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Abstract

Cells use biological signal transduction pathways to respond to environmental stimuli and the behavior of many cell types
depends on precise sensing and transmission of external information. A notable property of signal transduction that was
characterized in the Saccharomyces cerevisiae yeast cell and many mammalian cells is the alignment of dose-response
curves. It was found that the dose response of the receptor matches closely the dose responses of the downstream. This
dose-response alignment (DoRA) renders equal sensitivities and concordant responses in different parts of signaling system
and guarantees a faithful information transmission. The experimental observations raise interesting questions about the
nature of the information transmission through DoRA signaling networks and design principles of signaling systems with
this function. Here, we performed an exhaustive computational analysis on network architectures that underlie the DoRA
function in simple regulatory networks composed of two and three enzymes. The minimal circuits capable of DoRA were
examined with Michaelis-Menten kinetics. Several motifs that are essential for the dynamical function of DoRA were
identified. Systematic analysis of the topology space of robust DoRA circuits revealed that, rather than fine-tuning the
network’s parameters, the function is primarily realized by enzymatic regulations on the controlled node that are
constrained in limiting regions of saturation or linearity.
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Introduction

Cells use signal transduction pathways to respond to environ-

mental stimuli. Receptors on cell surface sense the signal, trigger

subsequent intracellular signaling cascades, and eventually create a

change either in the activity of enzymes in the cytoplasm or in

gene expressions in the nucleus. The behavior of many cell types

depends on precise sensing and transmission of environmental

conditions. In a class of cellular signaling systems, experimental

studies of the input-output properties demonstrate that the systems

show a notable feature named dose-response alignment (DoRA):

the dose-response curve of receptor occupancy aligns closely with

dose-response curves of downstream responses [1] (Figure 1a).

Evidences for such DoRA property were previously demonstrated

in many mammalian cell signaling systems. Experiments on

mitogenic responses of human and mouse fibroblast cells to the

stimulation of epidermal growth factor found a linear relationship

between the receptor occupancy and mitogenic response [2].

Dose-response aligned signaling systems observed in earlier years

include the insulin [3], acetylcholine [4], thyroid stimulating

hormone [5], and angiotensin II [6]. The most extensively

investigated signal transduction pathway that bears the feature

of DoRA is the mating pathway of Saccharomyces cerevisiae yeast cells.

Extensive DoRAs were observed from the upstream to the

downstream of the pathway: the receptor occupancy is aligned

with the G-protein activation/dissociation, the accumulated

amount of pheromone-activated Ste12, pheromone-inducible gene

expressions, and the cell-cycle arrest, despite that there are many

intermediate signaling events in the system [1,7–9].

DoRA is defined by matched dose-response curves or a linear

relationship between receptor occupancy and downstream re-

sponses (Figure 1a, 1b). As reported in Ref. [1], DoRA guarantees

that the entire range of receptor occupancies corresponds evenly

to the entire range of downstream responses; and any changes in

the receptor occupancy can be evenly discriminated in down-

stream outputs. By contrast, in a misaligned signaling system

(Figure 1c), the downstream responses would be saturated while

there are apparent ‘‘spare’’ receptors, or the vice versa, the

receptor would be saturated ahead of the downstream with

underutilized response capacity. In both cases, the receptor

occupancy is no long a constant proportion to the downstream

response (Figure 1d), and the extracellular information will not be

effectively transmitted and read out in the downstream outputs.

The DoRA property exhibited in many cellular signaling systems

presents a device in which the output at different measurement

points mirrors the percentage of receptor occupancy. This

guarantees that the external ligand concentration can be relayed

precisely deeper into the cell on which the cell operates to make

decision. The DoRA feature indicates a function of close match of

information processing in signaling systems, which is important for

the fidelity of information transmission.

The DoRA property should be preferential in signaling systems

where the precision of sensing and transmission of the external

signal of ligand concentration is required for proper cellular

functions. In budding yeast, the ability of precise discrimination

between high- and low- concentration pheromone-secreting

partners is important for the mating behavior. Experimental studies

showed that the ability of discrimination relies on the optimal
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transmission of information about the pheromone concentration

[1,10]. Both distinguishable receptor occupancy and distinguishable

downstream response of the pathway are necessary. The study of

mating projection orientation in spatial gradients of pheromone

with engineered hypersensitive yeasts (deprived of the DoRA

feature) showed that hypersensitive cells do not orient their mating

projections as precisely as wild type cells [11]. While the DoRA

property is advantageous for precise sensing and transmission of

external stimulus, signaling systems with saturated or switch-like

responses without the DoRA property are plenty [12–16]. The non-

DoRA feature might be preferred in signaling systems where the

sensitivity to the external signal of ligand concentration is more

important than the sensing precision of the signal. In fact, model

and experimental studies showed that in relays of signal transduc-

tion with multistep biochemical reactions, the more normal

behaviors are switch-like or hypersensitive response to stimulus:

the dose-response curve at downstream steps is not aligned but

become progressively more sensitive [14–16]. It moves to the left at

each downstream step and is steepened. The system response thus

becomes switch-like which can be triggered at low amounts of

environmental stimulus [15,16]. As it is unusual that the DoRA

property is preserved through chains of biochemical reactions, some

control mechanisms should operate in precise signal transduction

processes [1,14].

The experimental findings of DoRA in budding yeast and many

mammalian cell signaling systems raise interesting questions about

the nature of the information transmission and design principles

underlying the notable function in signaling systems. For the

frequently observed characteristic in signaling networks, we ask

theoretically, what type signal processing and mechanisms will

allow the system’s downstream responses align with the receptor

response. For this purpose, we restricted ourselves to enzymatic

interaction networks and applied the method that was used to

investigate biochemical adaption by Ma et al [17] to address the

question. We enumerated all possible two-node and three-node

networks by imposing the constraint of linear relationship between

the responses of input and output nodes to screen out the circuits

capable of DoRA. The mechanisms for simple and core circuits to

achieve DoRA were resolved on the base of Michaelis-Menten

kinetics. Several simple motifs that are essential for the function of

DoRA were identified. Systematic analysis of the topology of

DoRA circuits suggests that there are mainly two ways to achieve

DoRA. The function is primarily realized by enzymatic regula-

tions of either the output node or the intermediate node that are

constrained in saturated or linear regions instead of fine-tuning

any one of the parameters.

Results

Full-space screening for DoRA circuits
To identify simple network topologies that can achieve the

function of DoRA, we first carry out an extensive screening for

Figure 1. Schematic illustration of dose-response alignment and misalignment. (a) Example of aligned dose response of the receptor and
the pathway output (such as gene expressions), in which the receptor and the downstream output response to signal in coordination and with
essentially equal sensitivity. (b) The transfer function generated from (a) is essentially linear, and the difference in the receptor occupancy is evenly
distinguishable in the pathway output. (c) Examples of misaligned dose responses, in which the response sensitivity of the receptor is very different
from that of the downstream response. The pathway output would be saturated while there are still spare receptors (red), or the vice versa (blue), the
receptor response is saturated in advance of downstream response. (d) Nonlinear relationships between the receptor occupancy and downstream
output generated from (c), making either the receptor response or the downstream output less distinguishable.
doi:10.1371/journal.pone.0034727.g001

Dose-Response Alignment
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dose-response aligned circuits in all regulatory networks that are

composed of two and three interacting enzymes (Figure 2a). In

each network, enzyme A receives upstream input (dose), and

enzyme B (in two-node networks) or enzyme C (in three-node

networks) transmits outputs (response). Each node in the network

is assumed to have a fixed total concentration (normalized to 1).

An enzyme can be in active or inactive form and can be

transformed into each other. The transformation is assumed to be

catalyzed by activated enzymes in the network or by a basal

enzyme in the background. A link is either positive or negative.

For instance, a positive link from node A to node B implies that the

active form of enzyme A is able to transform enzyme B from its

inactive form to active form. We assume that the inter-conversion

between active and inactive forms of enzyme is reversible. If a

node has no agonistic regulations, a background constitutive

enzyme is assumed to perform the opposed regulation (such as the

dashed positive and negative arrows in Figure 2a). The kinetic

response of the network is described by Michaelis-Menten rate

equations, which are characterized by the Michaelis-Menten

constants (KM’s) and catalytic rate constants (k’s) of enzymes.

For each network topology, 10,000 sets of circuit parameters are

sampled in the parameter space (Figure 2b) [17,18]. The dose-

responses of input and output nodes are obtained numerically by

checking stationary steady state solutions of Michaelis-Menten

equations (Figure 2c). The resulting behavior of an individual

network with each parameter set is characterized by a linear

correlation coefficient for the dose-responses of output- and input-

node upon stimuli (Figure 2d). The behavior with a coefficient close

to 1 is considered to be capable of DoRA. For each particular circuit

architecture, we focus on how many parameter sets can achieve

DoRA. The larger is the number of parameter sets (defined as Q-

value) the more robust the circuit is considered to perform the

function. Figure 3 demonstrates the ranking of Q-values for all the

networks we have considered. Both two- and three-node networks

are drastically different in their ability to achieve DoRA function.

The Q-value falls exponentially versus the ranking, showing that

only a small fraction of networks is robust for the DoRA function.

Most of the 54 possible two-node networks are capable of DoRA

with 4 networks having Q-values larger than 15, and 9 networks

having zero Q-value. In 16038 possible three-node networks, there

are 633 possible topologies with Q-values larger than 15; and only

about 0.025% of all 1.66108 possible topology/parameter sets are

found to be capable of DoRA function.

Figure 4(a–d) demonstrates the simplest functional networks

obtained computationally. When cooperated with regulations

from background enzymes (dashed links), DoRA can be achieved

in simplest two-node networks having a single A-to-B link

(Figure 4a(i, ii)). In these simplest functional networks, the roles

of the basal regulations that make enzyme A and enzyme B

reversible can be taken over by node A and node B that feedback

on themselves (Figure 4a(iii, iv, v, vi)). The basal repression on

node A can also be replaced by a negative link from node B

(Figure 4a(vii, viii)). As each node is agonistically regulated, the

minimal number of links in these simplest two-node functional

networks is three (including possible dashed links from basal

enzymes) (Figure 4a(i–viii)). Functional networks that are more

complex are possible when additional links are appropriately

appended to the core topologies.

For simplest networks composed of three nodes, the minimal

number of links is five (include dashed links from background

enzymes). According to distinct features in architecture, the minimal

topologies that have DoRA function could be primarily classified

Figure 2. Screening for networks with DoRA function. For each
network with two nodes and three nodes, 10,000 random sets of
parameters were assigned. The corresponding kinetic equations were
solved numerically to obtain the dose-response curves. Linear
correlation coefficients were calculated subsequently from the rela-
tionship between the responses of the output node and the input
node. The number of parameter sets that render good linear output-
input dependence (Q-value) measures the ability for the corresponding
network to achieve dose-response alignment.
doi:10.1371/journal.pone.0034727.g002

Figure 3. Ranking of the Q-values. Q-values for all two-node
networks (A) and all three networks (B), both showing exponential-like
dependence on the ranking.
doi:10.1371/journal.pone.0034727.g003

Dose-Response Alignment
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into different categories (Figure 4b, 4c). The first category is mainly

featured by a direct regulation of output node C by input node A

(Figure 4b), i.e., the external stimulus is transmitted directly from the

input node to the output node. In comparison with the minimal

networks in Figure 4a, the regulation patterns of the output node in

three-node networks are primarily identical to those in two-node

networks. In this category, the DoRA function is mainly involved

with the regulation on node C by node A. In the second category of

simplest three-node circuits with DoRA function (Figure 4c), the

information is transmitted indirectly from input-node A to output-

node C through the intermediate node B that is regulated in

opposition by node A and node C. As will be discussed later in detail,

the intermediate node B in this category plays a central role in

achieving a linear relationship between node A and node C.

Functional networks that are more complex are observed to have A-

B-C loops (Figure 4d) as hybridizations of the above two categories of

minimal circuits.

Mechanisms for achieving DoRA
Output node regulation (ONR). Based on the minimal

architecture that are sufficient for DoRA, we next check the

functional networks by analyzing specific examples to clarify the

Figure 4. Simplest functional networks. The minimal networks that were identified to have the DoRA function (a–d). The red links in a network
are regulations that are confined to saturation or linear regions, i.e., motifs (denoted by Mi) that are listed in Figure 5. The red links in b(vi) is a
variation of M1 motif (VM1). The number in the bracket is Q-value for the circuit. All two-node minimal networks were found to achieve DoRA by
constraining the enzyme regulation of the output node (a, ONR). Three-node simplest networks can achieve DoRA by constrained regulations of
either the output node A (b, ONR) or the middle buffering node B (c, MNR) or both (d, ONR/MNR). Two examples of non-minimal functional networks
are illustrated in (e).
doi:10.1371/journal.pone.0034727.g004

Dose-Response Alignment

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e34727



underlying mechanisms. For the simplest two-node network with

only a link from node A to output node B (Figure 4a(i)), the kinetic

equations read,

dA

dt
~

kIAI(1{A)

(1{A)zKMIA

{
kFA

A

AzKMFAA

,

dB

dt
~

kABA(1{B)

(1{B)zKMAB

{
kFB

B

BzKMFBB

,

8>>><
>>>:

ð1Þ

where A and B represent the concentrations of active forms of

enzymes A and B. The concentrations of basal enzymes that

oppose the activations of nodes A and B have been taken into the

rate coefficients kFA
and kFB

(hereinafter the same). Examination

of the parameter sets that enable the circuit to achieve DoRA

indicates that the two Michaelis-Menten constants KMAB and

KMFBB tend to be constrained: KMAB is much smaller than the

inactive form of enzyme B and KMFBB is much larger than the

active form of enzyme B. This indicates that the activation of

enzyme B by enzyme A approaches saturation and the

deactivation of enzyme B by the basal enzyme works in the

linear region. The condition of saturation (or linearity) is that the

substrate concentration is much higher (or lower) than the

corresponding Michaelis-Menten constant, i.e., 1{BwwKMAB

(or BvvKMFBB). The equation for active form of enzyme B is

thus approximated as,

dB

dt
&kABA{

kFB
B

KMFBB

: ð2Þ

The steady state solution is,

B�~
KMFBBkAB

kFB

A�, ð3Þ

which is independent of the input strength I. The output B can

transiently respond to changes in the input, but at stable steady

state the linear relationship between node A and node B is fixed,

which is the condition for DoRA.

For other minimal networks composed of two-node in Figure 4a,

the Michaelis-Menten constants involved in regulations on the

output B are all found to be similarly constrained, i.e., the

reactions occur primarily either in the saturated or in the linear

regions. We summarized the motifs and the underlying mecha-

nisms to achieve DoRA for two-node minimal networks in Figure 5

(M1–M4). Based on the motifs, more complex networks are

possible when additional links are properly imposed. The

mechanism that gives rise to DoRA in two-node networks has

two general features: the output node is regulated directly by the

input node, and the corresponding enzymatic reactions are

constrained in limiting regions.

We next consider functional minimal circuits composed of three

nodes. As can be seen in Figure 4b, the above mechanisms for

DoRA in two-node networks are shared by the three-node networks

in which the input node A regulates directly the output node C. In

this category, only the equation for the output node C is involved

with both the input and output nodes, and the regulation on the

output node is key for establishing a linear response dependence of

node C on node A. Node B plays an assistant role that merely

regulates the behavior of node A in cooperation with the input. For

the instance of network in Figure 4b(i), the regulation pattern of the

output node is identical to the two-node circuits in Figure 4a (iii, v,

and viii) with the common DoRA motif M1.

The circuits discussed above share the commonality that the

input node regulates directly the output node, and the kinetic

equation for the output node is explicitly dependent on both the

input node and output node. The regulations on the output node

are consequently crucial for the DoRA function, which were

constrained in limiting regions of saturation or linearity. We

classify the circuits that achieve DoRA function with this

mechanism as output-node-regulation (ONR) type (M1–M4 in

Figure 5). As depicted in Figure 4a and 4b(i–v), all of the simplest

networks of two-node and a fraction of simplest three-node

networks capable of DoRA belong to this type. The circuit

Figure 4b(vi) is a variation of M1 where the negative self-loop of

the output node C is replaced with a negative feedback buffered by

node B. In this variational M1 mechanism, the regulations on both

node B and node C need to be constrained to saturation.

Middle node regulation (MNR). The second category of

minimal functional networks of three nodes in Figure 4c feature a

different character in architecture from those in Figure 4b: the

regulation of node A on node C is absent (possible link from node C

to node A) and node B is regulated by nodes A and C with

opposing signs. In these circuits, only the output node B is involved

with both input and output nodes, and is the pivot in achieving the

DoRA function. For an example, the kinetic equations for the

circuit in Figure 4c(i) read,

dA

dt
~

kIAI(1{A)

(1{A)zKMIA

{
kFA

A

AzKMFA

,

dB

dt
~

kABA(1{B)

(1{B)zKMAB

{
kCBCB

BzKMCB

,

dC

dt
~

kBCB(1{C)

(1{C)zKMBC

{
kFC

C

CzKMFC

:

8>>>>>>>><
>>>>>>>>:

ð4Þ

The linear relationship between A* and C* would be most readily

established through dB=dt~0. When the opposed regulations of

node A and node C on node B are constrained to saturation, i.e.,

(1{B)wwKMAB,BwwKMCB, the steady state solutions of A and

C achieves DoRA through,

C�~
kAB

kCB

A�: ð5Þ

Generally, the regulations on the intermediate node B in this

category are constrained and node B plays a central role in the

realization of DoRA function. We classify this type of functional

networks that achieve DoRA by constrained regulations on the

buffering node B as middle-node-regulation (MNR) type. The

regulation pattern on the node B in the network Figure 4c(i), i.e.,

node B is activated by node A and repressed by node C, is shared by

the networks of Figure 4c(ii, iii). Two primary motifs for the MNR

type DoRA are summarized in Figure 5 (M5, M6). In both cases, the

alignment is fulfilled through saturated regulations on the buffering

node B. It would be noted that for the MNR type circuits in which

node C is partially regulated by a basal enzyme, there exists an

additional scenario for DoRA. For the network in Figure 4c(i)

described by Eq. (4), one has 1{CwwKMBC and CwwKMFC

when the regulations on node C work in saturation regions, leading

to a constant steady stateB�~kFC
=kBC independent of the

input level I. This results in the linear relationship C�~
kAB(1{B�)(B�zKMCB)=f½(1{B�)zKMAB�kCBB�gA� from the

steady state solution of node B in Eq. (4). In these particular MNR

type circuits (e.g., Figure 4c(i,ii,iv,v)), the additional way to DoRA is

Dose-Response Alignment
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realized by controlling the level of active enzyme B at a constant by

constraining the regulations of output node C to saturation.

Combinational type. The ONR and MNR mechanisms for

DoRA discussed above are not exclusive to each other. They can

coexist to form combinational ONR-MNR functional circuits.

Figure 4d depicts several such hybridized minimal circuits. In this

combinational category, either the regulations of node B or node C

or both would be constrained in limiting regions in order to

achieve DoRA function. For the functional network of Figure 4d(i),

the kinetic equations read,

dA

dt
~

kIAI(1{A)

(1{A)zKMIA

{
kBABA

AzKMBA

,

dB

dt
~

kCBC(1{B)

(1{B)zKMCB

{
kABAB

BzKMAB

,

dC

dt
~

kACA(1{C)

(1{C)zKMAC

{
kCCC2

CzKMCC

:

8>>>>>>><
>>>>>>>:

ð6Þ

In contrast to the kinetics for circuits in Figure 4b and 4c, both the

equations for node B and node C are explicitly dependent on

variables A and C. According to Figure 5, constrained regulations

on either node B (M6) or node C (M1) and on both nodes could all

lead to DoRA function. In the final case, the regulations on both

nodes should coordinate in order to achieve a consistent linear

relationship between steady states A* and C*. Saturated regulations

of nodes B and C require 1{BwwKMCB, BwwKMAB, and

1{CwwKMAC , CwwKMCC , respectively. This leads to two

proportional relationships, kABA�~kCBC�, and kACA�~kCCC�.
The aligned dose-response between node A and node C can be

achieved by the constraint kAB=kCB~kAC=kCC . Similarly,

combinational mechanisms of M3 and M5 apply to the minimal

network in Figure 4d(ii). The networks in Figure 4d(iii,iv) can be

viewed as combinations of the variational M1 (VM1) mechanism

and the MNR mechanism (M6) where the negative self-loop of

node C is taken over by the negative C?B{.C feedback loop.

Figure 5. Motifs and mechanisms that are sufficient for achieving DoRA function. The nodes labeled with ‘‘R’’, ‘‘O’’, and ‘‘M’’ are input
node, output node, and middle buffering node, respectively. Dashed links are assumed as regulations from basal enzymes in the environment.
doi:10.1371/journal.pone.0034727.g005

Dose-Response Alignment
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Non-minimal Functional Networks
Classification of robust circuits. The above analyses

focused on minimal circuits and identified motifs that are

essential for DoRA function. A minimal circuit can achieve

DoRA function by a direct input-to-output link or an intermediate

node that are regulated simultaneously by the input node and the

output node with opposing signs. The minimal networks with

DoRA function are accordingly classified fundamentally into

ONR type or MNR type or ONR/MNR combinational type. But

are these simple motifs and architectures the foundation for all

possible DoRA networks? Are there more complex higher order

solutions for DoRA that do not contain these motifs? In other

words, can all possible DoRA networks be classified into ONR,

MNR, and ONR/MNR categories? To address this question, we

checked the topological structures of functional circuits. In the case

of two-node networks, the input node always regulates directly the

output node. All functional circuits contain a motif in Figure 5 (M1

to M4), and fall simply in the ONR category. To clarify structure

features in the functional networks composed of three nodes, we

focused on 633 DoRA circuits that have achieved DoRA function

more than 15 times when 10,000 parameter sets are sampled.

Analyses of these robust circuits reveal that each of them contains

at least one of the motifs that are listed in Figure 5, indicating that

the motifs are fundamental and necessary for DoRA function

(Figure 6a,5b). In non-minimal networks, a node could be multiply

activated or repressed by more than two links (e.g., Figure 4e). The

Figure 6. Analysis of 633 functional networks of three nodes with Q-value larger than 15. (a) Venn diagram of networks with three
characters: input node directly regulates output node, input and output nodes regulate the middle buffering node with opposing signs, and both. (b)
Topological clustering for DoRA networks with ONR or MNR or with both ONR and MNR. (c) Motif analysis of 633 robust DoRA networks.
doi:10.1371/journal.pone.0034727.g006

Dose-Response Alignment
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kinetic equations are more complex and the scenarios for DoRA

function are not so obvious as in minimal networks. Examinations

of complex circuits reveal that the way for the circuits to achieve

DoRA function is generally multiple but still primarily follow the

mechanisms found in minimal networks. The multiplicity of ways to

realize DoRA generally results in higher Q-values in these networks.

A detailed kinetic analysis of the multiple ways to achieve DoRA for

the specific non-minimal circuit in Figure 4e(i) is demonstrated as an

example in Supporting Information S1. In general, the robust

functional circuits can still be classified into ONR, MNR, and

ONR/MNR categories. The Venn diagram in Figure 6a shows

that, among the 633 robust circuits, there are 395 circuits of ONR

type (having A-to-C link), 43 MNR type circuits (having node B

regulated by node A and node C with opposing signs), and 195

ONR/MNR combinational type circuits (having both A-to-C link

and agonistically regulated node B by node A and node C).

Clustering of functional circuits. The structure features of

the robust functional circuits of three nodes can be directly

perceived from the clustering of networks. The clustering of the

robust circuits in each category using the Hamming distances were

shown in Figure 6b, indicating the presence of common

architecture features in each category. For instances, most of the

ONR type circuits have a positive A-to-B link and a negative self-

loop of node C (i.e., M1 motif is the most abundant). In these

robust networks, motifs M2, M4 are almost absent (i.e., no

regulation of FC on node C), and M3 motif is scarce. The structure

of MNR category is relatively simple. The pattern of A-to-B link is

identical to that of B-to-C link, and is just a reverse of C-to-B link.

The basal enzyme FB is absent in the regulation of node B (i.e.,

there is no FB-to-B link), but basal enzyme FC plays a role in over

half of the robust MNR circuits. More profound patterns are

found for the compounded category as the functional circuits share

the features of both ONR and MNR circuits.

Overrepresented motifs. In order to explore common

characters among these robust topologies of three nodes, we

searched further for overrepresented motifs in these networks.

Feedback loops of two nodes and three nodes as well as regulation

patterns of the buffering node B and output node C are used as

motifs, and their frequency of appearance in the 633 DoRA

circuits was compared with ensembles of randomized networks.

The results in Figure 6c reveal that prominently over-represented

motifs include negative feedback loops of A?C{.A loop and

A?C?B{.A(A-activate-C-activate-B-repress-A) loop, coherent

feed-forward loop A?C.{B.{A and incoherent feed-forward

loop A?C.{B/A. Experiments on the mating pathway in

budding yeast suggested that negative feedback provide a general

mechanism used in signaling systems to align dose responses and

thereby increase the fidelity of information transmission [1]. The

incoherent feed-forward loop was previously found over-

represented for the function of adaptation [17], and was capable

of the function of fold-change detection [19]. The representations

of DoRA motifs in Figure 5 were depicted in Figure 6c. Motifs

M1, M5, and M6 are over-represented (particularly M1), which is

consistent with the observations from the clustering analysis.

Discussion

By enumerating simple circuits for the frequently observed

dynamical function of dose-response alignment in signaling

systems, we have studied the organization principles for DoRA

circuits. The main functional feature of DoRA circuits is to

maintain a linear relationship between the input-node response

and output response that is independent of the external signal.

Despite the great variety of possible network architectures and

various ways for achieving DoRA in interacting enzymes, our

analyses suggest that the DoRA function can be resolved with a

limited number of DoRA motifs. The functional motifs either

consist of two nodes in which the signal is transmitted directly from

the input to the output node (M1–M4), or of three nodes where

the signal transduction is mediated by a buffering node that is

regulated opposingly by the input and output nodes (M5, M6).

The linear relationship is accomplished by dedicated constraints of

the enzymatic regulations on the controlled node to approach

appropriate limits (saturation or linear). This is significant because

the desired linear relationships are not achieved by fine-tuning any

of the network’s parameters. In our analyses, Michaelis-Menten

kinetics for enzymatic reactions was noncooperative (Hill coeffi-

cient = 1). When the enzymatic interactions are cooperative and

are described by kinetic equations of Hill functions (Hill

coefficient = n.1), the mechanisms and motifs for achieving

DoRA function apply obviously also to cooperative reactions. In

addition, the scenarios for achieving DoRA function should hold

also for inhomogeneous cooperativity where different enzymatic

regulations have different Hill coefficients. Here, we have

considered only circuits of enzymatic regulations, general

principles for DoRA circuits of mixed regulations of enzymes,

transcription, dimerization, and degradation are also interesting

and are needed in further studies.

A well-studied biological system featured of DoRA is the

pheromone response pathway in budding yeast. Experiments

[1,7,8] and also model simulations [9] found extensive DoRAs in

the pathway: the receptor binding, the G-protein activation, Ste5

membrane recruitment, and the phosphorylated Fus3pp as well as

nucleus activities are all primarily well matched. After coarse-

graining, we found that the mating pathway is primarily

equivalent to the simple DoRA circuits that are combined in

series. In the mating pathway for haploid yeast of MATa type cells

(Figure 7), the signal transduction is initiated by binding of the

mating pheromone a-factor to the receptor Ste2 in the plasma

membrane. The receptor activates the heterotrimeric G protein

that couples to it. The de-association of G protein transmits signals

to multiple effectors that result in the membrane recruitment of

scaffold protein Ste5 and start the mitogen-activated protein

kinase (MAPK) cascade. The cascade is embedded in the scaffold

protein Ste5, which consists of three kinases: Ste11 (MAPKKK),

Ste7 (MAPKK), and Fus3 (MAPK). The cascade process leads

finally to the phosphorylation of Fus3. Fus3p translocates into the

nucleus and triggers complex changes in gene expressions for

mating. In the upstream of the signaling system, the main

regulator of G-protein signaling (RGS) proteins is Sst2, which

increases the G-protein re-association by hydrolyzing the Ga-GTP

complex and decreases downstream signal. As reported in the

experiment [1], Fus3 mediates a fast negative feedback by

decreasing Ste5 membrane recruitment. The negative feedback

was proved to play an important role in the dose-response

alignment between the receptor-pheromone binding and down-

stream activities. In spite that the pheromone response system

consists of many detailed processes, the barebones topology of the

pathway could be constructed by coarse graining. In Figure 7, the

sub-units of G-protein, and the components (Ste20, Ste11, Ste7,

and Fus3) that coordinate closely to form the MAPK cascade are

simplified separately to a single node. Intriguingly, the simplified

pheromone response network could be deduced to minimal DoRA

circuits of two and three nodes (refer to Figure 4). They combine

in series to form the topology that is qualitatively equivalent to the

barebones of the mating pathway (Figure 7).

From the engineering perspective, biological organisms are

magic designs of nature. Systems biology aims largely at
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unraveling design principles behind the complex systems and

understanding how functions or behaviors arise out of the

coordination of numerous and diversified biological components

[20]. The challenge for the task is currently that one has to

confront intrinsic complexities and ever-expanding databases of

cellular networks. Evidences are being accumulated in recent years

that diversified circuits across organisms can have followed general

design principles [19,21–25]. Transcriptional regulatory networks

were found to make virtually of a small set of recurring network

motifs [21,24,26]. Simple network topologies associated with

specific dynamical functions were found for reliable all-or-none

switches and bistability [27,28], design principles of biochemical

oscillators [29], adaptations [17] and fold-change detections

[19,30]. The design and mechanism of band-pass filter for time-

limited oscillations which is physiologically significant for selective

regulation of cellular processes were also reported [31,32]. While

the dynamical function of DoRA has been well documented and

commonly observed in many signaling systems, its implication,

general consequences, and design principles have been seldom

investigated [1]. The function-motif recipes and simple circuits for

DoRA reported here represent virtually the guiding principle for

designing DoRA networks, and hopefully help us to understand

DoRA signaling systems across organisms. It would be fascinating

to test whether natural DoRA signaling systems could be well

resolved on the base of the simple DoRA circuits.

Methods

Screening for DoRA networks
We limited ourselves to enzymatic regulatory networks and

modeled network links using Michaelis-Menten kinetics. There are

totally 54 two-node and 16038 three-node networks to be

investigated. For each particular circuit architecture, we sampled

10,000 sets of parameters for the Michaelis-Menten equations

uniformly in logarithmic scale in the parameter space using the

Latin hypercube sampling method [17,18]. The stationary solutions

of the ordinary differential equations were obtained by numerical

integration of the equations with the fourth order Runge Kutta

method. The solutions were examined in parallel by numerical

solving of the corresponding stationary nonlinear algebra equations.

The dose-response curves for each set of parameter were then

obtained as the input level is tuned between [0,1]. The dose-

response alignment was considered to be achieved in case the linear

correlation coefficient between the output node and the input node

is larger than 0.99. We defined the Q-value for each particular

circuit architecture as the number of parameter sets out of 10,000

parameter samples with which the DoRA function is achieved.

Clustering of functional networks
In three-node networks, the DoRA function is controlled by node

B and (or) node C, we considered eight possible links (as each node

has four possible links from nodes A, B, C and basal enzymes FA, FB,

FC) of node B and node C for a circuit. Each link was assigned with a

value of 1, 21, or 0 (1 for positive regulation, 21 for negative

regulation, and 0 for no regulation). A circuit was thus represented

by a sequence of length eight. Hamming pair-wise distance was

defined for two networks as the number of regulations that differ in

the two networks. The clustering property is then calculated from the

distance matrix using the function clustergram in the software Matlab.

Over-represented Motif
The calculation of motif overrepresentation was performed by

randomizing the 633 DoRA functional networks: select two

networks at random and exchange their links at a randomly

selected position (such as A-to-B) when and only when there is a

link (but different) in both networks at this position. We generated

1000 randomized ensembles of 633 networks in this way. For a

specific motif, the mean number of appearance �ff and the standard

deviation d of this motif in these ensembles are then calculated.

Using the number of appearance of the motif in the original 633

DoRA networks f, the overrepresentation of the motif is calculated

as (f -�ff )=d .

Supporting Information

Supporting Information S1 Mathematical analysis of a non-

minimal circuit.

(DOC)
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