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Abstract

Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and
inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute
to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to
microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese
herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone
formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation
dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly
decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow
microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis.
Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and
increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary
dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased
cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and
further increased microvessel diameters. (2) In vitro study: In concentration from 1026 mol/L to 1027 mol/L, Sal B stimulated
bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated
adipogenic differentiation by down-regulation of PPARc mRNA expression, increased Runx2 mRNA expression without
osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased b-catenin mRNA expression with or
without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation
of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis.
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Introduction

Glucocorticoid (GC) therapy is commonly used for inflammatory

and autoimmune diseases. The long-term administration of GC can

lead to glucorcoticoid-induced osteoporosis (GIO), which signifi-

cantly increases the patients’ morbidity and mortality. Due to

limited treatment options, the side effects of GC often have to be

tolerated during treatment [1]. Currently, the clinical management

of GIO relies on medications similar to those used for treatment of

post-menopausal osteoporosis, such as calcium, vitamin D,

bisphosphonates, raloxifene, PTH, hormone replacement and

calcitonin. These drugs do not address the multi-factor driven

GIO. In particular, they do not target the detrimental effect of GC

on bone marrow fat metabolism and circulatory system [2–5]. Thus

more studies on these GC induced effects may lead to development

of a novel therapeutic approach to prevent and treat GIO.

The pathogenesis of GIO involves multiple factors, of which

some suggest the decrease in number and functions of osteoblasts

is the main contributing factor [2]. However, recently increased

apoptosis of osteoblasts, osteocytes and endothelial cells, suppres-

sion of osteoblasts and osteoclasts, and endothelial cell precursor

production as well as prolongation of the life span of osteoclasts

have all been shown to contribute to the skeletal side effects of GC

[4–6]. Recent studies suggested that the regulation of marrow

stromal cell (MSC) differentiation into bone or fat cells [3] and the

inhibition of bone marrow microvasculature play a very important

role in GIO development [4,5]. GC can inhibit osteoblast

production of bone morphogenetic protein 2 (BMP-2), which

causes decreased MSC differentiation into bone cells [7]. GC also

directly induce differentiation of marrow stromal cells into

adipocytes and inhibit osteogenic differentiation [8]. Kitajima

et al. showed that mature fat cells exposed to high dose of GC were

larger than control cells derived from bone marrow [9]. The latter

would lead to narrowing and obstruction of capillaries in bone

marrow microvasculature from increased adipose tissue that
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results in increased intraosseous pressure and decreased blood

flows [5,10]. Excessive GC treatment was also found to inhibit the

growth of vascular endothelial cells that further contributes to

microcirculation disturbance [11]. Marx et al. have previously

demonstrated that the peroxisome proliferator-activated receptor

c (PPARc) can induce apoptosis in vascular endothelial cells via

caspase-3 activation, thus inhibiting vascular endothelial cell

proliferation and angiogenesis [12]. GC can activate PPARc in

MSCs through different pathways to promote adipogenesis, which

reduces osteoblast differentiation, and eventually leads to fat tissue

accumulation in bone marrow [6]. Taken together, these studies

suggest that the GIO bone loss is comprised of multiple mechanisms

involving the increase in bone marrow adipogenesis and decrease in

marrow angiogenesis leading to a decrease in bone marrow

microvasculature and consequent decrease in osteogenesis [4,5].

Salvia miltiorrhiza Bunge is a traditional Chinese medicine, called

danshen, widely used in clinical practice for the prevention and

treatment of cardio-cerebral vascular diseases. Pharmacological

testing showed that danshen has anticoagulant, vasodilatory,

increased blood flow, anti-inflammatory, free radical scavenging,

mitochondrial protective and other activities [13]. Salvianolic acid B

(Sal B), the aqueous bioactive component from Salvia miltiorrhiza

Bunge, is a polyphenolic compound found in abundance in this plant.

The structure of Sal B is shown in Figure 1 which consists of three

molecules of Tanshinol, or called danshensu (D (+) b-3,4-

dihydroxyphenyl lactic acid) and a molecule of caffeic acid, Sal B

can be converted in vivo to Tanshinol (Salvianolic acid A, or Sal A),

another water-soluble bioactive ingredient of Salvia miltiorrhiza Bunge,

with similar function to Sal B. Both Sal B and Tanshinol are well-

known as among the most effective natural product antioxidants

[13,14].

Multiple pharmacological studies have found that Sal B can

attenuate the effect of myocardial ischemia-reperfusion injury

[15]. Interestingly, Sal B can also increase angiogenesis and reduce

myocardial ischemia via vascular endothelial growth factor (VEGF)

activation [16]. It also relieves brain injury by reducing neuronal

damages in cerebral ischemia [17]. Sal B can improve cellular

hypoxia-ischemia by expanding micro-arteries, improving micro-

circulation and increasing the blood flow velocity. Its beneficial

effects on blood vessel dilation and protection are believed to be

mediated by blocking calcium channels and angiotensin-converting

enzyme [18,19]. Moreover, Salvia miltiorrhiza Bunge and its aqueous

extract can increase the activity of superoxide dismutase, scavenge

Figure 1. Structure of Salvianolic acid B and Tanshinol. Salvianolic acid B consists of three molecules of Tanshinol (D (+) b-3,4-dihydroxyphenyl
lactic acid, danshensu) and a molecule of caffeic acid. Sal B can be converted in vivo to Tanshinol, another water-soluble bioactive ingredient of Salvia
miltiorrhiza Bunge, with similar function to Sal B.
doi:10.1371/journal.pone.0034647.g001

Table 1. Experimental Design.

Groups Code
Description for Treatment
and Dosage

(I) Basal control BAS Scarified at 0 day of the study

(II) Age control CON Vehicle treatment of distilled
water at 5 ml/kg/d

(III) Intact+low dose Sal B B40 Sal B treatment at 40 mg/kg/d

(IV) Prednisone model GC Prednisone acetate (Pred) at
3.5 mg/kg/d

(V) GC+low dose of Sal B GC+B40 Pred at 3.5 mg/kg/d and Sal B at
40 mg/kg/d

(VI) GC+high dose of Sal B GC+B80 Pred at 3.5 mg/kg/d and Sal B at
80 mg/kg/d

doi:10.1371/journal.pone.0034647.t001
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reactive oxygen species (ROS) and therefore reduce the damage of

ROS to the vascular endothelium. Thus, Sal B functions as a

vasodilator, maintains red blood cell deformability and increases the

function of the hematopoietic system [20]. Recently, our in vitro

studies have demonstrated that Sal A can inhibit glucocorticoid–

induced bone marrow stromal cells adipogenesis, promote osteo-

blast differentiation, bone matrix formation and bone mineraliza-

tion [21]. Therefore, we hypothesize that the clinical use of Sal B

will hold promise for a more effective and safe treatment for GIO.

The aim of the current study is to validate our hypothesis in a GIO

rat model and additional study on in vitro.

Materials and Methods

Animals
Ethical Treatment of Animals: This study was carried out in

strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of Guangdong Laboratory

Animal Monitoring Institute under by National Laboratory

Animal Monitoring Institute of China. The experiments have

been conducted according to protocols approved for Specific

Pathogen Free animal care of Animal Center of Guangdong

Medical College, and approved by the Academic Committee on

the Ethics of Animal Experiments of the Guangdong Medical

College, Zhanjiang, P.R. China, Permit Number: SYXK

(GUANGDONG) 2008-0007. All surgery was performed under

sodium pentobarbital anesthesia.

The Sprague-Dawley male rats were acclimated to local

vivarium conditions (temperature 24–26uC, humidity 67%) and

allowed free access to water and diets containing 1.33% calcium,

0.95% phosphorus, and vitamin D3 60 IU %. All rats received

subcutaneous injection of tetracycline (20 mg/kg, Sigma Chemical

Co. St. Louis, MO) on days 13 and 14, and calcein (10 mg/kg,

Sigma Chemical Co. St. Louis, MO) on 3 and 4 days before

sacrifice.

Experimental Protocols
Forty-six 6-month-old male Sprague-Dawley rats weighing

390625 grams, were randomly divided into 6 groups with 8 rats

per group, except 6 for the basal control group (Table 1). The

groups were: 1) a basal (BAS), an age control (distilled water,

CON), 3) 40 mg Sal B/kg/d (B40), 4) 3.5 mg prednisone acetate/

kg/d (GC), 5) GC+40 mg Sal B/kg/d (GC+B40) and 6)

GC+80 mg Sal B/kg/d (GC+B80). Prednisone acetate was

obtained from Guangdong Xianju Pharmacy Co. China and the

Sal B prepared as described in below. All treatments were by daily

oral gavage for 12 weeks.

Salvianolic acid B (Sal B) Preparation
The original herbal medicine Radix Salviae miltiorrhiza was

selected according to the standard protocol of the pharmacopoeia

of the People’s Republic of China [22]. The aqueous bioactive

component from Radix Salviae miltiorrhizae was extracted as

previously reported [23]. Salvianolic acid B (Sal B) and Tanshinol

found in the aqueous extract of Radix Salviae miltiorrhizae were

Figure 2. The HPLC analysis of control compounds (A) and
aqueous extraction sample (B) showing the retention time of
Tanshinol –Na (1) and Salvianolic acid B (2).
doi:10.1371/journal.pone.0034647.g002

Table 2. Primer sequences used in RT-PCR.

Gene Primer sequence
Products
Length (bp)

Runx2 59-ACTGAAGAGGCTGTTTGACG-39 (sense) 122

59-TCACTACCAGCCACCGAGA-39 (antisense)

PPARc 59-GCCTTGCTGTGGGGATGTCT-39 (sense) 240

59-CGAAACTGGCACCCTTGAAAAAT-39 (antisense)

Dickkopf-1 59-GCCTCCGATCATCAGACGGT-39 (sense) 224

59-GCAGGTGTGGAGCCTAGAAG-39 (antisense)

b-catenin 59-TGCAGCGACTAAGCAGGA-39 (sense) 198

59-TCACCAGCACGAAGGACA-39 (antisense)

GAPDH 59-ACCACAGTCCATGCCATCAC-39 (sense) 451

59-TCCACCACCCTGTTGCTGTA-39 (antisense)

doi:10.1371/journal.pone.0034647.t002

Table 3. Primer sequences used in RT-PCR.

Gene Primer sequence
Products
Length (bp)

BMP-2 59-AAATTATAAAGCCTGCCACAG-39 (sense) 326

59-TTGACGCTTTTCTCGTTTGTG-39 (antisense)

BMP-7 59-AGACGCCAAAGAACCAAGAG-39 (sense) 323

59-GCTGTCGTCGAAGTAGAGGA-39 (antisense)

GAPDH 59-CCATGGAGAAGGCTGGGG-39 (sense) 195

59-CAAAGTTGTCATGGATGACC-39 (antisense)

doi:10.1371/journal.pone.0034647.t003
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Table 5. Effects of Sal B, GC, and GC+ Sal B on femur bone biomechanics.

Groups Maximum force Fracture Force Elastic Force Maximum Stiffness coefficient

(N) (N) (N) deflection (mm) (N/mm)

BAS 162.93613.36** 134.58622.16** 94.99613.74** 0.9760.19 531.09649.67

CON 207.91613.01 178.77630.39 126.97624.39 0.9060.10 617.97695.61

B40 208.52621.50gg 171.37638.07 121.35638.26 0.9060.17 678.24651.53gg

GC 184.76617.72* g 177.97617.86gg 127.21619.45gg 0.7060.11* g 601.12678.48

GC+B40 213.40612.82# gg 191.98621.22gg 131.75610.85gg 0.9460.14# 774.13675.89#* gg

GC+B80 218.68615.32# # gg 184.52630.08gg 136.11626.49gg 0.9360.13# 738.87657.53#* gg

Note: Value are mean 6 SD,
*P,0.05,
**P,0.01 vs CON;
#P,0.05,
# #P,0.01 vs GC,
+P,0.05,
++P,0.01 vs GC+B40,
gP,0.05,
ggP,0.01 vs BAS.
doi:10.1371/journal.pone.0034647.t005

Table 6. Effects of Sal B, GC, and GC+ Sal B on proximal tibial metaphysis bone structure histomorphometry, osteoblast and
osteoclast contents.

Parameters BAS CON B40 GC GC+B40 GC+B80

BV/TV (%) 16.3463.52 13.1863.87 13.4463.09 9.4263.34* gg 14.0462.56# # 17.5863.20# #*+

Tb.Th (mm) 59.5264.53 59.7768.86 59.8066.92 49.0969.11** g 59.3666.19# 69.8268.85# #*+g

Tb.N (mm21) 2.7260.43 2.1860.43 2.2560.43 1.8760.38gg 2.3760.31# 2.5160.25# #

Tb.Sp (mm) 316.2668.6 416.36103.1 399.02693.3 505.36123.5gg 369.51651.3# # 332.4647.7##

OcS/BS (%) 0.7460.33 0.6560.28 0.4760.16g 0.8660.36 0.7960.31 0.5560.30

ObS/BS (%) 1.2160.33 1.2160.42 1.5060.68 0.3160.13** gg 0.8060.31# 1.0160.36# #

Note: Value are mean 6 SD,
*P,0.05,
**P,0.01 vs CON;
#P,0.05,
# #P,0.01 vs GC,
+P,0.05,
++P,0.01 vs GC+B40,
gP,0.05,
ggP,0.01 vs BAS.
doi:10.1371/journal.pone.0034647.t006

Table 4. Effects of Sal B, GC and GC+Sal B on the soft tissue weights (g/1000 g body weight).

Groups Thymus Liver Adrenal gland (/100 g) Testicles Soleus

CON 0.5360.06 26.4561.28 0.9060.10 4.1760.29 0.4660.04

B40 0.5260.06 27.1361.52 0.8760.19 4.1960.27 0.4760.03

GC 0.4060.07** 28.9861.30** 0.7260.19* 4.1260.36 0.4260.02*

GC+B40 0.4860.08 28.3362.86 0.8960.12# 4.1060.07 0.4860.06#

GC+B80 0.4360.09* 26.9761.96# 0.9060.17 4.1160.26 0.4760.04# #

Note: Value are mean 6 SD,
*P,0.05,
**P,0.01 vs CON;
#P,0.05,
# #P,0.01 vs GC.
+P,0.05,
++P,0.01 vs GC+B40.
Not available for BSA.
doi:10.1371/journal.pone.0034647.t004
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characterized by HPLC using a standard reference from the

Chinese Biological Appraisal Institute, Beijing, China (.99.0%)

[24]. HPLC chromatograms of the control compounds and

aqueous extraction samples are shown in Figure 2. The content of

Sal B was 25 mg per gram of Radix Salviae miltiorrhiza.

Body weight and serum markers assay
Rats were weighed every week. At the end of the experiments,

rats were sacrificed by cardiac puncture under anesthesia. Soft

tissues were removed and weighed. Blood and serum samples were

collected for measurements of serum calcium (Ca), the serum bone

biomarkers alkaline phosphatase (ALP) and tartrate-resistant acid

phosphatase-5b (TRACP-5b) according to manufacturers’ instruc-

tions (Immunodiagnostic Systems Inc, USA).

Immunohistochemical analysis of bone tissues
The distal femoral bone marrow cavity was exposed to prepare

decalcified bone slides. Samples were decalcified at room

temperature in 15% EDTA for 5 weeks. After decalcification,

the sample was placed in 70% alcohol and paraffin embedded.

Four micrometer paraffin slides were prepared on glass slides

coated with egg white-glycerol, or polylysine, then dried for one

hour at 60uC and stored at 4uC for future use.

Immunohistochemical analysis of bone marrow microcirculation

factor VIII-related antigen (Von Willbrand Factor, vWF) and

peroxisome proliferator-activated receptor c (PPARc) were per-

formed following the manufacturers’ instructions. Rabbit anti-

human vWF polyclonal antibody was purchased from CHEMI-

CON International, Inc, USA, and PPARc mouse monoclonal

antibody was purchased from Santa Cruz Biotechnology, Inc, USA.

Briefly, the endogenous peroxidase activity of slides were blocked by

3% hydrogen peroxide and nonspecific binding was blocked with

10% goat serum. The slides were then incubated with primary

antibody at 4uC overnight in a humidified chamber. The next day

the slides were incubated with biotinylated secondary antibody for

15 min, washed again with PBS (2 min63 times), then incubated

with streptavidin conjugated to horseradish-peroxidase for 15 min.

After a final PBS wash (5 min63 times), a drop of freshly prepared

Table 8. Effects of Sal B, GC, and GC+ Sal B on distal femoral metaphyseal bone marrow.

Parameters BAS CON B40 GC GC+B40 GC+B80

F.Ar/TV (%) 10.6763.61 17.6766.9 11.1362.84 39.5967.15**g 19.6765.71# # g 21.2364.53# g

PPARc (A) 0.1860.05# # 0.2160.03 0.1860.04 0.3160.05**gg 0.2360.03# g 0.2060.03# #

DMV (mm) 9.7462.92* 15.0365.21 17.1864.02gg 6.1161.64** g 20.68610.25# # g 21.2366.86# # * g

MVD (vWF#/view) 24.761.64 26.161.61 27.061.56 20.163.68* 25.461.63# 27.962.57# # g

Note: Value are mean 6 SD,
*P,0.05,
**P,0.01 vs CON;
#P,0.05,
# #P,0.01 vs GC,
+P,0.05,
++P,0.01 vs GC+B40,
gP,0.05,
ggP,0.01 vs BAS;
A: absorbance; vWF: positive staining of Von Willbrand Factor in the endothelial cells.
doi:10.1371/journal.pone.0034647.t008

Table 7. Effects of Sal B, GC, and GC+ Sal B on proximal tibial metaphysis cancellou bone dynamic parameters.

Parameters BAS CON B40 GC GC+B40 GC+B80

LGR (mm/d) 8.3160.45** 5.1360.43 5.3660.52gg 4.0360.51**gg 5.1060.25# #gg 5.3260.42# # gg

MS (%) 23.1162.92** 17.3162.62 20.7862.68*g 17.2061.53gg 19.7661.55# *g 18.4060.99g

MAR (mm/d) 1.2360.08 1.1860.13 1.1760.09 1.0860.11*gg 1.2160.07# 1.2160.10#

BFR/BS (mm/d*100) 28.4064.32* 20.4963.93 24.4064.08*g 18.6863.41gg 23.9562.86# #g 22.2162.06g

BFR/BV (%/year) 291.5643.7** 214.5657.3 251.0649.0 238.8668.7g 247.1632.3 198.8622.2##+g

BFR/TV (%/year) 47.02610.1** 26.5364.13 32.8764.94* g 21.1964.97* gg 34.2363.59# #*g 34.3964.46# #**g

Ec-MS (%) 84.95610.7** 62.7466.89 64.63611.16gg 30.9465.17**gg 50.9569.55# # gg 59.0869.88# # gg

Ec-MAR(mm/d) 3.5560.75** 1.8260.16 2.0060.22gg 1.1660.13** gg 1.5960.25#gg 1.4860.37gg

Ec-BFR/BS (mm/d*100) 298.7661.3** 114.3615.7 130.6632.3gg 36.168.4** gg 79.5611.3# #* gg 89.1632.9# # gg

Note: Value are mean 6 SD,
*P,0.05,
**P,0.01 vs CON;
#P,0.05,
# #P,0.01 vs GC,
+P,0.05,
++P,0.01 vs GC+B40,
gP,0.05,
ggP,0.01 vs BAS.
doi:10.1371/journal.pone.0034647.t007
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DAB was applied on the slide for color development. The reaction

was stopped when a uniform brown color became visible on the

slide by rinsing in running water. Counterstaining was done with

hematoxylin for 5–10 seconds. A control experiment was per-

formed by replacing primary antibody with PBS. This method was a

modification at the manufacturers’ instructions.

The evaluation of Von Willbrand Factor expression and

marrow microvessel density (MVD) were determined by counting

the number of endothelial cells showing positive staining Von

Willbrand Factor, and the MVD was determined by the total

number of vWF stained cells divided by the measured area in

previous studies [25,26]. The diameter of marrow microvessels

(DMV) was determined as the average diameters of microvessels in

the same area used to measure MVD, using a digitizing image

analysis system (Osteometrics, Inc. Decatur, GA, USA) To

evaluate PPARc positive expression in distal femur, the slides

were scanned by LeicaQ550CW image analyzer and the average

of absorbance from 30 positive expression cells on each slide was

presented as mean 6 SD (absorbance/30cells). Immunohisto-

chemical analysis of bone marrow BMP-2 and BMP-7 expressions

were performed following the manufacturers’ instructions: Antigen

retrieval was performed by high temperature and pressure

treatment of the sections in citrate buffer (0.01 mol/L, pH 6.0).

After a wash in PBS, sections were incubated with hydrogen

Table 9. Percentage change of all parameters from basal (BAS), vehicle control (CON) and predisone (GC).

%Change Aging B40 GC B40+GC B80+GC

v.s.
BAS

v.s.
BAS

vs.
CON

v.s.
BAS

v.s.
CON

v.s.
BAS

v.s.
CON

v.s.
GC

v.s.
BAS

v.s.
CON

v.s.
GC

v.s.
B40+GC

BW 12 210 8

Thymus / / / 225 / / 219

Liver / / / 10 / / 27

Adrenal Gland / / / 220 / 24 /

Testicles / / / / /

Soleus / / / 29 / 14 / 12

Calcium / / / 7 / 25 / 27

TRACP-5b / / / 42 / 220 / 220

ALP / / / 252 / 46 / 104 40

PF-BMD 222 220 19 29 8

Whole Femur BMD 28 215 211 22 10

Max force 28 28 13 211 31 16 34 18

Fracture Force 33 (27) 32 43 37

Elastic Force 34 (28) 34 39 43

Max Deflection 228 222 34 33

Stiffness 28 46 25 29 39 20 23

BV/TV (219) 242 229 49 33 87 25

Tb.Wi 218 218 21 17 17 42 18

Tb.N (220) 231 27 (15) 34

Tb.Sp (32) 60 227 (220) 234

OcS/BS (214) 238 (228) (32) (22) (28) (215)

ObS/BS (24) 274 274 (234) 158 (217) 226

LGR 238 235 252 221 239 27 236 32

MS/BS 225 210 20 226 214 14 15 220

MAR 212 28 12 12

BFR/BS 228 214 19 234 (29) 216 28 222

BFR/BV 226 218 232 217 220

BFR/TV 244 230 24 255 220 227 29 62 227 30 62

Ec-MS/BS 226 224 264 251 240 65 230 91

Ec-MAR 249 244 267 236 255 37 258 (219) 28

Ec-BFR/BS 262 256 (14) 288 268 273 230 120 270 (222) 147

PPARy (17) (214) 72 48 28 226 235

Fat/TV (66) (4) (237) 271 124 84 250 99 246

DMV 54 76 (14) 237 259 112 (38) 238 118 41 247

MVD (vWF#/view) 223 26 13 39

Note: This table shows significant %change from BAS, CON and GC, respectively. ( ): useful non-significant %changes. /: not available.
doi:10.1371/journal.pone.0034647.t009
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peroxide blocking agent to quench endogenous tissue peroxidases

and then washed in PBS. The slides were incubated with Ultra V

Block for 30 min at room temperature. The primary antibodies

were incubated according to the manufacturer’s protocol (Maixin-

Bio, China). Slides with serial sections were incubated with the

primary antibodies (Santa Cluz Corporation) in a humidified

chamber at 4uC overnight, followed by being incubated with

streptavidin-perosidase avidin for 10 min at room temperature.

Diaminobenzadine (DAB) staining was done by incubating the

sections with coloring reagent. The sections were counterstained

with Harris’ haematoxylin, dehydrated through increasing con-

centrations of alcohol and mounted with coverslips. One section

on each slide was used as a control to assess nonspecific binding.

For this section, dilution buffer without antibody was used.

Bone mineral density (BMD) determination
The right femurs of the rats were wrapped with saline saturated

gauze to maintain moisture and stored at 220uC. After thawing at

room temperature, the femurs were moisturized by soaking in saline

solution, the residual muscle removed and the length of femur

measured with a ruler. The femur bone mineral density between the

midpoint and the distal end of the femur was scanned with a SD-1000

single-photon bone mineral density instrument (Nuclear Industry

Beijing Institute of Geology) to measure the bone mineral content

(BMC, g/cm) and bone width (BW, cm). The bone mineral density

(BMD) measurements were performed at the midpoint of the femur

and 2 cm proximal and the BMD was calculated as BMC/BW.

Bone mechanical properties determination
After measuring BMD, the femur was used to determine the

bone mechanical properties through three-point bending using

Bose ElectroForce Testing system (ELF3510, Bose, USA). Bone

samples were tested with a 1 mm indenter, at speed of 0.01 mm/s

with a 15 mm span (L). Force (F) and deflection (D) that

automatically recorded. The output parameters include elastic

force (the force required to cause bone specimens to deform, N),

maximum force (the maximum force the bone can resist, N),

fracture force (the force required to cause bone fracture, N) and

the maximum deflection (maximum degree of the bone displace-

ment, mm). The stiffness coefficient (load-displacement curve

slope, N/mm) was also calculated based on the above parameters.

Bone Histomorphometry
The right proximal tibial growth plate and metaphyses were

processed for cartilaginous longitudinal growth rate and cancellous

bone histomorphometric analyses. The samples were opened to

expose the bone marrow cavity using an Isomet Low Speed Saw

(Buehler, Lake Bluff, Illinois, USA) and fixed in 10% phosphate

buffered formalin for 24 hours. They were then dehydrated in

graded ethanol, defatted in xylene, and embedded undecalcified in

methyl methacrylate [27]. Frontal sections were cut at thicknesses

of 4-and 10-mm. The 4-mm sections were stained by Goldner’s

Trichrome for static histomorphometric measurements. The 10-

mm unstained sections were used for dynamic histomorphometric

analyses [28].

A digitizing image analysis system (Osteometrics, Inc. Decatur,

GA, USA) was used for quantitative bone histomorphometric

measurements. Briefly, the regional of interest were the proximal

tibial growth plate and the proximal tibial metaphysis (PTM)

located between 1 and 4 mm distal to the growth plate-epiphyseal

junction. Static measurements included total tissue volume (TV),

trabecular bone volume (BV), marrow fatty area (F.Ar), trabecular

bone surface (BS), osteoclast surface (OcS) and osteoblast surface

(ObS). Dynamic measurements include interlabel width in the

growth plate (G-Int.Wi) of PTM, trabecular single-labeled surface

(sL.S), double labeled surface (dL.S) and interlabel width (Int.Wi),

and endocortical single-labeled surface (Ec-sL.S), double labeled

surface (Ec-dL.S) and endocortical interlabel width (Ec-Int.Wi).

These parameters were used to calculate longitudinal growth rate

(LGR), percentages of trabecular bone volume (BV/TV),

trabecular number (Tb.N), trabecular thickness (Tb.Th), trabec-

ular separation (Tb.Sp), marrow fatty area (F.Ar/TV), osteoclast

surface (OcS/BS), osteoblast surface (ObS/BS), longitudinal

growth rate (LGR), mineralizing surface (MS/BS), mineral

Figure 3. Body weight (g) changes during the experimental period. Body weight measurements from vehicle (aging) control (CON), Sal
B40 mg/kg/d alone (B40), prednisone alone (GC), GC plus 40 mg Sal B/kg/d (GC+B40) and GC plus 80 mg Sal B/kg/d (GC+B80) treated rats. Only the
GC treated rats showed a significant 10% lower body weight versus CON. Significant weight loss began at 10 weeks post treatment. *P,0.05,
** P,0.01 vs CON; #P,0.05, ##P,0.01 vs GC.
doi:10.1371/journal.pone.0034647.g003
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apposition rate (MAR), bone formation rate (BFR) per unit of

bone surface (BFR/BS), bone volume (BFR/BV), and tissue

volume (BFR/TV), endocortical mineralizing surface (Ec-MS/

BS), endocortical mineral apposition rate (Ec-MAR), endocortical

bone formation rate (Ec-BFR) per unit of bone surface (Ec-BFR/

BS) as previously described [29,30].

Culture of rat osteoblast and marrow stromal cell (MSC)
Osteoblastic cell was isolated from newborn rat calvaria (rOB).

After removing the periosteum, the bones were cut into small flaps

of 1 mm3 and subjected to digestion with 0.25% trypsin (Life

Technologies Gibco-BRL) for 20 min at 37 C. After centrifuga-

tion, supernatants were discarded to remove the fibroblast

population. Then the flaps were digestion with 0.2% collagenase

type I and 0.1% hyaluronidase (Life Technologies Gibco-BRL) for

six 20 min intervals at 37 C. The samples were then washed

thoroughly with Dulbecco’s modified eagle’s medium (DMEM,

Gibco). The precipitates and bone flaps were transferred to

25 cm2 culture flasks and cultured in Dulbecco’s modified eagle’s

medium, 100 U/mL penicillin, 100 mg/mL streptomycin and

10% fetal bovine serum (FBS, Gibco) at 37uC in a humidified

Figure 4. Biomarker changes in the blood. Serum calcium (Ca, mg/
ml), alkaline phosphatase (ALP, KU/100 ml) and tartrate-resistant acid
phosphatase-5b (TRACP-5b, U/L) from vehicle (aging) control (CON), Sal
B40 mg/kg/d alone (B40), prednisone alone (GC), GC plus 40 mg Sal B/
kg/d (GC+B40) and GC plus 80 mg Sal B/kg/d (GC+B80) treated rats. The
GC treatment significantly increased serum calcium and TRACP-5b and
reduced ALP, while the Sal B significantly inhibited these GC induced
changes. Value are mean 6 SD, *P,0.05, ** P,0.01 vs CON; #P,0.05, #

#P,0.01 vs GC.
doi:10.1371/journal.pone.0034647.g004

Figure 5. Effects of different groups on Bone Mineral Density
(BMD, mg/cm). BMD measurements of proximal femur (PF) and whole
femur (WF) from vehicle (aging) control (CON), Sal B40 mg/kg/d alone
(B40), prednisone alone (GC), GC plus 40 mg Sal B/kg/d (GC+B40) and
GC plus 80 mg Sal B/kg/d (GC+B80) treated rats. GC treatment
significantly reduced BMD at both sites, while Sal B prevented this
reduction in GC treated rats. Value are mean 6 SD, *P,0.05, ** P,0.01
vs CON; #P,0.05, # #P,0.01 vs GC.
doi:10.1371/journal.pone.0034647.g005

Figure 6. Effects of different treatments on proximal tibial
metaphyses (PTM) bone structure and trabecular mass.
Representative micrographs of PTM from basal (BAS), vehicle (aging)
control (CON), prednisone (GC) and GC plus 80 mg Sal B/kg/d (GC+B80)
treated rats. BAS: 6-month-old beginning control. CON: 9-month-old
terminal vehicle control with fewer trabeculae. GC: Prednisone induced
further reduction in cancellous bone mass and thinner trabeculae
versus CON. GC+B80: Sal B80 treated GC rats had increased cancellous
bone mass with thicker trabeculae compared to BAS and CON. (Masson-
Goldner Trichrome stain: trabecular in green stain). Quantitative
measurements of static parameters are shown in table 6.
doi:10.1371/journal.pone.0034647.g006
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incubator with 5% carbon dioxide (CO2). The DMEM culture

medium was changed every 3 days. MTT (3-(4,5-Dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide) (Bio-Rad, USA) assay was

use for the observation of cell growth/death.

Primary rat bone marrow stromal cells (rMSC) were collected

from marrow of femur in 4-week-old Wistar rats (obtained from

the Laboratory Animal Center of Guangdong Medical College)

[21]. The rMSC then were prepared by gradient centrifugation at

9006g for 30 min on a Percoll-Paque gradient (Amersham

Pharmacia, USA) at a specific gravity of 1.073 g/mL. The low-

density mononuclear cells were washed twice in Hanks’ balanced

salt soltion and cultured in DMEM supplemented with 10% FBS

and 1% antibiotic (10 000 U/mL penicillin G sodium, 10000 mg/

mL streptomycin sulfate) at 37 C in a humid atmosphere

containing 5% CO. The medium was changed every 3 to 4 d to

remove the non-adherent hematopoietic cells. The adherent cell

population was expanded and passaged every 12 to 14 d. All cells

used for the experiments have been through three passages. To

identify the abilities of rMSC with regard to osteogenesis and

adipogenesis, the following studies were performed.

Induction of osteogenic differentiation of rMSC (OB-in): When

the rMSC from passage number 2 became 80% confluent in

the culture plates, the culture medium was changed to an osteo-

blast inducing medium containing 50 mg/mL L-ascorbic acid,

1022 mol/L b-glycerophosphate, and 1028 mol/L dexametha-

sone. When the cells became layered and confluent up to 100%,

visible symmetric colonies were observed after osteoblast induction.

Induction of adipogenic differentiation of rMSC (Ad-in): The

rMSC of each group were replated at 26104 cells/cm2 in a

25 cm2 culture dish and maintained until 80% confluence. Then,

the culture medium was switched to adipogenic medium consisting

of control medium supplemented with 10 mg/ml insulin (Sigma,

St. Louis, MO), 1025 mol/L dexamethasone (Sigma, St. Louis,

MO), 261024 mol/L indomethacin (Sigma, St. Louis, MO) and

561025 mol/L isobutylmethyl xanthine (IBMX, Sigma, St. Louis,

MO) for an additional 5 days followed by total RNA isolation.

Identification for OB-in and Ad-in of MSC had according to

the methods referred to Cui. et al. [21].

Determination of alkaline phosphatase (ALP) and
osteocalcin secretion

ALP activity assay: Cells were seeded in 96-well plates and the

confluent cells were cultured for the indicated period with or

without Sal B treatment. Cells were washed with PBS and 150 mL

of substrat buffer (6.7 mmol/L disodium p-nitrophenylphosphate

hexahydrate, 25 mmol/L diethanolamine and 1 mmol/L MgCl)

was added. After the mixtures were incubated at 37uC for 3 min,

we measured the absorbance at 405 nm.

Determination of osteocalcin secretion: Cells were seeded in 6-

well plates at a seeding density of 26104cells/cm2 and were further

Figure 7. Effects of different treatments on Proximal tibial cartilage growth and mineral bone formation. Representative fluorescence
micrographs of interlabel width in the growth plate (G-Int.Wi), interlabel width in the endocortical (Ec-Int.Wi) and double labeling in trabecular
surface (Tb.dL.S) in basal (BAS), vehicle (aging) control (CON), prednisone alone (GC) and GC plus 80 mg Sal B/kg/d (GC+B80) treated rats. Arrows
point to interlabeling distances after double labeling with tetracycline and calcein. The interlabeling distance in the growth plate was used to
determine longitudinal growth rate (LGR). There were age-related decreases in LGR and in endocortical bone formation from 6 month (BAS) and 9
month (CON) and a further reduction with prednisone alone treatment (GC), while 80 mg/kg/d of Sal B (GC+80) prevented the GC-induced reduction.
There was an absence of double labeling in the trabecular surface after GC treatment, while the GC+B80 section exhibited similar double labeling to
BAS and CON rats. (Villanueva bone stain under fluorescence light). Quantitative measurements of dynamic parameters are shown in table 7.
doi:10.1371/journal.pone.0034647.g007
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cultured with or without Sal B treatment for 14 d. At the end of

the culture, the conditioned media were collected for assessment.

The concentration of free osteocalcin was measured by radioim-

munoassay (RIA) according to the manufacturer’s instructions

(Tian Jin Nine Tripods Medical& Bioengineering Co, LTD). The

intra-assay variance of the measurements of osteocalcin RIA was

1.26%.

Reverse transcription polymerase chain reaction (RT-PCR)
assay

Test of cultured cells: Total RNA was extracted from cultured

cells using TRIZOL reagent (Invitrogen, Carlsbad, CA) and

subjected to RT-PCR analysis using the 9600Gen Amp PCR

system (PerkinElmer Applied Biosystems, USA) with PCR

reagents (Invitrogen, Carlsbad, CA) according to the manufactur-

er’s protocol. Primers used are listed in Table 2. Amplified

products were then loaded on a 2% agarose gel and subjected to

electrophoresis. Digital pictures were taken and analyzed with gel

image system. Each gene expression was normalized to GAPDH.

Test of rat femur bone tissue: The upper femur halves obtained

were snap-frozen in liquid nitrogen and stored at 270uC. Total

RNA was prepared using TRIZOL reagent and stored at 220uC
in ribonuclease (RNase)-free water until use. To determine mRNA

levels, a one-step reverse transcription-polymerase chain reaction

(RT-PCR) procedure was performed using the 9600Gen Amp

PCR system (PerkinElmer Applied Biosystems, USA) according to

the manufacturer’s protocol. Primers used are listed in Table 3.

Amplified products were then loaded on a 2% agarose gel and

subjected to electrophoresis. Digital pictures were taken and

analyzed using Bandscan analysis software. Each gene expression

was normalized to GAPDH.

Statistic Analysis
Data were presented as mean6 SD. The statistical differences

among groups were evaluated using variance (ANOVA) with

Fisher’s PLSD test. Probabilities (p) less than 0.05 were considered

significant.

Results

Effect of Aging
Aging has a significant impact on the bone architecture and

microvasculature density. Compared with the 6 month old rat, the

aging associated changes seen at 9 months included significantly

increased femoral cortical bone strength parameters (i.e. the

maximum, fracture and elastic forces increased by 28, 33 and

34%), decreased proximal tibial (PT) longitudinal growth rate

(LGR) (down by 38%), decreased proximal tibial metaphyses

(PTM) cancellous bone formation (i.e. MS/BS, BFR/BS, BFR/

BV, BFR/TV down by 25, 28, 26 and 44%) and endocortical

bone formation indices (i.e. Ec-MS/BS, Ec-MAR and Ec-BFR/

BS by 26, 49 and 62%), these changes were associated with

significantly increased distal femoral marrow microvessels diam-

eter (DMV), up by 54%. No available data of soft tissue in 6

month old rat. (Tables 4–9, Figures 3–9).

There were non-significant reductions in PTM cancellous bone

mass (BV/TV down by 19%, Tb.N down by 20%, Oc.S/BS down

by 14%), and increased Tb.Sp (up by 32%). In addition, PPARc

Figure 8. Effects of different treatments on osteoblast morphology and adipocyte distribution and corresponding PPARc
expression. Representative micrographs in basal (BAS), vehicle (aging) control (CON), prednisone (GC) and GC plus 80 mg Sal B/kg/d (GC+B80)
treated cancellous bone in distal femoral metaphysic. Arrows point to osteoblasts (Ob, Goldner’s Trichrome stain). Active osteoblasts are present as
multi- plump columnar lining on the trabecular surface in BAS and CON rats. The GC treatment induced the appearance of shriveling and inactive
osteoblasts (v.s. BAS & CON) while the Sal B treatment protected GC-induced osteoblast impairment (GC+B80 v.s.GC). Adipocyte content (F.Ar,
Hematoxylin stain) and corresponding immunohistochemical staining of Peroxisome Proliferator-Activated Receptor c (PPARc) expression (arrows
from spots, PPARc stain) increased between 6 and 9 months (BAS v.s. CON). The GC treatment markedly increased adipocyte number and size (GC v.s.
BAS & CON), and the amount of PPARc positive cells, while the Sal B treatment prevented the GC-induced increases (GC+B80 v.s.GC). Quantitative
measurements of osteoblasts, fatty area and PPARc expression are shown in table 6 and table 8.
doi:10.1371/journal.pone.0034647.g008
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expression and marrow fatty area (F.Ar/TV) increased by 17%

and 66% but did not reach significance. (Tables 6,8,9, Figures 7,8).

Effect of Sal B40 in Intact Male Rats
Sal B40 treatment in intact male rats stimulated cancellous and

endocortical bone formation. Compared to the vehicle (aging)

control, the 40 mg of Sal B/kg/d (Sal B40) treated intact male rat

showed no significant changes on body and soft tissues weights,

bone mineral density (BMD), femoral cortical bone strength, PTM

cancellous bone mass, architecture and endocortical bone

formation. However, the Sal B40 treated rats showed significant

increased select PTM cancellous bone formation indices (i.e. MS/

BS, BFR/BS and BFR/TV up by 20, 19 and 24%), increase

Ob.S/BS by 24% and Ec-BFR/BS by 14%. Additionally, the Sal

B40 non-significantly reduced distal femoral marrow PPARc
expression by 14%, reduced marrow fatty area (F.Ar/TV) by 37%

and increased DMV by 14%. (Tables 4–9; Figures 3–5,9)

Effect of GC in Intact Male Rats
GC induced losses in bone mass, BMD and mechanical strength

associated with decreased osteogenesis, angiogenesis and increased

adipogenesis. Compared to vehicle (aging) controls, the use of GC

lead to significant increased of liver weight by 9.6%, and reduction

in body, thymus, adrenal gland and soleus muscle weights by 10,

25, 20 and 9%, respectively, coupled with significantly increased

serum calcium by 7%, tartrate-resistant acid phosphatase-5b

(TRACP-5b) by 42% and decreased alkaline phosphatase (ALP)

by 52%. Proximal femur and whole femur BMDs were decreased

by 20% and 11% and cortical bone strength was reduced (i.e.

maximum force and deflection by 11% and 22%). GC further

significantly reduced PTM cancellous BV/TV by 29%, Tb.Wi by

18%, Ob.S/BS by 74%, PT LGR by 21%, and some PTM

cancellous bone formation indices (i.e. MAR and BFR/TV) by 8

and 20%, Significant reductions were seen in the endocortical bone

formation indices (i.e. Ec-MS/BS, Ec-MAR and Ec-BFR by 51, 36

and 68%), and microvessels diameter (DMV, down by 59%) and

density (MVD) down by 23%, while fatty marrow content was

increased by 124% and PPARc expression by 48% (Table 4–9,

Figure 6–9). Immunohistochemical analysis of bone marrow BMP-2

and BMP-7 expression significant decreased with decrease of total

BMP-2 and BMP-7 mRNA expression (Figure 10).

Effect of Sal B40 in GC treated Male Rats
Sal B40 treatment of GC-treated rats prevented most of the GC-

induced changes. Compared to vehicle (aging) controls, the 40 mg Sal

B/kg/d (Sal B40) - treated GC rats showed no significant differ-

ences in terms of body and soft tissues weights, serum bone bio-

markers, BMD, biomechanical properties (except for increase in

stiffness by 25%), PT LGR, PTM cancellous bone mass, architectures,

MAR, BFR/BS, BFR/BV, Oc.S/BS and Ob.S/BS, endocortical

formation indices (i.e. Ec-MS/BS, Ec-MAR, except for a decrease in

Ec-BFR/BS by 30%), DMV and MVD, F.Ar/TV and distal femoral

marrow PPARc expression, and both mRNA and positive expression

of BMP-2 and BMP-7. (Tables 4–9; Figure 3–5, 9–10)

Furthermore there were no differences in skeletal cell and tissues

values, except for significantly increased PTM cancellous MS/BS

(up by 14%) and BFR/TV (up by 29%), and decreased Ec-BFR/

BS (down by 30%). (Tables 4–9; Figures 3–5)

The Sal B40 treated GC rats tended to exhibit a larger marrow

DMV (up by 38%) versus aging control, that resulted in significantly

increased DMV by 238%, when compared to GC control. The rats

treated with Sal B40 showed reduced PTM cancellous bone Ob.S/

BS by 34%, while the GC alone was reduced by 74%. The results

suggests that both osteoblasts and microvessel diameters were

stimulated by Sal B40. (Tables 4–9; Figures 3–5,9)

Effect of Sal B80 in GC treated Male Rats
Sal B80 treatment of GC rats for 12 weeks not only prevented

GC-induced changes but also showed additionally stimulated

osteogenesis that increase cancellous bone mass and increased

marrow angiogenesis by enlargement of microvessels diameter.

Compared to vehicle (aging) control, the GC treated rats

receiving 80 mg of Sal B/kg/d (Sal B80) showed no significant

differences in body and soft tissue weights, serum biomarkers,

BMD, bone strength (except for stiffness), and marrow PPARc
expression, BMP-2 and BMP-7 expression, fatty marrow and

MVD. However, the Sal B80 treated rats significant differed from

Sal B40 treated rats in term of PTM cancellous bone mass up by

33%, Tb.Wi by 17%, BFR/TVby 30% and marrow DMV by

41% versus aging control. (Tables 4, 5, 8&9; Figures 3–9)

Compared to the Sal B40 treatment there was a significantly

dose response increase in serum ALP level by 40%, in proximal

femur BMD by 8%, in PTM cancellous BV/TV by 25%, in

Tb.Wi by 18% and significantly decrease in BFR/BV by 20%.

(Tables 4, 5, 8&9; Figures 3–9)

Figure 9. Effects of different treatments on marrow microves-
sel structures. Representative micrographs of immunohistochemical
staining of Von Willbrand Factor (vWF) in microvessel endothelial cells
of the distal femoral metaphysis from basal (BAS), aging control (CON),
Sal B alone (B40), prednisone treated (GC), GC plus Sal B40 m g/kg/d
(GC+B40) and GC plus Sal B80 mg/kg/d (GC+B80). The diameter of
microvessels but not density increased between 6 and 9 months (BAS
v.s. CON). The GC treatment markedly decreased the density and
diameter of microvessels with the appearance microvessels squeezed
by the increased adipocytes (GC v.s. BAS & CON). Sal B treatment
prevented the GC induced changes. High dose (Sal B80 mg/kg/d)
treatment significant increased the diameter of the microvessels
(double arrows) (vs. GC & CON). Quantitative measurements of
microvessel diameter (DMV) and density (MVD) are shown in table 8.
doi:10.1371/journal.pone.0034647.g009
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Effect of Sal B in osteoblast viability and MSC
differentiation in vitro

When cultured different concentration of Sal B with rOB,

Sal B at concentration from 1028 mol/L to 1026 mol/L stimulated

rOB cell growth and proliferation, increased ALP activity and

osteocalcin secretion, this effect appeared in a time and dose-

dependent manner, when the concentration reached 1025 mol/L

the cell death occurred with function decrease. (Figure 11).

Sal B at 561027 mol/L stimulated ALP secretion in MSC

which was similar to the action of osteoblast induction media (OB-

in), Sal B from 1028 mol/L to 1026 mol/L further increased OB-

in treated-MSC secretion of ALP and osteocalcin, which reveal the

ability of MSC differentiation into osteoblast by Sal B. (Figure 12)

Effect of Sal B on Dickkopf-1(DKK-1)/b-catenin mRNA
expression in MSC

DKK-1 is an inhibitor of Wnt signaling and GC is a strong

stimulator of DKK-1. When MSCs were exposed to adipocyte

induction medium (Ad-in, containing high concentration of GC),

PPARc mRNA expression increased accompanied with increases

of DKK-1 mRNA expression while b-catenin mRNA expression

decreased when compared to control. Treatment with 1027 mol/

L Sal B and 561027 mol/L Sal A decreased PPARc and DKK-1

mRNA expression and increased b-catenin mRNA expression

with or without adipocyte inducement medium. Sal B 1027 mol/L

and Sal A 561027 mol/L also increased Runx2 mRNA

expression without osteoblast inducement medium (Figure 13).

Discussion

The current study found that GC treatment decreased bone

formation by inhibiting osteoblast activity and marrow production

of BMP-2 and BMP-7, increased marrow adipocytes with elevated

PPARc expression that promoted bone marrow stromal cell

differentiation into adipocytes. Since osteoblasts and adipocytes

share common bone stromal progenitors [31], GC treatment

stimulate the differentiation of marrow stromal cells to adipocytes

thereby, reducing the pool of local progenitor cells to differentiate

into osteoblasts, The reduction in osteoblast number in turn

contributes to decreased osteogenesis. Furthermore, we specifically

labeled marrow vascular endothelial cells with Von Willbrand

Factor and observed similar GC disruption of marrow microvessels

as previously observed in rabbit femoral head [32]. The disruption

of marrow microvasculature would reduce the source of circulating

progenitor cells supporting osteogenesis [33–39]. The reduction in

local and circulating progenitors would then lead to reduce

osteogenesis. Our findings suggest that bone formation, bone

Figure 10. Effects of different treatments on BMP-2 and BMP-7 expression. A: Representative micrographs of immunohistochemical
staining of BMP-2 in femur bone marrow and trabeculae from control (CON), prednisone treated (GC), GC plus Sal B40 m g/kg/d (GC+B40) and GC
plus Sal B80 mg/kg/d (GC+B80). BMP-2 was stained as brown color with sand-like deposition along trabecular surface and marrow mesenchymal
stem cells. The GC treatment markedly decreased the BMP-2 expression while Sal B treatment prevented the GC induced changes. B: Electrophoresis
image of BMP-2 and BMP-7 mRNA expression in rat whole femur bone was determined by RT-PCR. The rats treated with GC decreased both BMP-2
and BMP-7 mRNA expression. Treatment of Sal 40 and 80 mg/kg/d completely prevented the GC induced changes, Sal 40 mg/kg/d alone did not
affect the BMP-2 and BMP-7 mRNA expression. Value are mean 6 SD, *P,0.05, ** P,0.01 vs CON; #P,0.05, # #P,0.01 vs GC.
doi:10.1371/journal.pone.0034647.g010
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Figure 11. Effects of Sal B on the proliferation and differentiation in new born rat calvarium osteoblast. Cells were inoculated in 96-well
plates and cultured, then transferred to a medium containing various concentrations of vehicle and Sal B. MTT was tested at 24, 48, 72 and 96 h of
incubation (A), ALP activity (represent by OD value) was determined later until 7 days of incubation (B), and the content of osteocalcin (mg/L) in
culture medium was determined 1n day 21 after incubated with different treatment (C). Data shown are mean 6 SD. n = 6. **P,0.01, *P,0.01 versus
control (vehicle treatment).
doi:10.1371/journal.pone.0034647.g011

Figure 12. Effects of Sal B on rat marrow stromal cell (rMSC) differentiation into osteoblast. Cells were collected from the femur marrow
of one month old SD rats. Cells inoculated in 25 mm2 culture flask and cultured. The cells used in the study were the 3 passage, then transferred to
the medium containing osteoblast induction medium (OB-in), Sal B and OB-in plus various concentrations of Sal B respectively. A: ALP activity
(represent by OD value) was determined at 3, 5 and 7 days. B: the content of osteocalcin (mg/L) in culture medium was determined 1n day 21 after
incubated with different treatment. Data shown are mean 6 SD. n = 6. **P,0.01, *P,0.05 versus control (vehicle treatment).
doi:10.1371/journal.pone.0034647.g012
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marrow fat metabolism and microcirculation are closely related to

each other and confirm that the latter two factors also contribute

significantly to the development of GC-induced bone loss and the

decline in bone strength [4,5].

Our data found 80 mg Sal B/kg/d for 12 weeks depressed

adipogenesis and stimulated angiogenesis and osteogenesis in GC-

treated rats. The lower 40 mg Sal B/kg/d dose in GC treated rats

only depressed adipogenesis and stimulated cancellous bone

formation rate. The 40 mg dose also appeared to increase

angiogenesis by enlarging marrow microvessels diameter but the

observations were not statistically significant. The prevention of

GC-stimulation of adipogenesis maintains marrow stromal and

red marrow cell levels at control levels. Since osteogenesis and

adipogenesis share common bone stromal progenitors [31], this

means the pool of marrow progenitors available to differentiate

into osteoblasts will be maintained and not be preferentially

stimulated to form adipocytes by GC treatment. Additionally the

maintenance of red bone marrow means that the bone marrow will

retain more microvessels, unlike fatty bone marrow, which is not as

well vascularized [40,41]. The Sal B treatment further increased

marrow angiogenesis that increases blood flow to improve nutrition

and source of circulating progenitors [33–39]. In support of

osteogenesis, stimulated angiogenesis reduced intraosseous pressure

that increases blood flow and in turn stimulates osteoblastic activity

(i.e. mineral apposition rate) [42]. Further red bone marrow sites

with better vasculature exhibit a factor of 10 higher bone

remodeling and formation rates than fatty marrow bone sites [43–

46]. Also the improved blood flow increases osteocyte lacunar-

canaliculi and blood vessel fluid volume that increase bone strength

and reduce the risk of fracture [4,47].

To clarify the mechanism by which Sal B promotes osteoblast

differentiation and alleviates GC-induced impairment of bone

formation, we examined the effects of Sal B on primary rat

calvarial osteoblasts and rat bone marrow stromal cell by up-

regulating Wnt/b-catenin signaling. Our data showed that Sal B

stimulates osteoblast cell growth and MSC differentiation into

osteoblast maturation (secretion of ALP and osteocalcin) with a

dose and time dependent manner that mimicks the action of

osteoblast inducer. This study further demonstrated that Sal B

activated Runx2 and b-catenin mRNA expression and declined

DKK-1 and PPARc mRNA expression which had been induced

by GC (i.e. adipocyte inducement). It is known that canonical

Wnt/b-catenin is a key pathway for regulating bone formation

and remodeling and contributes to osteoblastic differentiation

[48], of which DKK-1 is one of the inhibitor in Wnt-signaling.

Studies demonstrate GC to be a very strong inducer of DKK-1

protein [49] which leads to a decrease in osteoblast bone

formation in GC induced osteoporosis [50]. Moreover, Runx2

was found to integrate Wnt-signaling for mediating osteogenic

differentiation of MSCs [51], it was known to be involved in BMP

signaling as mentioned earlier [52]. Our in vivo observation

further demonstrated that Sal B stimulated femur bone BMP-2

and BMP-7 mRNA expression and protected GC-treated rats

from decrease of femur bone BMP-2 and BMP-7 protein

expression (IHC revealed, Figure 10). BMP/Wnt/b-catenin share

a crossover mechanism for stimulation of progenitor, osteoblast

and angiogenetic generation [53], thus our study support the idea

that Sal B protected against GC-induced osteoblast impairment

associated abnormal angiogenesis and adipogenesis. Recently Lu

et al. reported that Sal B protected against oxidative stress–

induced apoptosis in rat bone marrow stem cells [54] suggesting

that Sal B may inhibit GC-induced bone marrow stem cell

apoptosis to enlarge the local pool of osteoblast precursors

available for osteogenesis.

Our current end point findings indicated that Sal B stimulated

bone formation in both intact and GC-treated male rats (Table 9).

Sal B40 alone in intact male rats significantly increased BFR/TV by

24%, Sal B 40 in GC-treated rats significantly increased BFR/TV

by 29%, while Sal B80 in GC-treated rats significantly increased

BFR/TV by 50% and additionally increased cancellous bone mass

(BV/TV) by 33% and trabecular thickness by 17%. Taken together,

the combination of improved marrow microenvironment (i.e.

increased local and circulatory progenitors, blood flow and nutrition)

andSal B stimulation of bone formation rate not only prevented GC

- induced osteopenia but also increased cancellous bone mass.

The current study used doses of 40 and 80 mg/kg gavage in

rats, which is similar to the dose used in humans. Salvianolic

Acid B (parental form) was approved by the State Food and Drug

Administration (SFDA) of China in 2007 for clinical use in the

prevention and treatment of cardiovascular diseases. The

recommended dose of Salvianolic Acid B for humans is 4 mg/

kg/d i.v. Our study examined the drug impact on body weight

(Figure 3), organ weight (table 4), gross necropsy and histopathol-

ogy (negative data not shown) both in intact rats (SalB40 group)

and glucocorticoid-treated rats. No significant adverse effects on

these parameters were observed. Recently Li et al. [55] reported

on the toxicity of Sal A, a derivative of Sal B, in male and female

dogs after a 3-month continuous intravenous infusion at doses

of 17, 50, and 150 mg/kg/day. No significant cumulative toxicity

was observed either during or 90 days following treatment.

Importantly, the doses of Sal A used in dogs were very high as

compared to clinical practice and to rats; the 17, 50, and 150 mg/

kg/day in dogs are equivalent to 61.2, 180 and 540 mg/kg in rats.

Sal B possesses a similar activity to Sal A. Our data indicate that

the doses of Sal B used in current study are safe and effective and

produce no adverse effects.

In summary, Sal B treatment of GC-treated male rats not only

prevented GC-induced osteopenia but also increased cancellous

bone mass by the combination of depressed adipogenesis and

stimulated angiogenesis and osteogenesis (Figure S1). Our findings

support further investigation of Sal B stimulating of osteogenesis

and marrow circulation and inhibition of adipogenesis as a

potential therapeutic strategy in the prevention of not only GC-

induced osteopenia but other bone diseases.

Supporting Information

Figure S1 Working scheme: the mechanism of action of
Salvianolic acid B on glucocorticoid induced bone loss.
Decrease of osteogenesis and angiogenesis, increase of adipogen-

esis are considered contributions to glucocorticoid induced bone

loss. Salvianolic acid B could withstand the impairment induced

by glucocorticoid. (BMPs: bone morphogenetic proteins; MSCs:

Figure 13. Effects of Sal B on the gene expression of Dkk-1/b-catenin pathway in rat marrow stromal cell (rMSC) differentiation.
rMSC were cultured with osteoblast induction medium (OB-in), adipocyte induction medium (Ad-in, i.e. high concentration of GC), with or without Sal
B (10-7 mol/L) and Sal A (5610-7 mol/L, a derivant of Sal B, Figure 1) for 7 days. Expression levels of Runx2 (A) , PPARc (B), b-catenin (C and D) and
DKK-1 (E) were measured by RT-PCR. Sal B increased Runx2 and b-catenin mRNA expression and decreased DKK-1 mRNA expression which was similar
to the action of OB-in. Ad-in marked increased PPARc and DKK-1 mRNA expression. When treated the Ad-in rMSC with Sal B, the PPARc and DKK-1
mRNA expression decreased obviously. Sal A had similar effects to Sal B.
doi:10.1371/journal.pone.0034647.g013
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marrow stromal cells; PPARc: peroxisome proliferator-activated

receptor c; VEGF: vascular endothelial growth factor; Black: effect

of glococorticoid; Red: effect of Salvianolic acid B; q: increase;

Q: decrease).
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