containing the appropriate reagent cocktails, incubated in the

dark at room temperature for 20min, diluted with an appropriate

buffer and loaded into Flex32TM capillary arrays (PPD) and

analyzed with SurroScanTM. Images were converted to a list-mode

data format with in-house software. Fluorescence intensities were

compensated for spectral overlap of the dyes so values are

proportional to antigen density. Standard template gates were

established using FlowJoTM cytometry analysis software (Tree

Star, Inc., Ashland, OR) customized for PPD Biomarker/

SurroMed to enable upload of gates to our Oracle database.

Gating information was applied to the scan data for each assay to

generate the resulting cell count and antigen intensity data.

Statistical Analyses
The change over time in immunochemistry values was

compared between histological responders versus non-responders

using a two by four mixed analysis of variance (ANOVA) model

(Table 2). These time changes were compared across the four dose

groups using a four by four mixed ANOVA. Given the wide

variability in the data and the small sample sizes, it was

determined that a non-parametric approach was most suitable to

make these same comparisons for the RT-PCR data. To do this,

each variable was expressed as the difference from baseline as a

percent of baseline. These percent changes were then compared

across the four treatment groups using the Kruskal-Wallis one-way

analysis of variance by ranks. Comparison of these percent

changes between responders and non-responders was made using

the Wilcoxon Ranks Sums Test.

Comparison of the absolute changes in cytokines from baseline

to 2h post-dose within the 70mg QD group was made using the

Wilcoxon Signed Ranks test (Fig. 2). Changes in the gene

expression levels from baseline to week 2 in the 70mg QD group

were also compared using the Wilcoxon Signed Ranks test (Fig. 5).

This test was also used to compare changes in the gene expression

levels from baseline to week 12 for both responders and non-

responders (Fig. 6).

Statistical analyses for the cellular phenotyping considered the

following comparisons: 1) between psoriasis subjects and healthy

controls, 2) within group before and after drug treatment, and 3)

between histological responders and non-responders. For all

between group statistics, we applied a univariate mean comparison

test that was either parametric or non-parametric depending on

the normality of the data. Goodness-of-fit statistics (Shapiro-Wilk)

and tests of skewness and kurtosis are performed to assess

normality. If the data were approximately normally distributed

in both groups, the parametric statistic was used (t-test); if not, the

nonparametric rank test (Wilcoxon rank sum test) was applied. All

tests of hypotheses were two-sided. Paired two-group comparison

for normal controls and psoriasis subjects was designed to identify

differences associated with the drug, independent of clinical

outcome. The control comparisons were expected to not show

differences and provide a check on the level of false positives.
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