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Abstract

We show, contrary to expectation, that the trajectory predicted by general-relativistic mechanics for a low-speed weak-
gravity system is not always well-approximated by the trajectories predicted by special-relativistic and Newtonian
mechanics for the same parameters and initial conditions. If the system is dissipative, the breakdown of agreement occurs
for chaotic trajectories only. If the system is non-dissipative, the breakdown of agreement occurs for chaotic trajectories and
non-chaotic trajectories. The agreement breaks down slowly for non-chaotic trajectories but rapidly for chaotic trajectories.
When the predictions are different, general-relativistic mechanics must therefore be used, instead of special-relativistic
mechanics (Newtonian mechanics), to correctly study the dynamics of a weak-gravity system (a low-speed weak-gravity
system).
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Introduction

For dynamical systems where gravity does not play a dynamical

role, it is expected (see, for example, [1–3]) that, if the speed of the

system is low (i.e., much less than the speed of light c), the dynamics

predicted by special-relativistic mechanics is always well-approxi-

mated by the prediction of Newtonian mechanics for the same

parameters and initial conditions. However, in a recent study on a

model Hamiltonian system [4], we found, contrary to expectation,

that the Newtonian trajectory does not remain close to the special-

relativistic trajectory although the particle speed is low – the two

trajectories eventually become completely different regardless of

whether the trajectories are chaotic or non-chaotic. But the

agreement between the Newtonian and special-relativistic trajecto-

ries breaks down much faster – exponentially fast – in the chaotic

case compared to the non-chaotic case. Similar rapid breakdown of

agreement was also found in a model dissipative system [5,6] and a

model scattering system [7] in the chaotic case but no breakdown of

agreement was found in the non-chaotic case. The loss of agreement

means [6–8] that special-relativistic mechanics must be used,

instead of the standard practice of using Newtonian mechanics, to

correctly study the dynamics of a low-speed system.

For dynamical systems where gravity does play a dynamical role

but gravity is weak (i.e., gravitational potential %c2 [9]), it is expected

(see, for example, [3,10,11]) that the dynamical prediction of

general-relativistic mechanics is always well-approximated by the

prediction of special-relativistic mechanics for the same parameters

and initial conditions. Furthermore, if gravity is weak and the speed

of the system is low, the dynamical prediction of general-relativistic

mechanics is expected (see, for example, [3,10–13]) to be always

well-approximated by the Newtonian prediction for the same

parameters and initial conditions. In this paper, we study a low-speed

weak-gravity system – the bouncing ball system [14,15] – to ascertain

if these expectations are correct by comparing the Newtonian and

special-relativistic trajectories with the general-relativistic trajectory.

In a recent paper [16], only the Newtonian and general-relativistic

trajectories were compared, with the assumption that, in between

impacts with the table, the ball free falls in an exact uniform

gravitational field. Here, the gravitational field of the earth is instead

modeled as the field due to a uniform sphere – this leads to a

different general-relativistic description of the free-fall motion and

consequently of the bouncing ball dynamics. Moreover, in the

previous paper [16], only inelastic collision between the ball and

table was considered; here, both elastic and inelastic collisions are

considered. Details of the bouncing ball system and the Newtonian

and relativistic trajectory calculations are given next. This is

followed by the results and discussion, and concluding remarks on

their significance.

Methods

The bouncing ball system [14,15] consists of a ball bouncing

repeatedly on a table which is oscillating sinusoidally with

amplitude A and frequency v. The impact between the ball and

the table is instantaneous, where the coefficient of restitution a
(0#a#1) measures the kinetic energy loss of the ball at each

impact: the impact is elastic if a = 1, inelastic if a,1. The table is

not affected by the impact because the table’s mass is much larger

than the ball’s mass. In between impacts, the ball undergoes free-
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fall motion due to the gravitational field of the earth, which is

assumed to be a uniform sphere.

In the Newtonian framework, the dynamics of the bouncing ball is

described by the two-dimensional map derived by Tufillaro and co-

workers [14,15]. Following [14,15], we derive the special-relativistic

map and general-relativistic map in terms of the ball’s velocity v and

the table’s phase h just after each impact. The table’s phase is given

by (vt+h0) modulus 2p. We will refer to the table’s phase just after

each impact as the impact phase. Our derivations (see Text S1 and

S2) of the relativistic maps for the bouncing ball follow the same steps

as the derivation [14,15] of the Newtonian map.

In the Newtonian framework, the dynamics of the bouncing ball

is [14,15] described by the impact-phase map
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1

v
hkz1{hkð Þ

� �
{

1

2
g

1

v
hkz1{hkð Þ

� �2

{

A sin hkz1ð Þz1½ �~0

ð1Þ

and the velocity map

vkz1~ 1zað ÞvA cos hkz1ð Þ{a vk{g
1

v
hkz1{hkð Þ

� �� �
ð2Þ

where g~GM
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R2, M and R are respectively the mass and radius

of the earth, and G is the gravitational constant.

In the special-relativistic framework, the impact-phase map is
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where ukz1~Av cos hkz1ð Þ is the table’s velocity just after the

(k+1)th impact, and
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is the ball’s velocity just before the (k+1)th impact.

In the general-relativistic framework, the impact-phase map is
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where the constant RTLP is the distance between the table’s lowest

position and the center of the earth. The velocity map is also given

by Eq. (4).

The general-relativistic map [Eqs. (5) and (4)] is approximately

the same as the special-relativistic map [Eqs. (3) and (4)] if gravity

is weak [2g(RTLP+y)/c2%1 and 2g(RTLP+y0)/c2%1], where y is the

ball’s position relative to RTLP. And the general-relativistic map is

approximately the same as the Newtonian map [Eqs. (1) and (2)] if

the ball’s speed and table’s speed are low [v/c%1, v0/c%1, g(t2t0)/

c%1 and u/c%1] and gravity is weak. Furthermore, the special-

relativistic map is approximately the same as the Newtonian map

if the ball’s speed and table’s speed are low.

To time-evolve the Newtonian and relativistic trajectories, the

impact-phase maps Eq. (1), Eq. (3) and Eq. (5), which are implicit

algebraic equations for hk+1, must be solved numerically by finding

the zero of the function on the left side of the equation given hk

and vk. We used Brent’s method for this purpose. First, each

trajectory is calculated in quadruple precision (35 significant

figures) with a tolerance of 10230 for the zeros. The trajectory is

then recalculated in quadruple precision but using a smaller

tolerance of 10232 for the zeros. Finally, the accuracy of the

trajectory is determined by the standard method [17] of

comparing the less-accurate calculation (10230-tolerance) with

the more-accurate calculation (10232-tolerance). For example, if

the Newtonian velocity is 7.123456789… from the 10230-

tolerance calculation and 7.123456799… from the 10232-

tolerance calculation, then it is accurate to 8 significant figures,

i.e., 7.1234567. We used g = 981 cm/s2, c = 361010 cm/s, and

RTLP = 6.46108 cm (mean radius of the Earth).

The trajectory generated by each of the three maps can be

chaotic. A trajectory is defined [18] as chaotic if it exhibits sensitive

dependence on initial conditions, that is, the distance between the

trajectory and another initially-nearby trajectory from the same

theory grows, on average, exponentially for a short time, where the

exponential growth constant is not exactly equal to but close to the

Lyapunov exponent which is a long-time asymptotic quantity. To

determine if a trajectory is chaotic, we inspect the trajectory in

phase space, check for sensitivity of the trajectory to initial

conditions and calculate [18] the largest Lyapunov exponent to see

if it is positive.

In the following results section, instead of reporting the impact

phase h, i.e., the table’s phase just after each impact, we report the

ball’s position (which is also the table’s position) y = A[sin(h)+1] just

after each impact, together with the ball’s velocity v just after each

impact, when comparing the predictions of the three theories.

Results

Three examples are presented and discussed to illustrate the

general results. In all three examples, the ball’s speed and table’s

speed remained low (about 10210c), and gravity is weak (2g(RTLP+y)

is about 1029c2).

In the first two examples, the system is dissipative with a = 0.5.

In both examples, the initial conditions are 0.02022 cm for the

ball’s position and 8.17001 cm/s for the ball’s velocity. The table’s

frequency (v/2p) is 60 Hz, but the table’s amplitude A is slightly

different: 0.0102 cm in the first example, 0.012 cm in the second

example.

In the first example, the Newtonian, special-relativistic and

general-relativistic trajectories are all non-chaotic. Fig. 1 shows

that the three trajectories are close to one another and they

converge to period-one fixed-point attractors which are almost

identical.

Trajectory for a Low-Speed Weak-Gravity System
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In the second example, the Newtonian, special-relativistic and

general-relativistic trajectories, which are plotted in phase space in

the top part of Figs. 2, 3 and 4 respectively, are all chaotic as

evidenced by the sensitivity to initial conditions (shown in the

bottom part of Figs. 2, 3 and 4 respectively) and positive largest

Lyapunov exponent of 0.34 for each trajectory. Fig. 5 shows that

the agreement between the special-relativistic trajectory and

general-relativistic trajectory breaks down very quickly at impact

55, and the agreement between the Newtonian trajectory and

general-relativistic trajectory also breaks down at impact 55. The

breakdown of agreement between the Newtonian and special-

relativistic trajectories (not shown in Fig. 5) occurs later, at impact

95.

Figs. 6 and 7 show, respectively, that the rapid breakdown of

agreement between the special-relativistic and general-relativistic

trajectories and between the Newtonian and general-relativistic

trajectories are due to the, on average, exponential growth – that

is, exponential growth with small fluctuations – of the magnitude

Figure 1. Comparison of trajectories for the first example. Comparison of the Newtonian (squares), special-relativistic (diamonds) and
general-relativistic (triangles) positions (top plot) and velocities (bottom plot) for the non-chaotic first example.
doi:10.1371/journal.pone.0034720.g001

Trajectory for a Low-Speed Weak-Gravity System
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of the difference between the two trajectories for at least the first

61 impacts:

Dyn&Dy1ec1 n{1ð Þ ð6Þ

Dvn&Dv1ec2(n{1) ð7Þ

where n = 1,2,…. In both cases, the exponential growth constants

for the position difference in Eq. (6) and velocity difference in Eq.

Figure 2. Newtonian trajectory for the second example. Top: Chaotic Newtonian phase-space trajectory, plotted for the first 210 impacts, from
the second example. Bottom: Natural-log of the magnitude of the difference [position difference (squares), velocity difference (diamonds)] between
the chaotic Newtonian trajectory and another Newtonian trajectory which differed initially by 10214 in position and 10212 in velocity. Straight-line fits
up to impact 84 are also plotted.
doi:10.1371/journal.pone.0034720.g002
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(7) are close to each other: c1<0.360 and c2<0.363. This

exponential growth constant of about 0.36 is close to (i) the

exponential growth constant for the magnitude of the difference

(plotted in Figs. 2, 3 and 4) between the chaotic trajectory and

another initially-nearby trajectory from the same theory – the

growth constants are 0.31, 0.31 and 0.34, respectively, for the

Newtonian, special-relativistic and general-relativistic case, where

the two nearby trajectories differed initially by 10214 in position

and 10212 in velocity, and (ii) the largest Lyapunov exponent of

0.34 for the Newtonian, special-relativistic and general- relativistic

chaotic trajectories. We note that the magnitude of the difference

between the Newtonian and special-relativistic trajectories also

Figure 3. Special-relativistic trajectory for the second example. Top: Chaotic special-relativistic phase-space trajectory, plotted for the first
1000 impacts, from the second example. Bottom: Natural-log of the magnitude of the difference [position difference (squares), velocity difference
(diamonds)] between the chaotic special-relativistic trajectory and another special-relativistic trajectory which differed initially by 10214 in position
and 10212 in velocity. Straight-line fits up to impact 84 are also plotted.
doi:10.1371/journal.pone.0034720.g003
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grows exponentially on average, consistent with the results in [4–7]

for low-speed systems, with growth constants c1<0.319 and

c2<0.320.

In the non-dissipative case, where a = 1, the agreement between

the special-relativistic and Newtonian chaotic trajectories with the

general-relativistic chaotic trajectory also breaks down exponen-

tially fast. The agreement also breaks down for non-chaotic

trajectories but it takes a much longer time to occur because the

difference between the trajectories only grows linearly. Fig. 8

illustrates this linear growth for the difference between the

Newtonian and general-relativistic quasiperiodic trajectories (the

trajectories are plotted in phase space in Fig. 9) – in this third

Figure 4. General-relativistic trajectory for the second example. Top: Chaotic general-relativistic phase-space trajectory, plotted for the first
1000 impacts, from the second example. Bottom: Natural-log of the magnitude of the difference [position difference (squares), velocity difference
(diamonds)] between the chaotic general-relativistic trajectory and another general-relativistic trajectory which differed initially by 10214 in position
and 10212 in velocity. Straight-line fits up to impact 79 are also plotted.
doi:10.1371/journal.pone.0034720.g004
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example, the table’s frequency and amplitude are 60 Hz and

0.005 cm, and the ball’s initial position and velocity are

0.00991 cm and 8.17001 cm/s. The linear growth rates of the

magnitude of the position difference and velocity difference are

2610215 cm and 4610212 cm/s, respectively, per impact. It

would thus require 2.561010 (!) impacts for the magnitude of the

velocity difference to grow to 0.1 cm/s. Similar linear growth rates

were found for the difference between the special-relativistic and

general-relativistic quasiperiodic trajectories in this example (the

special-relativistic trajectory is also plotted in Fig. 9).

In general, the breakdown of agreement between the special-

relativistic and general-relativistic trajectories for weak gravity, and

between the Newtonian and general-relativistic trajectories for low

speed and weak gravity can be further understood as follows.

Firstly, rewriting the general-relativistic impact-phase map [Eq.

(5)] and taking the natural logarithm on both sides yield

Figure 5. Comparison of trajectories for the second example. Comparison of the Newtonian (squares), special-relativistic (diamonds) and
general-relativistic (triangles) positions (top plot) and velocities (bottom plot) for the chaotic second example.
doi:10.1371/journal.pone.0034720.g005
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Figure 6. Difference between the special-relativistic and general-relativistic trajectories for the second example. Natural-log of the
magnitude of the difference between the special-relativistic and general-relativistic positions (squares) and velocities (diamonds) for the chaotic
second example. Straight-line fits up to impact 61 are also plotted.
doi:10.1371/journal.pone.0034720.g006

Figure 7. Difference between the Newtonian and general-relativistic trajectories for the second example. Natural-log of the magnitude
of the difference between the Newtonian and general-relativistic positions (squares) and velocities (diamonds) for the chaotic second example.
Straight-line fits up to impact 61 are also plotted.
doi:10.1371/journal.pone.0034720.g007
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For weak gravity, we have 2g{RTLP+A[sin(hk)+1]}/c2%1 and this

implies that the factor {122g[RTLP+A[sin(hk)+1]]/c2}21 in the

logarithmic function on the left of Eq. (8) is approximately 1.

Furthermore, for weak gravity, we have 2g{RTLP+A[sin(hk+1)+1]}/

c2%1, therefore we can use the expansion ln(1+x) = x2x2/2 for the

logarithmic function on the left of Eq. (8) since |x|%1.

Consequently, Eq. (8) becomes
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The approximate general-relativistic impact-phase map given by

Eq. (9) differs from the special-relativistic impact-phase map [Eq.

Figure 8. Difference between the Newtonian and general-relativistic trajectories for the third example. Magnitude of the difference
between the Newtonian and general-relativistic positions (top plot) and velocities (bottom plot) for the non-chaotic third example. Straight-line fits
are also plotted.
doi:10.1371/journal.pone.0034720.g008

ð8Þ
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(3)] by the last term which involves 1/c2. The general-relativistic

velocity map is exactly the same as the special-relativistic velocity

map [Eq. (4)]. The breakdown of agreement between the special-

relativistic and general-relativistic trajectories is thus essentially

due to the small 1/c2 term in Eq. (9).

Secondly, for weak gravity, the factor {122g[RTLP+A[-

sin(hk)+1]]/c2} in the general-relativistic impact-phase map [Eq.

(5)] is approximately 1. Additionally, for low speed, we have

g(hk+12hk)/(cv)%1, therefore we can use the expansion

ex = 1+x+x2/2 for the exponential functions in the term with

exponent 22 in Eq. (5) since |x|%1. Furthermore, for low speed,

we have vk/c%1, and hence we can expand the resulting (1+x)22

term as 122x+3x2 since |x|%1. For low speed and weak gravity,

Eq. (5) is thus approximately
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Moreover, for low speed, v9k+1/c%1 and uk+1/c%1, and so the

general-relativistic velocity map, which is exactly the same as the

special-relativistic velocity map [Eq. (4)], is approximately

vkz1~ 1zað Þukz1{av0kz1: ð11Þ

Furthermore, for low speed, we can use the expansion ex = 1+x+x2/

2 for the exponential functions in v9k+1 (the expression for v9k+1 is

given after Eq. 4) since |x|%1, and then expand the resulting

(1+x)21 term as (12x) since |x|%1. Substituting the resulting

approximate expression for v9k+1 and uk+1 = Avcos(hk+1) into Eq.

(11) yields
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where terms involving 1/c4 are omitted since they are very small.

The approximate general-relativistic velocity map given by Eq.

(12) differs from the Newtonian velocity map [Eq. (2)] by the last

term which involves 1/c2. Similarly, the approximate general-

relativistic impact-phase map given by Eq. (10) differs from the

Newtonian impact-phase map [Eq. (1)] by the last term which

involves 1/c2. The breakdown of agreement between the

Newtonian and general-relativistic trajectories is therefore essen-

tially due to the small 1/c2 term in Eq. (10) and Eq. (12).

Discussion

The simplicity of the bouncing ball system allows accurate

calculations of the Newtonian, special-relativistic and general-

relativistic trajectories for comparison, whereas such accurate

calculations would be very difficult to achieve in more complex

gravitational systems that can also exhibit chaotic behavior, for

example, the three-body problem. Furthermore, the bouncing ball

system can be realized experimentally – one realization [15] of the

system consists of a steel ball bouncing on a concave lens which is

attached to the membrane of a sinusoidally-driven loudspeaker.

Because the bouncing ball system is a simple but realistic example

of low-speed weak-gravity systems that can exhibit chaotic and

non-chaotic behavior – i.e., a prototypical system – the breakdown

of agreement of the special-relativistic and Newtonian trajectories

Figure 9. Trajectories for the third example. Quasiperiodic Newtonian, special-relativistic and general-relativistic phase-space trajectories,
plotted for the first 1000 impacts, from the non-chaotic third example. The three trajectories are still close to one another at impact 1000 and thus
they are indistinguishable in the plot.
doi:10.1371/journal.pone.0034720.g009
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with the general-relativistic trajectory should also occur in other

low-speed weak-gravity systems.

The breakdown of agreement of the special-relativistic and

Newtonian trajectories with the general-relativistic trajectory for a

low-speed weak-gravity system has two important implications.

First, general-relativistic mechanics must be used, instead of

special-relativistic mechanics, to correctly study the dynamics of a

weak-gravity system. Second, general-relativistic mechanics must

be used, instead of the standard practice (see, for example, [19]) of

using Newtonian mechanics, to correctly study the dynamics of a

low-speed weak-gravity system. These paradigm shifts may well

lead to new understandings and discoveries for low-speed weak-

gravity systems.
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