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Abstract

The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and
models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease
pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to
determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1
signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 2/2 mice were challenged with Escherichia coli,
Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 2/2 mice and epithelial cells were stimulated with IL-17A.
The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for
clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small
impact on the host response to S. aureus. JNK1 2/2 mice had decreased Influenza A burden in viral pneumonia, yet
displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and
antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in
host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel
therapeutic target in pneumonia.
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Introduction

Bacterial and viral pneumonia represents a significant cause of

morbidity and mortality worldwide. Bacterial pneumonia is a

commonly encountered lung infection in both hospital acquired

and community acquired settings. Infection with either gram

negative or gram positive bacteria results in lung inflammation,

tissue damage, and in some cases life-threatening sepsis. Despite

numerous antibiotic therapies, these infections often result in poor

patient outcomes. Influenza A infection by either seasonal or

pandemic virus is of increasing epidemiologic importance in recent

years. Influenza A infection results in lung cell apoptosis, injury,

and remodeling. In worst cases, severe inflammation and co-

infection may lead to mortality. Anti-viral therapies are effective at

reducing viral burden; however, lung injury often persists. The

need for identification of novel pathways in pneumonia patho-

genesis is great in order to design new therapeutic approaches.

Many cellular signaling pathways have been investigated for their

role in these processes.

The MAPK family member c-Jun N-terminal kinase (JNK)

comprises three members, JNK1–3, with numerous alternate

splicoforms [1]. JNK1 and JNK2 are ubiquitously expressed, while

JNK3 is restricted to the brain, testes, and heart. JNK1 is known to

play a role in cellular stress responses, apoptosis [2], and was

recently shown to modulate lung remodeling following injury [3–

5]. The JNK1 signaling pathway is complex and its roles in both

innate and adaptive immune responses have been recently

reviewed [1–2,6–7]. A primary consequence of JNK1 activation,

via phosphorylation by upstream kinases, is phosphorylation of

AP-1 transcription factors, including c-Jun. In this manner JNK1

plays an important role in transcriptional regulation in response to

a number of stimuli. JNK1 is activated by the gram-negative

bacterial component lipopolysaccharide (LPS) via TLR4 [8–9]

and JNK1 is required for chemokine production by macrophages

[10–11]. These data suggest an important role for JNK1 in innate

immune responses. JNK1 has also been shown to play a role in

regulating helper T cell function. Naı̈ve CD4+ T cells express low

levels of JNK1 and JNK2, however upon activation, these proteins

are highly upregulated and display increased activity [1]#. These

data define an emerging role for JNK in both innate and adaptive

immunity.

The goal of this study was to investigate the role of JNK1 in host

defense against bacterial and viral pneumonia. In addition, the

potential immunologic mechanism by which JNK1 interacts was

examined. IL-17A has been implicated in host defense against

many pathogens, both intra- and extra-cellular in nature. The

impact of JNK1 on IL-17A signaling was also addressed. Since
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many prior studies evaluating the role of JNK1 in inflammation

have utilized non-specific pharmacologic inhibitors in cell lines,

these studies were conducted utilizing JNK1 2/2 mice and

primary epithelial cells from mice lacking JNK1.

Results

JNK1 regulates lung inflammation in bacterial
pneumonia

JNK1 is known to modulate numerous responses to cellular

stress including inflammatory stimuli. The majority of studies

addressing the role of JNK1 in host defense have utilized non-

specific inhibitor approaches, often employing in vitro approaches.

To examine whether JNK1 is required for bacterial host defense in

vivo, we challenged WT and JNK1 2/2 mice with the gram-

negative bacterium E. coli. JNK1 2/2 mice displayed a nearly

four-fold increase in bacterial burden in the lung one day after

challenge (Figure 1A, B). While total inflammatory cell recruit-

ment in BAL was not different, the profile of cells in JNK1 2/2

mice was characterized by significantly less macrophages than WT

mice. To further examine the impact of JNK1 deletion on

inflammation, we examined lung histopathology. JNK1 2/2

mice had significantly decreased peribronchial inflammation

compared to WT mice (Figure 2). JNK1 2/2 mice trended

towards having reduced overall lung parenchymal inflammatory

cellular infiltrates. Next, the effect of JNK1 depletion on cytokine

induction was examined by cytokine multiplex assay. JNK1 2/2

mice produced significantly less MCP-1, IFNc, IP-10, and IL-1a
versus WT mice (Figure 1C, D). In addition, JNK1 2/2 mice had

a trend towards decreased IL-6, TNFa, and IL-17A production.

Since IL-23 is required for IL-17A production, we measured IL-

23p19 in the lung homogenate. WT and JNK1 2/2 mice

Figure 1. JNK1 is required for host defense against gram-negative bacterial pneumonia. WT and JNK1 2/2 mice were challenged with
107 cfu of E. coli for 24 hours (N = 8, 10). A – bacterial colony counts in lung homogenate. B – inflammatory cells in BAL fluid. C, D – inflammatory
cytokines in lung homogenate. E – antimicrobial peptide expression in lung tissue. F – inflammatory cells in BAL fluid from mice challenged with PBS
for 24 hours (N = 6, 6). * p,0.05, # p,0.10.
doi:10.1371/journal.pone.0034638.g001

JNK1 and Host Defense
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produced similar levels of IL-23p19 (242.9639.3 pg/ml vs.

250.5628.8 pg/ml, respectively) in response to E. coli challenge.

We then examined whether JNK1 was required for antimicrobial

peptide production in response to E. coli. JNK1 2/2 mice

produced significantly less Reg3b and a trend towards less Camp

compared to WT mice (Figure 1E). Finally, to confirm that the

difference in cellular inflammation between WT and JNK1 2/2

mice was not due to baseline differences between the mice, WT

and JNK1 2/2 mice were challenged with PBS for 24 hours.

Differential BAL cell counts showed no changes in macrophage

numbers between the mouse strains (Figure 1F). These data

indicate that JNK1 is required for the normal immune response to

the gram-negative bacteria E. coli. Deletion of JNK1 resulted in

decreased lung inflammation and increased pathogen burden.

E. coli, and other gram-negative bacteria, drives inflammation

through interaction of LPS with the Tlr4 signaling cascade [12].

Gram-positive bacteria initiate inflammation largely through

interactions with Tlr2 and other pathways [13]. To test whether

JNK1 plays a role in host defense against gram-positive bacteria,

we challenged WT and JNK1 2/2 mice with S. aureus. JNK1 2/

2 mice did not have significantly elevated S. aureus burden one day

after challenge (Figure 3). Similar to the E. coli challenge model,

JNK1 2/2 and WT mice had similar BAL cell numbers, but

JNK1 2/2 mice recruited significantly less macrophages.

Deletion of JNK1 resulted in significantly less IL-1a production,

but did not impact other cytokines that were decreased in the

gram-negative model. These data suggest that JNK1 does not play

a large role in host defense or inflammation in response to the

gram positive bacterium S. aureus.

JNK1 modulates the pathophysiology of Influenza A
infection

Studies presented thus far addressed the role of JNK1 in host

defense against extracellular pathogens. Next, the role of JNK1 in

intracellular host defense was evaluated. WT and JNK1 2/2

mice were infected with Influenza A PR/8/34 H1N1 for seven

days. JNK1 2/2 mice displayed increased weight loss throughout

the infection time course compared to WT mice (Figure 4A).

Interestingly, despite having greater morbidity as measured by

weight loss, JNK1 2/2 mice had decreased viral burden

(measured by viral matrix protein expression) versus WT mice

on day seven (Figure 4B, C). The total number of BAL

inflammatory cells was unaltered in JNK1 2/2 mice, however,

these mice had significantly decreased macrophage recruitment

Figure 2. JNK1 is required for peribronchial inflammation during gram-negative bacterial pneumonia. WT and JNK1 2/2 mice were
challenged with 107 cfu of E. coli for 24 hours (N = 8, 10). A – lung histology 1006 (top panels), 2006 (lower panels). B – lung histology scoring.
* p,0.05.
doi:10.1371/journal.pone.0034638.g002

JNK1 and Host Defense
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and increased lymphocyte numbers compared to control mice

(Figure 5A). One possible explanation for increased morbidity

would be an enhanced inflammatory profile or cytokine storm in

JNK1 2/2 mice. Analysis of tissue inflammation by histopathol-

ogy revealed no differences in parenchymal or peribronchial

inflammation (Figure 6A, B). Consistent with the small changes in

inflammation observed, JNK1 2/2 mice had significantly

reduced KC and IL-10 production, but many cytokines were

unaffected versus WT mice (Figure 5B–D). IL-23p19 production

trended towards decreased production in JNK1 2/2 compared

to WT mice (Figure 5E). Overall, these data show that JNK1 plays

a minor role in lung inflammation induced by Influenza A, but is

critical to determining morbidity and viral burden. One

potentially key difference observed in JNK1 2/2 mice by

histopathology was the presence of plugging of airways (Figure 6A).

This phenotype was not observed in any sections from WT mice.

To determine if the airway plugging was perhaps due to mucus

hyper-production, expression of Muc5ac, Muc5b, and Clca3 were

examined. JNK1 2/2 mice did not display different levels of

mucin gene expression versus WT mice (Figure 6C). In addition,

neither WT nor JNK1 2/2 mice stained positive for mucus

hyper-production by Periodic Acid Schiff staining (data not

shown). Finally, the mechanism by which JNK1 2/2 mice have

lower Influenza A burden was investigated. The type I interferon

response has been shown to be critical to improving viral host

defense and clearance. WT and JNK1 2/2 mice produced

similar levels of IFNb seven days after infection, suggesting no

defect or enhancement of this pathway (Figure 7A). Since JNK1

has been shown to play a role in T cell survival, the impact of

JNK1 deletion on T cell populations in the lung following viral

infection was assessed. JNK1 2/2 mice displayed similar ratios of

CD4+, CD8+, cdT, and NKT cells as WT mice (Figure 7B). These

data suggest that JNK1 2/2 mice have appropriate T cell

responses to Influenza A infection.

JNK1 is required for IL-17A signaling in vitro and in vivo
The IL-17 pathway has recently been implicated in host defense

against a number of both intra- and extra-cellular pathogens. IL-

17A is known to be required for host defense and inflammation in

response to gram-negative and gram-positive bacteria, as well as

Influenza A infection. In models of bacterial pneumonia IL-17R

signaling or IL-17A is required for pathogen clearance. In contrast

in Influenza A infection, IL-17R signaling is dispensable for viral

clearance, but is required for morbidity and lung injury [14–17].

Since JNK1 has a role in these infection paradigms and JNK1 2/

2 mice had a trend towards decreased IL-17A production, the

role of JNK1 in IL-17A signaling was investigated. First, to

confirm that IL-17A stimulates JNK1 activity, mouse tracheal

Figure 3. JNK1 is not required for host defense against gram-positive pneumonia. WT and JNK1 2/2 mice were challenged with 108 cfu
of S. aureus for 24 hours (N = 5, 8). A – bacterial colony counts in lung homogenate. B – inflammatory cells in BAL fluid. C, D, E – inflammatory
cytokines in lung homogenate. * p,0.05.
doi:10.1371/journal.pone.0034638.g003

JNK1 and Host Defense
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epithelial cells (MTEC) were treated with IL-17A and JNK1

phosphorylation of c-Jun was determined (Figure 8A). IL-17A

induced rapid activation of JNK1 as early as fifteen minutes after

stimulation. IL-17A is known to stimulate inflammatory cytokine

and antimicrobial peptide production by epithelial cells. WT and

JNK1 2/2 MTEC were stimulated with IL-17A for one day and

cytokines were measured by multiplex cytokine assay and RT-

PCR. IL-17A induced KC and MIP-2 protein and mRNA as well

as decreased IP-10 protein were significantly decreased in JNK1

2/2 MTEC compared to WT cells (Figure 8B–D). Surprisingly,

JNK1 2/2 MTEC had increased G-CSF mRNA, but no change

in protein compared to WT cells, upon stimulation with IL-17A

(Figure 8E). These data demonstrate that JNK1 is required for IL-

17A pro-inflammatory signaling in vitro. In addition, JNK1 2/2

MTEC expressed significantly decreased levels of the antimicro-

bial peptides S100a8 and Defb4 compared to IL-17A stimulated

WT MTEC (Figure 8F). Taken together, the data suggest that IL-

17A signals through JNK1 to induce inflammation and enhance

host defense.

Since JNK1 was shown to play a role in IL-17A signaling in

vitro in epithelial cells, the impact of JNK1 deletion on IL-17A

signaling in vivo was investigated. WT and JNK1 2/2 mice were

challenged with adenovirus expressing IL-17A for three days.

Adenoviral IL-17A induced similar levels of IL-17A protein in the

lung; 4088.161069.5 pg/ml in WT mice and 4009.46459.0 pg/

ml in JNK1 2/2 mice. The total numbers of inflammatory cells

in the BAL were similar in WT and JNK1 2/2 mice, however,

JNK1 2/2 mice had significantly increased macrophage and

decreased neutrophil recruitment (Figure 9A). In addition to

altered cellular infiltrate profiles, JNK1 2/2 mice produced

significantly decreased MCP-1 and IFNc compared to WT mice

(Figure 9B, C). The adenoviral expression approach utilized

introduces the potential caveat of a differential viral response in

the WT and JNK1 2/2 mice. To further examine IL-17A

signaling in vivo, WT and JNK1 2/2 mice were instilled with

recombinant mouse IL-17A for one day. IL-17A induced

significantly decreased MCP-1 and G-CSF production, as well

as a trend towards lower IP-10 and IFNc, in JNK1 2/2 mice

versus WT mice (Figure 9D, E). Furthermore, JNK1 2/2 mice

stimulated with IL-17A demonstrated a trend towards decreased

antimicrobial peptides S100a8 and S100a9 compared to WT mice

(Figure 9F). These data show that IL-17A requires JNK1 for

inflammatory signaling in vivo.

Discussion

The results of this study indicate that JNK1 plays a context

dependent role in host defense and inflammation. In general,

JNK1 was associated with macrophage recruitment in response to

each of the three pathogens tested. Furthermore, JNK1 was

necessary for induction of MCP-1 and IFNc, two important

factors for macrophage function. JNK1 was also implicated in the

production of antimicrobial peptides by epithelial cells and in the

lung. These data suggest two potential mechanisms by which

JNK1 may regulate host defense. In viral pneumonia, JNK1 had a

somewhat paradoxical role, as JNK1 2/2 mice had lower viral

burden but worsened morbidity and lung histopathology. The

mechanism for this did not appear to involve altered mucin gene

induction based on the lack of impact on Clca3 mRNA, T cell

recruitment, or type I interferon induction. Finally, JNK1

impacted IL-17A signaling in a similar manner to its effects on

gram-negative bacterial pneumonia; decreased chemokine and

antimicrobial peptide production. These data suggest that IL-17A

requires JNK1 signaling which would suggest that JNK1 is

required in a number of disease pathologies.

The impact of JNK1 in host defense against bacterial pathogens

is largely unclear. Little is known about the impact of JNK1

deletion or inhibition in vivo. Pseudomonas aeruginosa induces JNK1

dependent apoptosis of cells via its exotoxin S, E. coli mediated

induction of cytokines in HeLa cells was shown to be decreased by

Figure 4. JNK1 regulates host defense against Influenza A infection. WT and JNK1 2/2 mice were challenged with 150 pfu of Influenza A
PR/8/34 H1N1 for 7 days. A – weight loss during infection (N = 9, 8). B – viral burden by plaque assay (N = 4, 4). C – viral burden by RT-PCR for M
protein expression (N = 9, 8). * p,0.05.
doi:10.1371/journal.pone.0034638.g004

JNK1 and Host Defense
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a JNK inhibitor, and LPS mediated increases of IL-23 was JNK1

dependent [18–20]. These data support the findings that JNK1

may be important in host defense against gram-negative bacteria.

Our data indicate that JNK1 deletion has similar effects on E. coli

and IL-17A induced cytokine production. Specifically, IFNc and

MCP-1 levels were reduced in JNK1 2/2 mice challenged with

both stimuli. These data suggest that JNK1 may play a role in

macrophage function in host defense. E. coli has been previously

shown to activate JNK1 in macrophages [21]. Furthermore,

MCP-1 2/2 mice fail to recruit neutrophils during E. coli

pneumonia and have increase bacterial burden in the lung [22].

The link between IL-17A and E. coli pneumonia is supported by

the findings that LPS activates IL-17A production in the lung and

IL-17A 2/2 mice have increased E. coli burden in urinary tract

infection [23–24]. In addition, RIP2 2/2 mice have increased

bacterial burden and decreased IL-17A production in the lung

[25]. These data suggest that JNK1 may act downstream of IL-

17A during E. coli pneumonia. The lack of an impact of JNK1 on

host defense against gram-positive bacteria has not been previously

reported. Peptidoglycan from S. aureus was shown to require JNK1

to drive IL-8 production in lung type II cells, suggesting a role for

JNK1 [26]. Our data show a defect in macrophage recruitment

but little impact on cytokine production.

Recent studies concerning JNK1 and Influenza A infection have

focused on the ability of virus to inhibit JNK1 and thus alter host

cell apoptosis [27–28]. JNK1 was shown to be inhibited via viral

NS1 protein or host PI3K/AKT activity thus blocking apoptosis of

infected cells. These data would suggest that in the absence of

JNK1, viral burden may be increased due to a lack of apoptosis,

however we observed decreased viral burden in JNK1 2/2 mice.

MLK3 2/2 mice, a kinase upstream of JNK1, display increased

Influenza A burden due to increased epithelial cell survival and

viral replication [29]. The reason for the discrepancy with these

data and our findings is unclear. Several studies have reported

JNK1 activation following Influenza A infection [30–32]. In these

studies Influenza A drove activation of JNK1, downstream AP-1

transcriptional activity, and cytokine production. Our data show

that JNK1 deletion results in an altered inflammatory cellular

phenotype in the lung and suppression of KC and IL-10

production. A recent microarray study with a JNK1 inhibitor

showed decreased Influenza A induced IL-6 production, although

in JNK1 2/2 mice we did not observe this [33]#. Our data show

Figure 5. JNK1 modulates Influenza A induced inflammation. WT and JNK1 2/2 mice were challenged with 150 pfu of Influenza A PR/8/34
H1N1 for 7 days. A – inflammatory cells in BAL fluid. B, C, D, E – inflammatory cytokines in lung homogenate. * p,0.05, # p,0.10.
doi:10.1371/journal.pone.0034638.g005

JNK1 and Host Defense
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that JNK1 2/2 mice had increased numbers of lymphocytes in

the BAL, but no change in the relative proportion of T cells versus

WT mice. JNK1 has been shown to be required for CD8+ T cell

proliferative responses to IL-2, via regulation of IL-2 receptor,

CD25 [34]. A separate study showed that CD8+ T cell apoptosis

requires JNK1 [35]#. These findings suggest opposing mecha-

nisms by which JNK1 deletion would be expected to either

increase or decrease CD8+ T cells in response to Influenza A. Our

findings indicate a minimal effect on CD8+ T cell populations in

the lung. At this time it remains to be determined why JNK1 2/2

mice have lower viral burden, but worsened morbidity during

Influenza A infection.

Figure 6. JNK1 alters lung histopathology during Influenza A infection. WT and JNK1 2/2 mice were challenged with 150 pfu of Influenza
A PR/8/34 H1N1 for 7 days. A – lung histology 2006 (N = 9, 8). B – lung histology scoring (N = 9, 8). C – mucin gene expression by RT-PCR (N = 9, 8).
doi:10.1371/journal.pone.0034638.g006

Figure 7. JNK1 is not required for antiviral interferon or T cell recruitment in response to Influenza A. WT and JNK1 2/2 mice were
challenged with 150 pfu of Influenza A PR/8/34 H1N1 for 7 days. A – type I interferon expression by RT-PCR (N = 9, 8). B – T cell profile in lung
homogenate by flow cytometry (N = 7, 9).
doi:10.1371/journal.pone.0034638.g007

JNK1 and Host Defense
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Interactions between the IL-17A and JNK1 signaling pathways

have been recently described. In a number of diverse cell types,

including airway smooth muscle cells and fibroblasts, IL-17A was

shown to stimulate phosphorylation of JNK1 and promote

cytokine production [36–44]. In these studies, pharmacologic

inhibition showed that JNK1 is required for the IL-17A induced

production of inflammatory mediators such as, IL-6, IL-8, eotaxin-

1, and b-defensin 2. These data suggest that JNK1 is an important

downstream signaling kinase in IL-17A induced inflammatory

responses. Conversely, a few studies have failed to find a role for

JNK1 downstream of IL-17A in epithelial cells [45–46]. A

limitation of these studies is the use of pharmacological inhibitors

which are somewhat non-specific and inhibit both JNK1 and

JNK2. JNK1 likely impacts IL-17A signaling at the transcriptional

level. AP-1 DNA-binding elements have been identified in the

promoter regions of IL-17A-induced genes, including IL-6, KC,

G-CSF, and MCP-1, indicating a potential target for JNK1

regulation [47]. The role of JNK1 within T cells is an active area

of investigation. JNK1 has previously been shown to play a role in

TH1/TH2 polarization and cytokine production [48], although its

role in differentiation of TH17 cells is unknown. The impact of

JNK1 deficiency with regards to IL-17A and airway epithelial cells

was previously unclear. Our data show that JNK1 is required for

induction of IFNc, MCP-1, G-CSF and antimicrobial peptides.

These data define a clear role for an IL-17A/JNK1 signaling axis

in lung primary epithelial cells relevant to lung infection and in

whole lung tissue.

The findings presented in this study indicate a diverse role for

JNK1 in host defense in the lung. The potential role for JNK1 in

regulation of macrophage responses in vivo is intriguing and

Figure 8. JNK1 is required for the epithelial cell response to IL-17A. MTEC from WT and JNK1 2/2 mice were treated with IL-17A (10 ng/ml)
for 24 hours. A – JNK1 activation by in vitro kinase assay. B, C – inflammatory cytokines produced (N = 6). D, E – inflammatory cytokine gene
expression by RT-PCR (N = 3). F – antimicrobial peptide expression by RT-PCR (N = 3). * p,0.05.
doi:10.1371/journal.pone.0034638.g008

JNK1 and Host Defense
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requires further investigation. In addition, the role of JNK1 in

regulating antimicrobial peptide production may have broad

consequences in immunity against numerous extracellular patho-

gens. Finally, the impact of JNK1 on viral clearance and

pathogenesis is intriguing and remains to be elucidated. Since

JNK1 modulates some of the functional effects of IL-17A, it is

likely that JNK1 is required for host defense in a number of TH17

mediated diseases. These data identify the JNK1 pathway as an

important target in understanding lung immunity. Targeting

JNK1 may provide a novel therapeutic approach for treating

pneumonia.

Materials and Methods

Animals
Heterozygous JNK1 +/2 mice on a N5 generation C57BL/6

background were purchased from Jackson Laboratories and were

maintained as a breeding colony under pathogen free conditions.

All experiments were conducted with age and sex matched JNK1

2/2 and wild-type (WT) littermate controls. All animal studies

were approved by the University of Pittsburgh Institutional

Animal Care and Use Committee, protocol #0903113.

Figure 9. JNK1 modulates the inflammatory response to IL-17A in vivo. WT and JNK1 2/2 mice were challenged with 56108 pfu of
adenovirus expressing IL-17A for 3 days (A–C) (N = 8, 7) or 1 mg of recombinant IL-17A for 24 hours (D–F)(N = 6, 7). A – inflammatory cells in BAL fluid.
B, C, D, E – inflammatory cytokines in lung homogenate. F – antimicrobial peptide expression in lung tissue. * p,0.05, # p,0.10, nd – not detected.
doi:10.1371/journal.pone.0034638.g009

JNK1 and Host Defense
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Bacterial Infection Models
JNK1 2/2 and WT mice were inoculated with Escherichia coli

(DH5a, 107 cfu) or Staphylococcus aureus (ATCC 49775, 108 cfu) by

oropharyngeal aspiration in 50 ml of sterile PBS. Bacteria were

grown for 18 hours to stationary phase prior to inoculation.

Twenty-four hours following infection, mice were lavaged with

1 ml sterile PBS for differential cell counts by cytospin. The right

lung was then homogenized in 1 ml sterile PBS for bacterial

colony counting, cytokine analysis by multiplex assay or by ELISA

for IL-23p19, and real-time PCR for gene expression. The left

lung was fixed in 10% neutral buffered formalin for histologic

processing and H&E staining. Lung parenchymal and peribron-

chial inflammation were scored on double-blinded sections using a

0, least inflamed to 3, most inflamed. Each slide was scored twice

and data reflect the cumulative inflammation score.

Influenza A Infection Model
JNK1 2/2 and WT mice were inoculated with Influenza A

PR/8/34 H1N1 virus (150 pfu). Infected mice were then

maintained for 7 days prior to harvest. Mouse lungs were lavaged

and processed as detailed above. Viral burden was determined by

viral plaque assay as previously described or by RT-PCR for viral

matrix (M) protein expression [14]. T cell recruitment to the lung

following Influenza A infection was determined by flow cytometry.

Briefly, whole mouse lungs were digested with collagenase

followed by mechanical separation. Lung cells were then stained

with fluorescent conjugated antibodies to the surface markers

CD4, CD8, cdTCR, and CD49b (DX5).

Mouse Tracheal Epithelial Cell (MTEC) Culture
MTEC were prepared and propagated as previously described

[3]. Cells were isolated from WT and JNK1 2/2 mice and were

maintained in submerged culture for studies with IL-17A. IL-17A

was added to MTEC cultures at a concentration of 10 ng/ml for

24 hours or as indicated.

JNK1 Kinase Assay
JNK1 activity in protein homogenates from MTEC was

determined as previously described [4]. Briefly, JNK1 was

immunoprecipitated from homogenates using anti-JNK1 antibody

(Santa Cruz Biotechnology). JNK1 was then incubated with P32-

ATP and a GST-c-Jun substrate for 30 minutes at 30uC.

Phosphorylation of GST-c-Jun was then visualized by SDS-PAGE

and autoradiography imaging.

Exogenous IL-17A Models
Adenovirus expressing IL-17A was generated as previously

described [16]#. WT and JNK1 2/2 mice were instilled with

56108 pfu of adenovirus expressing IL-17A by oropharyngeal

aspiration. Mice were then incubated for 3 days prior to harvest.

Mouse lungs were lavaged and processed as described above.

Additionally, WT and JNK1 2/2 mice were instilled with 1 mg of

recombinant mouse IL-17A for 24 hours prior to similar lung

processing.

Statistics
Data were analyzed by unpaired two-tailed t-test or by one-way

ANOVA where appropriate. For multiple comparisons, following

ANOVA, data were compared by Tukey test. Analyses with a

resultant p,0.05 were determined significant, additionally p,0.10

is also reported as a trend. Data are presented as mean 6 standard

error of the mean. All studies were repeated at a minimum of two

times with the resultant combined data presented, except for

MTEC gene expression data where representative data is shown.

All analyses were conducted with the Microsoft Excel software

package.
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