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Abstract

An emerging idea in olfaction is that temporal coding of odor specificity can be intrinsic to the primary olfactory receptor
neurons (ORNs). As a first step towards understanding whether lobster ORNs are capable of generating odor-specific
temporal activity and what mechanisms underlie any such heterogeneity in discharge pattern, we characterized different
patterns of activity in lobster ORNs individually and ensemble using patch-clamp recording and calcium imaging. We
demonstrate that lobster ORNs show tonic excitation, tonic inhibition, phaso-tonic excitation, and bursting, and that these
patterns are faithfully reflected in the calcium signal. We then demonstrate that the various dynamic patterns of response
are inherent in the cells, and that this inherent heterogeneity is largely determined by heterogeneity in the underlying
intrinsic conductances.
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Introduction

Attention has long focused on the role of the first olfactory relay,

e.g., the arthropod antennal/olfactory lobe and the mammalian

olfactory bulb, in generating the spatiotemporal code by which

odors are recognized and discriminated (e.g., [1], [2], [3], [4], [5]).

However, recent findings indicate that, at least in insects, the

primary ORNs themselves are capable of generating temporal

activity patterns in an odor- and olfactory receptor (OR)-

dependent manner [6], [7], [8], [9], and this input potentially

drives the temporal structure of responses seen in the first olfactory

relay [6]. These findings shift at least partial responsibility for

generating the spatiotemporal code for odors to the olfactory

periphery. They also imply that in addition to their primary

function of signal detection, amplification, and adaptation, ORNs

are capable of producing heterogeneous temporal response

patterns with sufficient consistency to be reliably interpreted

across the population of ORNs expressing the same OR.

The idea of relying to any extent on a peripherally-generated

temporal code raises a number of fundamental questions, the most

important of which is how such heterogeneity in discharge pattern

is generated and controlled. Nagel and Wilson recently addressed

this question using extracellular and local field potential (LFP)

recordings from single palp sensilla in insects [8]. They

hypothesized that the odor-specific dynamic patterns of response

in Drosophila ORNs can be largely explained by two elementary

consecutive events - transduction and spike generation. Trans-

duction could be reduced to a simple kinetic scheme of ligand-

receptor interaction with adaptive feedback control, while spike

generation could be described by a differentiating linear filter [8].

While such a reduced, 2-stage model could successfully account for

the differences observed in response pattern, it is unclear to what

extent the LFP, being an integral measure of receptor activity,

reflects the actual dynamics of the underlying receptor current.

The LFP could potentially mask patterning contributed by

elements downstream of the OR that further shaped the output

of the cell. While insects express ionotropic ORs [10], [11], [12],

there is controversial evidence for the possible involvement of

metabotropic signaling [13], [14], suggesting that the ionotropic

OR may possess intrinsic ability to interact with downstream

targets in ligand-dependent manner. Support for this idea comes

from evidence that some mammalian ionotropic glutamate

receptors are now thought to drive second messenger signaling

[15], [16], and that some mammalian GPCRs, including ORs,

may activate divergent transduction pathways in an ligand-

dependent or ligand-biased manner [17], [18], [19], [20], [21].

Here, we explore in more detail how heterogeneity in discharge

pattern is generated and controlled in general. We use lobster

ORNs, an arthropod model that allows direct patch clamp

recording of the receptor current, and one in which there is more

compelling evidence for the involvement of metabotropic signaling

downstream of ionotropic receptor activation. We demonstrate

that several distinct patterns of response can be distinguished

among lobster ORNs, including tonic excitation, tonic inhibition,

phaso-tonic excitation, and bursting. We show this heterogeneity

in responsiveness is reflected in the calcium signal and can be used

to determine the ensemble behavior within the population of

ORNs. Correlation analysis of calcium signals obtained from

populations of ORNs associated with individual olfactory sensilla

(aesthetasc) indicates that the response dynamics of the ORNs are

likely inherent in the cells. Whole cell voltage-clamp recording
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shows that the temporal dynamics of the receptor current correlate

with the temporal dynamics of the output of the ORN, indicating

that the temporal dynamics are largely determined by heteroge-

neity in the net activating (transduction) current. Finding that

different odorants can generate excitatory and inhibitory responses

in the same tonic ORN argues this understanding potentially

extends to odor-specific temporal activity in ORNs. Our findings

collectively argue that the mechanism underlying general

heterogeneity in discharge pattern, and likely odor-specific

heterogeneity, in lobster ORNs is more complex than can be

accounted for strictly by ligand-receptor channel interaction.

Materials and Methods

Preparation
Lobster ORNs were studied in an in situ preparation developed

earlier [22], [23]. Briefly, a single annulus was excised from the

olfactory organ (the lateral antennular filament) and the cuticle on

the side opposite the olfactory (aesthetasc) sensilla was removed to

provide better access to the cell bodies of the approximately 300

ORNs associated with each of the approximately 14 aesthetasc

sensilla per annulus. Following treatment with trypsin, papain, or

collagenase (1 mg/ml) the ensheathing tissue covering the clusters

of ORNs was gently removed to allow access to individual soma.

The specimens were mounted on a plastic or glass-bottom 35 mm

Petri dish and placed on the stage of inverted microscopes

(Axiovert 100, Zeiss, Germany or IX-71, Olympus, Japan). The

cell bodies of the ORNs were continuously superfused with

Panulirus saline (PS) containing (mM): 486 NaCl, 5 KCl, 13.6

CaCl2, 9.8 MgCl2 and 10 HEPES, pH 7.9. A second superfusion

flow of PS allowed odorants to be delivered exclusively to the

olfactory sensilla containing the outer dendrites of the ORNs. Both

superfusion contours were gravity fed at constant rates of flow.

Odorants and odorant delivery
Unless otherwise noted, the odorant was an aqueous extract of

TetraMarine (TET, Tetra Werke, Melle, Germany), a commer-

cially available marine fish food. Flakes of TET were powdered,

dissolved in water (0.1 g/ml), filtered through a 0.2 mm syringe

filter, and diluted 1:200 in PS for experiments. The final

maximum concentration was ,0.5 mg/ml. The odorant stream

was switched with the flow of PS that otherwise continuously

superfused the sensilla (both ,250 ml/min) using a multi-channel

rapid solution changer (RSC-160, Bio-Logic) under software

control (Clampex 9, Molecular Devices). Stimulus intensity was

controlled by changing the duration of the exposure to the

odorant. The initial duration of the odorant pulse, the maximum

exposure time, and the interstimulus interval were selected as

necessary for different preparations and/or individual ORNs. The

maximum exposure time usually did not exceed 1 s, which allowed

the odorant to reach its maximal concentration (0.5 mg/ml TET).

Importantly, while the approach does not allow precise control of

the absolute odorant concentration, it provides highly reproduc-

ible stimulus intensity profiles (Figure 1A, 1B) and appears to add

little if any nonlinearity to changing stimulus intensity (compare

TET responses and K+ induced ORN depolarization, Figure 1B).

Electrophysiological recording and data analysis
Electrophysiological evaluation of ORN activity was carried out

using different approaches. Action potentials (spikes) were

recorded from ORNs extracellularly using loose-patch recording.

To characterize odor evoked currents of tonically active ORNs we

used whole cell voltage clamp recording and whole cell ‘‘zero

current’’ voltage mode to record spontaneous burst generation in

rhythmically active ORNs. Patch electrodes were pulled from

borosilicate capillary glass (Sutter Instrument, BF150-86-10) using

a Flaming-Brown micropipette puller (P-87, Sutter Instrument)

and filled with PS (extracellular recording). Intracellular solution

used in whole cell recordings contained (in mM): KCl180 or

210 mM; NaCl30 or 0 mM; GTP 0.5 mM; ATP 0.5 mM; MgCl2

1 mM; Glucose 696 mM; Hepes 10 mM and Tris-base to adjust

pH to 7.8. Resistance of the electrodes was 1–5 mOms as

measured in PS. Voltages/currents were measured with an

Axopatch 200B patch-clamp amplifier (Axon Instruments) using

an AD–DA converter (Digidata 1320A, Molecular devices), low-

pass filtered at 5 kHz, sampled at 5–20 kHz. Data were collected

and analyzed with pCLAMP 9.2 software (Molecular Devices) in

combination with SigmaPlot 10.0 (SPSS). When necessary,

multiunit recordings sampled usually at 20 kHz were sorted into

individual unit recordings using the template search procedure

provided in pCLAMP 9.0 software. The time of occurrence of the

spike was taken as the time of peak current deflection, i.e., the peak

of the spike.

Calcium imaging and data analysis
After enzymatic treatment and cleaning, the olfactory anten-

nular segments were placed in an Eppendorf tube in PS containing

the fluorescent calcium indicator of choice (Fluo-4AM or Fura-

2AM) at 5–10 mM prepared with 0.2–0.06% Pluronic F-127

(Invitrogen). Fura-2AM was used to estimate the absolute calcium

concentration (see [23] for details). The tube was shaken for about

1 hr on an orbital shaker (,70 rpm). The tissue was transferred

into fresh PS and mounted for imaging. After the dye loading the

preparation typically remained viable for 2–4 hr. Fluorescence

imaging was performed on an inverted microscope (Olympus IX-

71) equipped with a cooled CCD camera (ORCA R2, Hama-

matsu) under the control of Imaging Workbench 6 software

(INDEC Systems). The software allows for complete integration

with electrophysiological recording using Clampex 9, including

triggering of the imaging system and synchronization of both

optical and electrical signal acquisition. A standard FITC filter set

(excitation at 510 nm, emission at 530 nm) was used for single-

wavelength measurements. Ratiometric imaging was performed

using a Fura-2 filter set (excitation at 340 nm or 380 nm, emission

at 510 nm). Images were collected usually at the rate ,3, 5 or

24 Hz (specified in the figure legends). Recorded data were stored

as image stacks, analyzed off-line using Imaging Workbench 6 or

ImageJ 1.42 (available in the public domain at http://rsbweb.nih.

gov/ij/index.html).

Numerical analysis including event analysis and kinetic

parameter estimates was performed using either ClampFit 9

(Molecular Devices), or SigmaPlot 10 (Systat). For calcium

oscillation analysis the recordings were first compensated for any

slow drift in fluorescent intensity and the threshold based event

detection algorithm (ClampFit) was applied to identify individual

oscillatory events. The time of occurrence of the oscillation was

taken as the time of the oscillation peak. Inter-event intervals were

taken as the time between the peaks of two subsequent events. The

oscillation period for rhythmically active ORNs was estimated as

the mean of a Gaussian approximation to the inter-event interval

distribution. The data are presented as the mean6SEM of n

observations unless otherwise noted. In total, data were obtained

from 31 lobsters. All recordings were performed at room

temperature.

Correlation analysis of the calcium signals of ORN ensembles

was performed using original algorithms developed in Matlab

(Mathworks, Inc). A burst-triggered averaging method was used

for the detection of correlated activity for its simplicity to account
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for non-stationarity of the calcium signal. 1000 jittered surrogates

of burst triggered average was generated by jittering each burst

time with a 4 sec standard deviation Gaussian distribution. The

surrogates were used to estimate the null hypothesis. This

procedure is effective when the non-stationarity is slowly changing

(over a few sec) relative to the rapid temporal features of neural

activity. Z-scores were plotted without adjusting for multiple

comparisons.

Results and Discussion

Lobster ORNs collectively show different patterns of
discharge

As reported earlier [24], lobster ORNs fall into two global

subpopulations that differ in their spontaneous activity and pattern

of spiking: tonically active cells that generate spikes at different

frequencies (Figure 2A), and rhythmically active cells that

generate bursts of spikes at different frequencies (Figure 2D).

Our data suggest the tonically active cells to be further divided into

at least three distinguishable groups based on their pattern of odor

response. (1) Tonic excitatory neurons (,34%) linearly follow the

time course of the stimulus (Figure 2A). Their spontaneous

frequency ranges from 0.01 to 8.25 Hz with a mean discharge of

2.460.2 Hz, n = 87. While the amplitude of the responses

proportionally reflects the stimulus intensity, the response pattern

does not significantly change with stimulus intensity. (2) Phaso-

tonic neurons, (,62%) respond with a distinct transient peak that

varies in amplitude from cell to cell and stimulus intensity

(Figure 2B). The transient component is followed by a slow linear

component kinetically similar to the responses observed for tonic

cells. The spontaneous frequency of these ORNs ranges from 0.01

to 8.3 Hz, with a mean discharge of 2.360.13 Hz, n = 160. (3)

Tonic neurons with inhibitory responses (,4%) show a decrease in

spontaneous activity (range, 1.0 to 8.7 Hz, mean – 3.660.9 Hz,

n = 10) in response to complex odor stimulation. The percentage

of the ORNs characterized by inhibitory response patterns

increased when the ORNs were stimulated by some single

compounds (e.g. histamine, 10–40 mM, ,30%, 6 out of 17 cells,

Figure 2C). The inhibitory response is accompanied by a

hyperpolarization in a concentration-dependent manner

(Figure 2C), although it is unclear whether this is the result of

a hyperpolarizing outward current or inhibition of an excitatory

conductance that is partially active at rest. While our previous

findings suggest that histamine may directly activate chloride

Figure 1. Extracellular responses of individual lobster ORNs in situ. A (left panel) - Raster displays of individual action potentials from a
single ORN in response to repetitive stimulation with an odor (within block) at increasing stimulus intensities (between blocks, lowest intensity at
bottom) obtained by increasing the duration of the stimulus. A (right panels) - Corresponding peri-stimulus time histograms reflecting the average
responses to each stimulus intensity. A (top right panel) – peri-stimulus time histogram shown in higher time resolution within time interval marked
by horizontal grey bar (top left). The data are presented as mean6SEM (n = 12). Grey trace is peri-stimulus time histogram showing the same ORN
activity evoked by 500 mM KCl applied at the same duration (B). The constancy of the response indicates constancy of the odor intensity profile. B -
Peristimulus time histograms of the same cell to different durations of odor stimuli (TET, black colored histograms) compared to cell depolarization
with potassium chloride (500 mM KCl, grey colored histograms). Increments in duration for TET were 40 ms (saturation at ,160 ms), those for KCl
were100 ms (saturation at ,1000 ms). C - Comparison of the dose-response relationships for the odor stimuli (black symbols) and KCl (grey symbols)
in B. The nonlinearity of the response to TET re that to K+ (A, top right; C, right panel) suggests specific odor amplification. Smooth line - Hill equation
approximation with Fmax = 9; x1/2 = 67; h = 4.15; Fb = 4. Bin width - 200 ms. To generate the dose-response relationships shown in C, mean discharge
frequency was determined within 2 sec intervals starting from stimulus onset. The data are presented as the mean6SEM of at least 5 responses.
Vertical lines mark stimulus onset. All recordings were obtained from the same ORN.
doi:10.1371/journal.pone.0034843.g001
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channels located on the ORN somata [25], typicaly the activity of

the histamine gated chloride channels, including those expressed

in lobster ORNs, is characterized by profound inactivation and

desensitization (personal observation, [25]). Thus histamine acting

here as an inhibitory odorant presumably is through a different

mechanism than in the case of the ligand-gated chloride channel

described previously.

As mentioned above some lobster ORNs are inherently

rhythmically active. Figure 2D shows the spontaneous activity

of these ORNs recorded extracellularly (top panels, two ORNs

with different bursting frequencies and burst patterns) and in

whole-cell (‘‘zero current’’) voltage mode (bottom panels, two

ORNs with different bursting parameters). Brief odor stimuli elicit

bursts in these ORNs in a phase-dependent manner [24]. Since

the coding of different parameters of odor stimuli based on

pacemaker-like neurons is a complex phenomenon, we will not

consider it here other than note that the information conveyed by

rhythmically active neurons is presumably qualitatively different

from that conveyed by graded trains of action potentials and is

inherent in ensemble of cells, not individual ORNs.

The pattern of discharge reflects the dynamics of the
underlying receptor current

Under whole-cell, voltage-clamp (holding potential set between

270 and 260 mV), odorants activated either excitatory inward or

inhibitory outward currents (Figure 2A, 2B, 2C, left panels). As

with the odor-evoked activity patterns recorded extracellularly,

three basic response patterns could be observed: tonic (95/174

cells tested, ,55%, Figure 2A), phaso-tonic (,39%, Figure 2B),

and inhibitory (,6% when stimulated with TET) suggesting that

the discharge pattern potentially correlates with the shape of the

transduction current. Recording extracellularly and in the whole-

cell mode from the same ORN not only support this idea, but

indicate that the pattern of discharge closely reflects the dynamics

of the underlying whole-cell receptor current (Figure 2A, 2B,
2C, right panels) and does not require a significant contribution

from downstream conductances (e.g., voltage-gated channels

generating action potentials).

While the detailed mechanism of response generation in lobster

ORNs is still unclear, the input current is driven by iGluRs [26],

[27] that are orthologs of insect IRs and form heteromeric

ionotropic receptor-channels [11], [12]. In lobster ORNs,

however, there is long standing evidence for the involvement of

metabotropic signaling in olfactory transduction [28], [29],

implying that lobster IRs are capable of driving metabotropic

signaling. Indeed, the fast phasic component seen in the response

of some lobster ORNs suggests amplification possibly mediated by

metabotropic signaling (Figure 1B, 2B). The idea that ionotropic

receptors drive metabotropic signaling in lobster ORNs would be

consistent with recent evidence that insect ORs can activate G

proteins in vitro [14] and can activate PLC in vivo [30], suggesting

that insect ORs, also ionotropic receptors [10], [13], retain the

capacity to couple to second messenger signaling through G

proteins. It would also be consistent with recent evidence that

insect gustatory receptors (GRs), generally held to be traditional

GPCRs, can also function as ionotropic receptor-channels [31].

Thus, emerging evidence in insects is consistent with the present

findings in lobster that the mechanism underlying heterogeneity in

discharge pattern, and likely odor-specific heterogeneity, is more

complex than can be accounted for strictly by ligand-ionotropic

receptor channel interaction, although more work clearly is

needed to resolve this important question.

The calcium signal reflects the electrophysiological
patterning and suggests independence of ORN activity

To determine whether the calcium response reflects the

dynamics of the various types of electrophysiological responses,

we recorded the electrophysiological activity of individual ORNs

simultaneously with calcium imaging and averaged and compared

the resulting calcium signal with the spike discharge. The calcium

response reflected the dynamics of ALL the three patterns of tonic

response (Figure 3). The polarity of the calcium response

(increase vs decrease of [Ca2+]i) allowed unequivocal identification

of ORNs with inhibitory responses (Figure 3A vs 3C). Note that

different stimuli could elicit responses of different polarity within

the same ORN (Figure 3C, middle, inset). The ascending phase

of the phaso-tonic responses generated a characteristic ‘‘brake-

point’’ in the calcium signal that allowed these responses to be

distinguished from the monotonic response of tonic ORNs

(Figure 3A vs 3B, right panels).

The calcium signal also reflected the dynamics of the bursting

ORNs. Spontaneous calcium oscillations had an average peak

amplitude of 214617 nM (n = 17 cells). We assume that these

calcium oscillations reflect the spontaneous activity of bursting

ORNs since (1) while individual cells differ in their patterns of

oscillations, the oscillatory pattern for any given cell is consistent

(Figure 4A, left, middle), (2) the frequency of the calcium

oscillations for any given cell is consistent even though it differs for

different cells (Figure 4A, left, right), (3) the oscillating neurons

co-localize in the same cluster with those demonstrating steady

state calcium signals (Figure 4, see also [23]) and (4) the overall

distribution of the calcium oscillation frequencies is in good

agreement with the bursting distribution frequencies

(0.1660.01 Hz, ranged from 0.015 to 0.9 Hz, n = 84, compare

with [24]). Indeed, we could show this directly by combining

calcium imaging of individual oscillating ORNs with extracellular

electrophysiological recording from the same cells. As shown for

one cell in Figure 4B, each burst is accompanied by a robust

calcium oscillation. Comparison of calcium oscillations and

bursting dynamics suggests that burst generation appears earlier

in the calcium oscillation cycle and perhaps even triggers calcium

increase (Figure 4B, right). Thus, the calcium signal allows

characterizing the global output of lobster ORNs in the context of

differences in the activity patterns of individual ORNs.

To confirm the general assumption that receptor current

underlying the activity patterning is inherent in the ORNs and

does not reflect interaction between or among ORNs, we carried

out correlation analysis of the spontaneous activity of ORNs in the

same clusters, i.e., those with the greatest potential to interact,

relative to that of individual rhythmically active ORNs

(Figure 5A, 5B). Neuronal clusters and individual cell regions

analyzed were carefully selected to avoid significant overlapping of

optical signals. The raw calcium signal intensity time series were

filtered to reduce common noise and normalized (Figure 5B).

Burst-related calcium oscillations were detected by threshold-

based searching the first numerical derivative of the signal

(Figure 5B, bottom), vertical bars indicate the presumptive

burst/oscillation timing. Finally, a reverse correlation analysis was

used to test whether, and to what extent, the spontaneous activity

of the bursting ORNs could modulate activity within the same

cluster ORNs. Analogous to the spike triggered average [32], we

detected the bursting activity and averaged the time-locked

calcium image intensity within a 5 sec window (Figure 5C). If a

repeated activation or deactivation occurs, averaging would

effectively reduce the noise and reveal the interaction. Significance

of the correlation was verified with a z-test (Figure 5C).

Response Diversity in the Olfactory Periphery
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Figure 2. Basic patterns of spontaneous and odor evoked activity of lobster ORNs characterized electrophysiologically. A – tonically
active ORNs gradually increase their ongoing rate of discharge (top) or whole-cell inward currents (bottom) in a stimulus intensity dependent manner
to odorants. B – phaso-tonic ORNs are characterized by distinctive transient excitatory constituent of the ORN responses followed by slow, more
linear component kinetically similar to the responses observed for tonically active ORNs (compare with A). C – some tonic ORNs respond to odor
stimulus with inhibitory response patterns in stimulus intensity dependent manner. Histamine (400 mM – maximal concentration, C, left plots) and
TET (C, right panels) were used as stimuli. Top panels - Extracellular recording from individual lobster ORNs. Raster displays of individual action
potentials from a single ORN in response to repetitive stimulation with an odor at increasing intensity (from left to right, 6 trials shown). Left top
panel – corresponding peristimulus time histograms showing average responses. Left bottom panels – whole-cell recordings. Note, extracellular and
whole cell recordings (left panels) were obtained from different ORNs. Right plots – extracellular activity and whole cell currents recorded from the
same ORNs. ORN discharge activity is expressed as instantaneous spike frequency (F,Hz). Green traces (B, right panels) show ORN responses to
intermediate intensities of the stimulus. D – Spontaneous activity of rhythmically active ORNs. Bursting ORNs with different intrinsic bursting
frequencies recorded extracellularly (two top recordings) and using whole-cell patch clamp recording (two bottom traces). Experimental conditions:
Extracellular recordings were obtained using loose cell-attached patch recording with standard patch clamp electrode filled with PS. Whole-cell
recordings, intracellular solution (mM): KCl 210, Glucose 696, EGTA 1; Hepes 10; pH 7.8 (A, B); KAcetate 180, NaCl 30, Glucose 696, EGTA 1, Hepes 10
and pH 7.8 (C); KCl 180, NaCl 30, GTP 0.5, ATP 0.5, MgCl2 1, Glucose 696, EGTA 1, Hepes 10 and pH adjusted to 7.8 (D); mode – voltage clamp
recording (A, B, C), zero-current voltage recording (D). Holding potential was 270 mV (A, B, C), 250 mV (C, left bottom traces). Bin width – 200 ms.
Red peristimulus time histograms in A, B represent ORN activity evoked by 500 mM KCl applied at the same duration (like in the Figure 1B). Note
again, the nonlinearity of the ORN responses observed in particularly in B suggests involvement of an amplifying mechanism/s.
doi:10.1371/journal.pone.0034843.g002
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Correlation analysis of 1298 neuronal pairs detected few, if any,

correlated changes in the ORN somatic calcium signals obtained

under the experimental conditions, although we cannot totally

exclude the possibility of non-linear correlated activity or a

subthreshold crosstalk between ORNs compactly packaged in

neuronal clusters, e.g., through activity-dependent shifts in

extracellular potassium concentration. The latter might be of

particular interest in the context of bursting ORN activity which

could set subthreshold rhythm of adjacent tonically active ORNs.

Despite these caveats, the results of our correlational analysis,

together with our previous morphological evidence for the lack of

peripheral synaptic connectivity in the lobster nose [33], suggests

that lobster ORNs are independent parallel sensory detectors.

In conclusion, several basic response patterns can be distin-

guished among lobster ORNs based on their spontaneous activity

and response to odor stimulation, including tonic excitation,

inhibition, phaso-tonic excitation and bursting. Because this

heterogeneity of response pattern is also reflected in the calcium

signal, it allows better approximation of ensemble behavior across

the population. Correlation analysis of the calcium signals from

large groups of ORNs strongly implies that the response dynamics

(patterning) of the ORNs are inherent in the cells. Most

importantly, direct voltage-clamp recordings demonstrate that

the temporal dynamics of the receptor current correlate with the

temporal dynamics of the discharge of the ORN, indicating that

the patterning is largely determined by heterogeneity in the net

activating (transduction) current without a significant contribution

Figure 3. Calcium imaging of the basic lobster ORN types. Simultaneous spike (top) and calcium signal (bottom) recordings from tonically
active ORNs (with excitatory tonic (A), phasotonic (B) and inhibitory (C) response patterns). Tonically active ORNs were repeatedly stimulated by the
same stimulus intensity (four responses are shown for each ORN types) and both spike and calcium signal responses were then averaged (middle and
right panels). Right plots – same as middle in higher time resolution. Note, characteristic shape of the calcium response allows reliable distinguishing
phasotonic cells. TET (A,B) and Histamine (400 mM – maximal concentration, C) were used as stimuli. C, middle panel inset shows calcium signals from
six ORNs demonstrating both excitatory (upward traces) and inhibitory (downward traces) response patterns when stimulated by TET and Histamine
respectively. Bin width – 0.5 s (left panels), 0.25 s (right panels).
doi:10.1371/journal.pone.0034843.g003
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Figure 4. Calcium oscillations in the bursting ORNs. A - Each ORN is characterized by its own intrinsic oscillatory/bursting frequency (left, right)
and oscillation pattern (middle). To generate averaged calcium oscillation patterns oscillatory cycles were aligned relative to the peak of oscillation
cycle. Bars show standard deviation of some average values of the calcium signal. Inter -event/-oscillation interval histograms were normalized to the
total number of events included in the analysis and approximated by Gaussian distributions (right panels, smooth lines) to yield following individual
bursting ORN frequencies (Hz, from top to bottom): 0.36, 0.24, 0.11, 0.09 and 0.05. Time of a peak oscillation was taken as an event time. B -
Simultaneous spike (left top) and calcium signal (left bottom) recordings from bursting ORN. Right panel - both burst related inter spike interval
histogram and averaged calcium signal oscillation were aligned relatively to the time of the first spike in a burst. Burst parameters (B, right): number
of spikes per burst 215.160.4; interburst interval 22.960.1 s; burst duration – 0.360.007 s. Error bars are standard deviations shown for some
average values. Bin width - 0.5 s, 1 s, 2 s (A, right), and 0.005 s (B, right). Slow changes in calcium signal levels mainly caused by calcium indicator
bleaching were manually subtracted.
doi:10.1371/journal.pone.0034843.g004

Figure 5. An example of correlation analysis. ORN ensemble spontaneous activity forming single neuronal cluster (A) was analyzed relative to
that of the same cluster individual rhythmically active ORNs (A, bottom panel, blue circles). Individual cell regions analyzed were carefully selected to
avoid overlapping of optical signals (A, bottom). The raw calcium signal intensity time series (B) was filtered to reduce common noise and normalized.
Burst-related calcium oscillations were detected by threshold-based searching the first numerical derivative of the signal (B, bottom panel, vertical
bars indicate the presumptive burst/oscillation timing). Reverse correlation analysis was used to test whether, and to what extent, the spontaneous
activity of the bursting ORNs could modulate activity of ORNs within the same neuronal cluster. We detected the bursting activity and averaged the
time-locked calcium signal intensity within a 5 second window. If a repeated activation or deactivation occurs, averaging would effectively reduce
the noise and reveal the interaction. Adjacent ORNs 10 and 4 demonstrate ‘‘correlated activity’’ likely reflecting of overlapped optical signals from the
ORNs. Significance of the correlation can be verified with a non-stationarity corrected z-test (C, p#0.01 if |z|.2.58, p#0.001 if |z|.3.29).
doi:10.1371/journal.pone.0034843.g005
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from downstream conductances (e.g., voltage-gated channels

generating action potentials). Our results argue that the output

of the cells is likely more complex than can be accounted for

strictly by interaction of the ligand with an ionotropic receptor

channel.
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