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Abstract

Background: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism
remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the
pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC
phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition
attenuates the burn-induced intestinal barrier disfunction.

Methodology/Principal Findings: Male balb/c mice were assigned randomly to either sham burn (control) or 30% total
body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor.
In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was
assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay.
Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was
increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and
increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal
permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK
expression.

Conclusions/Significance: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction
after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the
therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.
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Introduction

It is well known that the intestinal epithelialmucosa plays a pivotal

role in the host’s protection against luminal pathogens and antigenic

molecules,providingabarrier functiontoprotectagainst the invasion

of intraluminalmicroorganismsandendotoxin through the intestinal

wall into thebloodor lymph.However, it is alsowell documented that

the intestinal epithelial barrier function is often disrupted in many

surgical diseases, including trauma, shock, burn injury, and the other

surgically critical illness, resulting in the increased intestinal

permeability and subsequent translocation of bacteria or/and

endotoxin from gastrointestinal tract [1,2]. It has been recognized

that increased gut permeability and bacteria or/and endotoxin

translocation plays a very important role in the setting of severe

complications such as systemic inflammatory response syndrome,

sepsis, multiple organ dysfunction syndrome, and multiple organ

failure. Therefore, the gastrointestinal tract has been believed to be

a central organ or a motor of multiple organ dysfunctions after

surgical stress [3,4]. Thus, understanding the mechanisms of

intestinal barrier disruption and maintaining the intestinal barrier

function are critical to the clinically comprehensive treatment of

severe burn victims.

An intact intestinal barrier is maintained through tight

junctions, which are the key elements of the paracellular space,

and intercellular junctions, which assist to seal the paracellular

space between adjacent intestinal epithelial cells [5,6]. The tight

junction, composed of multiple proteins including transmembrane

proteins such as zonula occludens (ZO), occludin, claudins and

junctional adhesion molecule, is a complex that forms a selectively

permeable seal between adjacent epithelial cells [5,6]. Thus, tight

junction opening is believed to be the key limiting factor of the

intestinal mucosal paracellular pathway. Accumulating evidences

have indicated that tight junction opening is triggered by the

phosphorylation of myosin light chain (MLC), which predomi-

nantly depends on myosin light chain kinase (MLCK) activation

[7,8]. The activated MLCK catalyzes the MLC phosphorylation,

which in turn results in the contraction of peri-junctional

actinomyosin filaments and the tight junction opening. For

example, studies using an inducible active MLCK have shown

that MLC phosphorylation alone driven by active MLCK is
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sufficient to induce increased tight junction permeability and also

causes the breakdown of the tight junction structural proteins ZO-

1 and occludin [9]. Therefore, the MLCK-dependent MLC

phosphorylation pathway appears to be critical to the pathophy-

siologically disrupted intestinal barrier both in vitro and in vivo.

To date, the mechanisms contributing to intestinal barrier

breakdown after severe burn injury have not yet been elucidated.

However, a recent study has shown that pentoxifylline, a non-

specific phosphodiesterase inhibitor known to increase intracellu-

lar levels of cyclic AMP, is able to limit burn-induced intestinal

barrier breakdown and intestinal inflammation, and to attenuate

MLCK activation [10], suggesting that MLCK activation might

be involved in intestinal barrier breakdown after burn injury. We

hypothesized that severe burn injury would activate the MLCK-

dependent MLC phosphorylation pathway, which in turn lead to

intestinal barrier breakdown, and that direct inhibition of MLCK

activation would attenuate the burn-induced intestinal barrier

disruption. Thus, in this study, we investigate the role of MLCK-

dependent MLC phosphorylation signaling pathway in intestinal

barrier breakdown induced by severe cutaneous thermal injury.

Our present data demonstrate that MLCK-dependent MLC

phosphorylation mediates intestinal epithelial barrier dysfunction

after severe burn injury.

Materials and Methods

Ethics statement
The animal studies were approved by the Animal Care and Use

Committee of the Third Military Medical University, and all the

protocols were approved by the Ethics Committee of Southwest

Hospital, Third Military Medical University, Chongqing, China.

Animals
Healthy adult male balb/c mice weighing 20–25 g, supplied by

the Animal Center, Third Military Medical University, were used

in this study. The animals were housed in wire-bottomed, wire-lid

cages, allowed access to chow and water ad libitum, and

acclimatized for 1 week prior to experiments in a temperature-

controlled room (2562uC) with 12-hour light and dark cycles.

Animals were randomly divided into 3 groups: control (sham

burn), burn, and burn plus ML-9 treatment group.

Burn model & experimental protocol
After acclimatization,mice assigned toburngroup received a30%

total body surface area (TBSA) full thickness burn. Briefly, following

a 12-h fast with water available ad libitum, animals were

anesthetized with an intraperitoneal injection of sodium pentobar-

bital (30 mg/kg). Under anesthesia, the dorsal fur of the animals was

shaved and depilated with 8% sodium sulfide. A 30% TBSA full-

thickness flame burn was produced by igniting 3% napalm for

10 seconds on the depilated dorsum.Mice in control group received

treatment similar to burn animals with the exception of the flame

burn treatment, whereas the mice assigned to burn plus ML-9

treatment group were received an immediately intraperitoneal

injection of ML-9 (2 mg/kg, Alexis Biochemicals, San Diego, CA)

dissolved in saline after flame burn treatment. After injury, mice

were immediately resuscitated with an intraperitoneal injection of

2.0 ml lactated Ringer’s solution. Then, mice were individually

caged, provided food and water ad libitum, and recovered from

anesthesia. At the end of experiment, blood of the anesthetized mice

from each experimental group was collected for intestinal

permeability assay. Then, mice were sacrificed for tissue harvest.

The harvested tissues were used for histological, immunofluores-

cent, and biochemical evaluation, as described blow.

In vivo intestinal paracellular permeability assay
Intestinal paracellular permeability was determined by measur-

ing the appearance in blood of a marker, 4.4 kDa fluorescein

isothiocyanate-labeled dextran (FITC-dextran) (Sigma, St. Louis,

MO). The assay of intestinal paracellular permeability was slightly

modified from the previously described methods [11–13]. Briefly,

a laparotomy was carried out under anesthesia before the animals

were sacrificed at the end of experiment. A 5-cm segment of the

ileum was dissociated beginning 5 cm proximal to the cecum, with

well-protected superior mesenteric vessels. The bilateral end of the

isolated ileum was ligated with 2-0 silk suture to prevent the

leakage of FITC-dextran. 0.2 ml of 0.1 Mol/L phosphate buffer

saline (PBS, pH 7.2) containing 20 mg of FITC-dextran was

injected into the lumen, after which the laparotomy was closed.

After 30 min, a blood sample was taken by cardiac puncture of the

mice. The blood was centrifuged at 4uC, 3000 g for 10 min, and

the plasma was taken for the analysis of FITC-dextran

concentration. The plasma was diluted at 1:10 with PBS, and

then the fluorescence intensity of the diluted plasma was measured

by using a fluorospectrophotometer (Hitachi Ltd, Tokyo, Japan)

with an excitation wavelength of 480 nm and an emission

wavelength of 520 nm. The plasma FITC-dextran concentrations

were calculated from standard curves generated by serial dilution

of FITC-dextran in PBS.

Histological analysis
The ileal tissues were promptly rinsed with cold 0.9% saline

solution and immediately fixed in 10% buffered formalin

phosphate (pH 7.0) until processing for histological sections. The

formalin-fixed samples were embedded in paraffin, and sectioned.

After deparaffinization and dehydration, the sections were stained

with hematoxylin and eosin for histological assessment of intestinal

mucosa. Histological changes of intestinal mucosa were observed

with a DM6000B microscope (Leica, Germany), and images were

obtained using Metamorph 7.5 software (MDS Analytical

Technologies, Downingtown, PA).

Immunofluorescent staining, microscopy, and image
analysis
Frozen sections of ileal tissue were fixed with 1% para-

formaldehyde in PBS containing 1 mmol/L CaCl2 for 30 min at

room temperature, then washed thrice with PBS for 5 min,

permeabilized in 1% Triton X-100 in PBS at room temperature

for 5 min. After washing with PBS, the nonspecific binding sites

were blocked with 5% normal goat serum in PBS for 30 min.

Then, the sections were incubated with monoclonal rabbit

antibody against ZO-1, occludin or claudin-1 (Invitrogen,

Carlsbad, CA) diluted at 1:200 with 1% normal goat serum in

PBS at 4uC overnight. After washing thrice in PBS, sections were

incubated with secondary Alexa Fluor 488 conjugated goat anti-

rabbit IgG antibody (Invitrogen) at 1:100, Alexa Fluor 594-

conjugated phalloidin (Invitrogen) at 5 U/ml, and DAPI (Sigma)

for 1 hour at room temperature. After washing thrice in PBS,

sections were mounted using Slowfade reagents (Invitrogen).

Images were obtained using a TCS SP5 laser confocal microscopy

(Leica, Germany).

Immunoblot analyses of MLCK, MLC and phosphorylated
MLC in intestinal mucosa
After the animals were sacrificed, a 5 cm ileal segment was

taken to harvest mucosa by a glass slide. The harvested mucosa

were homogenized with 10 volumes of ice-cold RIPA buffer

containing 150 mM NaCl, 10 mM Tris-HCl, pH 7.5, 1% sodium
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deoxycholate, 1% NP-40, 10 mM EDTA, 0.1% SDS, including

both protease and phosphatase inhibitor cocktail (Sigma), followed

by a brief sonication with a sonicator (Tomy Seiko, Tokyo, Japan).

Thereafter, the homogenates were centrifuged at 4uC, 15000 g for

10 min, and the supernatants were collected to determine protein

concentration using the RC DC protein assay kit (Bio-Rad,

Hercules, CA). For the determination of MLCK, MLC and

pMLC, equal amounts of total protein extracted from the ileal

mucosa were fractionated on 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) gel and then

transferred to polyvinylidene difluoride (PVDF) membrane (Milli-

pore, Bedford, MA). After complete transfer, membranes were

blocked for 60 min at room temperature with 5% nonfat milk

dissolved in TBST buffer. After blocking, membranes were

incubated with antibodies specific for MLCK (1:1000, Sigma),

MLC (1:2000, Sigma), phosphorylated MLC (pMLC, 1:1000, Cell

Signaling, Beverly, MA), and b-actin (1:5000, Sigma) overnight at

4uC. After wash with TBST, membranes were incubated with

appropriate peroxidase-conjugated secondary antibodies (South-

ern Biotech, Birmingham, AL) at room temperature for 60 min.

The blots were visualized using Super Signal West Pico reagent

(Pierce, Rockford, IL). The chemiluminescence signal was

captured using a ChemiDoc XRS system (Bio-Rad). The densities

of the bands were quantified with Quantity One Image software

(Bio-Rad).

Statistical analysis
Data are presented as means 6 SEM. For multi-group data

analysis, one-way analysis of variance (ANOVA) was performed

using SPSS 13.0 statistical software. A p value of ,0.05 was

considered as the minimum level of significance in all cases. All

reported significance levels represent two-tailed p values.

Results

MLCK inhibition with ML-9 decreases the burn-induced
increase of intestinal permeability
By measuring the appearance in blood of 4.4 kDa FITC-

dextran which was traditionally used to measure the movement of

small molecules across the intestinal epithelium in vivo, we first did

the time-course analysis of intestinal paracellular permeability in

mice subjected to 30% TBSA full-thickness burn. As shown in

Fig. 1A, when compared with that of control, the concentration of

plasma FITC-dextran started to increase significantly at 1 hour

following burn injury, peaked at 6 hour with approximately 3 folds

of control, and still significantly higher than that of control at 24 h

postburn. These results indicate that the intestinal paracellular

permeability is significantly increased after severe cutaneous burn

injury.

It has been well recognized that increased MLC phosphoryla-

tion triggered by activated MLCK is critical to intestinal barrier

defect both in vivo and in vitro [7,8]. Thus, based on the above data

showing that the postburn intestinal permeability increased

significantly and peaked at 6 h, we asked whether in vivo inhibiting

MLC phosphorylation with ML-9, an MLCK inhibitor, could

ameliorate the increased intestinal permeability induced by severe

burn injury, and selected postburn 6 h as the time point for further

studies. Our preliminary experiments proved that ML-9 alone had

no obvious effect on intestinal permeability in normal balb/c mice

(data not shown). As illustrated in Fig. 1B, although plasma FITC-

dextran concentration in burn plus ML-9 treatment group was still

a little bit higher than that in control group, it was significantly

lower than that in burn group, indicating that in vivo inhibition of

MLCK activity is capable of attenuating the increased intestinal

permeability induced by severe burn injury.

MLCK inhibition with ML-9 alleviates the histological
damage of intestinal mucosa following burn injury
As shown in Fig. 2A, histological examination of distal ileum

showed normal appearing villi in mice of control group. However,

the ileal mucosa tissue was seriously damaged in mice of burn

group, which was characterized by loss of partial epithelial cells,

exposed lamina propria, degeneration, necrosis, as well as signs of

inflammatory cell infiltration at 6 h after burn injury (Fig. 2B).

Sections from murine ileum of burn plus ML-9 treatment group

showed an appearance similar to that of control group, with near-

normal appearing villi, but still a few of infiltrating inflammatory

cells (Fig. 2C). These data indicate that in vivo inhibition of MLCK

Figure 1. MLCK inhibition with ML-9 decreases the burn-
induced increase of intestinal permeability. A. Intestinal perme-
ability was assessed by measuring FITC-dextran in the systemic
circulation after intraluminal injection of 4.4-kDa FITC-dextran at several
time points after 30% TBSA burn injury. Intestinal permeability to 4.4-
kDa FITC-dextran was significantly increased after burn injury. n = 7–10
per time point. *p,0.05 compared with 0 hour. B. Intestinal perme-
ability was determined at 6 hours after 30% TBSA thermal injury. MLCK
inhibition with ML-9 (2 mg/kg) decreases the burn-induced increase of
intestinal permeability. n = 10 or 11 per group. *p,0.05 compared with
control. #p,0.05 compared with burn.
doi:10.1371/journal.pone.0034946.g001
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activity with specific inhibitor attenuates the intestinal mucosa

injury following severe burns.

MLCK inhibition with ML-9 attenuates the burn-induced
changes of tight junction proteins ZO-1, occludin and
claudin-1
To more precisely understand the intestinal barrier defect

induced by burn injury, we next evaluated the morphological

changes of zonula occludens-1 (ZO-1), a member of tight junction

proteins, by immunofluorescent antibody labeling assay. As shown

in Fig. 3, in the ileum of mice from control group, ZO-1 was

localized to the epithelial tight junctions, which is appreciated as

a series of bright green spots at the apical compartment of cell-cell

junctions. Meanwhile, ZO-1 was colocalized with the perijunc-

tional filamentous (F)-actin ring labeled as red. In contrast, this

ordered appearance of ZO-1 was disrupted in the ileum of mice

from burn group, with the loss of bright green spots standing for

ZO-1 at the apical junctions. However, the burn-induced

redistribution of ZO-1 was attenuated by ML-9 treatment. These

results indicate that the intestinal barrier function disruption is

accompanied by the reorganization of tight junction protein ZO-1.

Tight junction protein occludin was mainly localized in

cytoplasm and epithelial tight junctions in the ileum of control

mice (Fig. 4). After burn injury, occludin expression was markedly

increased in cytoplasm and decreased in epithelial tight junctions.

The changes of occludin expression was attenuated by ML-9

treatment. Unlike ZO-1 and occludin, claudin-1 was predomi-

nantly localized in cytoplasm in the ileum of control mice (Fig. 5).

Caludin-1 expression was markedly elevated in cytoplasm

following burn injury. The increase of cytoplasmic claudin-1

expression was inhibited by ML-9 treatment.

MLCK inhibition with ML-9 abolishes the increase of MLC
phosphorylation after burn injury
It has been well documented that MLCK-dependent MLC

phosphorylation is critical to intestinal barrier disruption [7,8]. We

and other investigators have previously demonstrated that in-

creased MLC phosphorylation and MLCK protein expression are

very important to intestinal epithelial barrier defect induced by

proinflammatory cytokines [14–18]. We therefore considered the

possibility that upregulation of MLCK-dependent MLC phos-

phorylation could be involved in the burn-induced defect of

intestinal barrier function. MLC phosphorylation was assessed by

immunoblot analyses of phosphorylated MLC. As shown in

Fig. 6A, MLC phosphorylation of ileal mucosa increased

significantly in burn group as compared with that in control

group (p,0.05), whereas ML-9 treatment efficiently prevented the

burn-induced increase of MLC phosphorylation.

MLCK has been proven to be the predominant determinant of

MLC phosphorylation in intestinal epithelial cells [7,8]. Thus, we

next evaluated MLCK protein expression in ileal mucosa. As

illustrated in Fig. 6B, a significant increase of MLCK expression

was induced in burn group when compared with control group

(p,0.05). However, ML-9 treatment had no significantly statistical

effect on the burn-induced increase of MLCK protein expression

in ileal mucosa.

Discussion

In this study, it is demonstrated that severe burn injury causes

the increase of intestinal permeability, and that the increased

intestinal permeability induced by burn injury is accompanied by

Figure 2. MLCK inhibition with ML-9 alleviates the histological
damage of intestinal mucosa following burn injury. Hematoxylin
and eosin staining of distal ileal segments was performed at 6 hours
following 30% TBSA burn. A. Normal appearance was shown in the
ileum from control mice. B. Histological damage characterized by loss of
partial epithelial cells, exposed lamina propria, degeneration, necrosis,
as well as signs of inflammatory cell infiltration was visualized in the
ileum from burned mice. C. An appearance similar to control mice was
shown in ileum from burned mice treated with ML-9, with near-normal
appearing villi and a few of infiltrating inflammatory cells. Data are
representative of five independent experiments. Scale bar = 100 mm.
doi:10.1371/journal.pone.0034946.g002

Figure 3. MLCK inhibition with ML-9 attenuates the burn-
induced reorganization of tight junction protein ZO-1. Frozen
sections of distal ileum were labeled for ZO-1 (green), F-actin (red) and
nuclei (blue) at 6 hours after 30% TBSA burn. ZO-1 was localized to the
epithelial tight junctions, and colocalized with the perijunctional F-actin
ring in the ileum from control mice. ZO-1 was stained at the apical
junctions in ileum from burned mice, with the loss of ZO-1 at the apical
junctions. The burn-induced reorganization of ZO-1 was attenuated in
the ileum from burned mice treated with ML-9. Data are representative
of five independent experiments. Scale bar = 10 mm.
doi:10.1371/journal.pone.0034946.g003
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the histological damage of intestinal mucosa, redistribution of tight

junction protein ZO-1 as well as upregulation of both MLCK

protein and MLC phosphorylation. Our present study also reveals

that MLCK inhibition with specific inhibitor ML-9 attenuates the

burn-induced intestinal barrier disruption in vivo. These findings

provide a new insight into the mechanisms involved in the

intestinal barrier breakdown caused by severe burn injury.

It has been well documented that many critical surgical diseases,

such as shock, trauma and burn injury, causes the disruption of

intestinal epithelial barrier function, leading to the leakage of

bacteria, microbial products or other antigens from the intestinal

lumen into the mucosa or systemic circulation to initiate or

exacerbate an inflammatory response [1,2,4]. Here, we demon-

strate that intestinal epithelial permeability to 4.4 kDa FITC-

dextran starts to increase at 1 hour, peaks at 6 hours, and is still

higher than sham burn at 24 hours following burn injury. This

time-course pattern of postburn intestinal permeability is similar to

a recently published study which reveals intestinal permeability to

4 kDa FITC-dextran peaks at 4 hours and returns to baseline at

24 hours following severe burn [19]. In addition, our present data

show that the burn-caused increase of intestinal permeability is

accompanied by the histological damage of intestinal mucosa,

which is consistent with other previous studies [10,19]. Taken

together, an intact intestinal epithelial barrier function is disrupted

after severe thermal injury.

Given that the intestinal barrier disruption is induced following

severe burn, the underlying mechanisms are still incompletely

elucidated. Actually, the early systemic and intestinal damage

caused by thermal injury is orchestrated by a series of

pathophysiological events such as ischemia, hypoxia, and in-

flammation, which have been demonstrated to contribute to

intestinal barrier dysfunction. We and others have previously

shown that hypoxia or ischemia, which occurs rapidly following

severe burns, is capable of causing barrier disruption [20–23].

Furthermore, it has been well documented that some proin-

flammatory cytokines such as TNF-a, IL-1b, IL-6 and IFN-c are

significantly up-regulated in severely burned mice, rats and

patients [24–26]. These up-regulated proinflammatory cytokines

may contribute to the burn-induced intestinal barrier disruption.

We, along with other investigators, have previously revealed that

proinflammatory cytokines, including IFN-c, TNF-a, IL-1b, IL-6,
IL-13 and TNF superfamily member LIGHT, are able to induce

intestinal epithelial barrier defects [14–18,27–30]. Hence, it is

reasonable to suggest that ischemia, hypoxia and inflammation

contribute to the intestinal epithelial barrier breakdown induced

by severe burn injury.

Intestinal barrier function disruption is characterized by the

increased paracellular permeability as well as the changes of tight

junction protein expression and organization [31,32]. Previously

published data have demonstrated that hypoxia and proinflam-

Figure 4. MLCK inhibition with ML-9 attenuates the burn-
induced reorganization of tight junction protein occludin.
Occludin was mainly localized to cytoplasm and epithelial tight
junctions in the ileum from control mice. The burn-induced re-
organization of occludin was attenuated in the ileum from burned
mice treated with ML-9. Data are representative of five independent
experiments. Scale bar = 10 mm.
doi:10.1371/journal.pone.0034946.g004

Figure 5. MLCK inhibition with ML-9 inhibits the burn-induced
elevation of tight junction protein claudin-1. Claudin-1 was
predominantly localized to cytoplasm in the ileum from control mice.
Claudin-1 expression was markedly elevated in cytoplasm in the ileum
from burned mice. The burn-induced increase of caludin-1 expression
was inhibited by ML-9 treatment. Data are representative of five
independent experiments. Scale bar = 10 mm.
doi:10.1371/journal.pone.0034946.g005
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matory cytokines are able to induce the relocalization of tight

junction proteins [14–16,21,33]. Here, we show that the intestinal

barrier defects following severe burn injury is accompanied by the

reorganization of tight junction proteins ZO-1, occludin and

claudin-1. This is similar to the previous study revealing that both

decreased expression and reorganization of intestinal tight

junction proteins ZO-1 and occludin are induced in balb/c mice

undergoing a 30% TBSA steam burn [34]. However, it has been

reported that both mRNA and protein expression of occludin are

up-regulated in Wistar rats inflicted with 30% TBSA scald injury

[35]. Thus, it is suggested that the reorganization of tight junction

proteins is involved in the burn-induced intestinal barrier

disruption, whereas the role of altered expression of tight junction

proteins is still controversial, and need to be defined.

MLCK activation, which directly leads to the phosphorylation

of MLC, has been viewed as a common final pathway of acute

tight junction regulation in response to a broad range of stimuli

[7,8]. It has been reported that MLCK activation alone is

sufficient to increase tight junction permeability, which is

associated with biological and morphological reorganization of

the tight junction proteins ZO-1 and occludin [9]. Our previous in

vitro studies have shown that increased MLC phosphorylation

mediated by upregulated MLCK protein expression is critical to

barrier breakdown induced by hypoxia or proinflammatory

cytokines [14–16,21,22,30], and that the barrier dysfunction is

prevented by pharmacological MLCK inhibition [14,21,22,30]. In

this study, we demonstrate that after severe burn injury, intestinal

barrier breakdown is accompanied by the upregulation of both

MLCK protein expression and MLC phosphorylation in ileal

mucosa. In addition, MLCK inhibition with ML-9, an MLCK

inhibitor that is known to block MLCK activity [21,22,36,37], not

only abolishes the burn-induced increase of MLC phosphorylation

in ileal mucosa, but also attenuates the increased intestinal

permeability, histological damage of mucosa, as well as re-

organization of tight junction protein ZO-1 following severe

thermal injury. Thus, it is indicated that MLCK-dependent MLC

phosphorylation signaling pathway is involved in the intestinal

barrier disruption induced by severe burn injury.

It should be noted that MLCK inhibition with ML-9 just

ameliorates, but not corrects, the burn-caused intestinal barrier

breakdown. Thus, other signaling pathways should be considered

in the pathogenesis of intestinal barrier disruption following severe

burn injury. For example, the accumulating published data have

shown that the percentage of apoptotic intestinal epithelial cells is

significantly increased in mice suffering from 30% TBSA

cutaneous full-thickness burn [38–40]. Our previous studies have

also shown that the increase of apoptosis is accompanied by the

increased Caspase-3 activity and the decreased Bcl-2 expression in

intestinal epithelial cells after 30% TBSA burn injury [41–43].

Although the relevance of single-cell apoptosis to intestinal barrier

dysfunction remains controversial owing to differing results in

diverse experimental systems [44–48], extensive apoptosis of

epithelial cells may lead to intestinal barrier dysruption. Therefore,

the burn-induced increase in epithelial cell apoptosis may

contribute to intestinal barrier dysfunction following thermal

injury. In addition, we have previously demonstrated that Rho-

associated kinase is involved in the intestinal barrier dysfunction in

rats undergoing 30% TBSA thermal injury, and that pharmaco-

logical inhibition of Rho-associated kinase attenuates the burn-

induced intestinal barrier dysfunction [49]. Moreover, it has been

reported that Toll-like receptor 4 and p38 mitogen-activated

protein kinase signaling pathways also play critical roles in

intestinal epithelial barrier disruption following severe burn injury

[50,51].

In summary, our present data demonstrate the involvement of

MLCK-dependent MLC phosphorylation signaling pathway in

intestinal barrier dysfunction following severe burn injury. To the

best of our knowledge, this is the first in vivo experimental study

providing direct evidence to show the role of MLCK-dependent

MLC phosphorylation in burn-induced intestinal epithelial barrier

disruption. It is suggested that MLCK-dependent MLC phos-

Figure 6. MLCK inhibition with ML-9 abolishes the increase of
MLC phosphorylation after burn injury. A. Both phosphorylated
MLC and total MLC in ileal mucosa were determined by Western blot at
6 hours after 30% TBSA burn. MLC phosphorylation was significantly
increased following burn injury. MLCK inhibition with ML-9 abolishes
the burn-caused increase of MLC phosphorylation. Data are represen-
tative of five similar experiments. *p,0.05 compared with control.
#p,0.05 compared with burn. B. MLCK protein expression in ileal
mucosa was analyzed by Western blot at 6 hours after 30% TBSA burn.
Burn injury induced a significant increase of MLCK protein expression.
ML-9 treatment had no significantly effect on the burn-induced increase
of MLCK protein expression. Data are representative of five similar
experiments. *p,0.05 compared with control.
doi:10.1371/journal.pone.0034946.g006
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phorylation may be a critical target for the therapeutic treatment

of intestinal epithelial barrier disruption after severe burn injury.
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