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Abstract

Planning for resilience is the focus of many marine conservation programs and initiatives. These efforts aim to inform
conservation strategies for marine regions to ensure they have inbuilt capacity to retain biological diversity and ecological
function in the face of global environmental change – particularly changes in climate and resource exploitation. In the
absence of direct biological and ecological information for many marine species, scientists are increasingly using spatially-
explicit, predictive-modeling approaches. Through the improved access to multibeam sonar and underwater video
technology these models provide spatial predictions of the most suitable regions for an organism at resolutions previously
not possible. However, sensible-looking, well-performing models can provide very different predictions of distribution
depending on which occurrence dataset is used. To examine this, we construct species distribution models for nine
temperate marine sedentary fishes for a 25.7 km2 study region off the coast of southeastern Australia. We use generalized
linear model (GLM), generalized additive model (GAM) and maximum entropy (MAXENT) to build models based on co-
located occurrence datasets derived from two underwater video methods (i.e. baited and towed video) and fine-scale
multibeam sonar based seafloor habitat variables. Overall, this study found that the choice of modeling approach did not
considerably influence the prediction of distributions based on the same occurrence dataset. However, greater dissimilarity
between model predictions was observed across the nine fish taxa when the two occurrence datasets were compared
(relative to models based on the same dataset). Based on these results it is difficult to draw any general trends in regards to
which video method provides more reliable occurrence datasets. Nonetheless, we suggest predictions reflecting the species
apparent distribution (i.e. a combination of species distribution and the probability of detecting it). Consequently, we also
encourage researchers and marine managers to carefully interpret model predictions.
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Introduction

Worldwide human activity is having adverse impacts on the

structure and function of marine ecosystems [1]. In response,

many initiatives are underway to identify, prioritize and ultimately

preserve areas of importance [2,3,4,5,6]. An initial step in this

process often involves delineating the distribution of species,

assemblages or habitats [7]. This allows areas that support high

diversity to be given the highest priority, which is particularly

important when the maintenance and enhancement of biodiversity

is the central goal of a management initiative [8]. To support such

strategies, management agencies are increasingly seeking the

provision of accurate, quantitative and spatially-explicit informa-

tion on patterns of species distributions at scales relevant to the

assessment and management process [3,9].

In this context, predictive modeling of species’ distribution has

become a fundamental tool [7]. These models have provided a

popular analytical framework for relating geo-located observations

of occurrence to environmental variables that contribute to a

species distribution [7]. This relationship is based on statistically or

theoretically derived response functions that characterize the

environmental conditions associated with the ecological niche of a

given organism [10]. Presence/absence models are frequently used

to predict species distributions, but there is a common problem

related to uncertainty in determining absences [11]; especially

where the species is difficult to survey and does not appear to

occupy all available suitable habitats [12]. In such cases,

researchers have two options; (1) model presence/pseudo-absence

(or background) data (e.g. [13]), or (2) model presence-only data

(e.g. [14]). However, the use of a random sample from the

background population to supply pseudo-absences may have

unexpected consequences on results when true absences are

expected [15,16]. For example, Wisz and Guisan [15] suggested

that models built using random pseudo-absence datasets are

expected to have lower predictive performance than models built

with actual absences. In fact, it may be argued that, on a

theoretical basis at least, a presence-only approach may be

preferable because there is no requirement for truly exhaustive

and exclusive absences; a requirement that is not met by most

biodiversity data.

Often in the marine environment species distribution models

(SDMs) are based on occurrence data collected by the researcher.
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This often results in predictions that are reasonable depictions of

the focal species distribution. While there are many different

methods available to provide occurrence datasets for demersal

fishes in the marine environment, baited and towed systems are

being used as they overcome many issues associated with

traditional survey methods (for a review of these issues see [17]).

Moore et al. [18], for example, modeled temperate marine fish

distributions based on baited-video-derived occurrence and fine-

scale multibeam sonar datasets using classification trees and

generalized additive models (GAMs). Similarly, Stoner et al. [19]

used towed-video observations to model the relationships between

Lepidopsetta polyxystra (northern rock sole) abundance and environ-

mental variables (e.g. depth, sediment qualities, macroalgae) in five

near-shore nursery grounds. The value of these data is not

questioned; however the representativeness of these occurrence

localities is dependent on which survey technique is used. For

example, a comparison between baited and unbaited video, found

that a greater number of individuals and species were recorded by

the baited system; especially carnivorous fishes [20]. While

research suggests that deploying a combination of survey methods

used concurrently provides a better assessment of fish assemblages

(e.g. [21]), the logistical or financial constraints of most studies

limit fish biodiversity assessments to only one method. Conse-

quently, understanding the influence of a survey method used to

collect occurrence datasets for modeling of fine-scale habitat

suitability is especially crucial. If an observation of zero individuals

has arisen because it was present but not detected then any

statistical inference based on such data are likely to be incomplete

or wrong [22]. Consider a fish species that was observed in 10% of

a study region. This fish may actually occur throughout the entire

area but was only detected 10% of the time. Alternatively, it may

also be found in only 10% of the area and has been detected

perfectly.

Consequently, the aim of this paper is to highlight the potential

differences in model predictions caused by the choice of survey

method used to collect fish occurrence datasets. In this paper

towed and baited underwater video methods are used to provide

occurrence datasets for nine temperate marine sedentary fishes.

Further, given the potential for presence/absence and presence-

only models to produce considerably different predictions of

habitat suitability, three commonly applied SDMs (i.e. generalized

linear models; GLMs, GAMs and maximum entropy; MAXENT)

are applied to the baited and towed video occurrences datasets for

the nine fish taxa. This will provide a comparison of survey

method as well as determine how these datasets potentially

influence both types of SDMs (i.e. presence/absence and presence-

only). With increasing application of SDMs in the marine

environment, this paper will bring into focus the need for careful

interpretation of predictions.

Results

Model Evaluation
The Area Under the receiver-operating characteristic Curves

(AUC) was used to evaluate the models of habitat suitability for the

nine demersal fish taxa. All of the 54 models of habitat suitability

returned AUC values .0.5 (Table 1). Of these, MAXENT

provided the top 12 highest performing models as measured by

AUC. On 15 occasions GLMs and GAMs produced the same

performing models as each other (as measured by AUC); with four

of these being the equal highest performing model. In isolation,

GLMs and GAMs only provided one model each that performed

highest.

Similarity in Predictions of Habitat Suitability
The similarity between predictions of habitat suitability for the

nine demersal fish taxa from the two observation techniques was

assessed using the I statistic [23]. These I values were grouped by

thresholds adapted from Roubicek et al. [24], which indicated I

values ,0.7 as low, 0.7–0.8 moderate, and .0.8 as highly degree

of similarity between predictions of habitat suitability.

Similarity in habitat suitability models derived from

baited-video. Generally, all three modeling approaches

provided predictions with a high degree of similarity for the nine

focal fish taxa based on the baited-video dataset (i.e. I . 0.80;

Table 2; Figure 1; Figure 2). The GAMs and GLMs provided very

similar model predictions (i.e. I , 1) for all nine fish taxa. Only

slight differences were observed between MAXENT and the other

two modeling approaches; with the greatest difference being

observed for predictions of habitat suitability for Pempheris

multiradiata (common bullseye; Table 2; Figure 2).

Similarity in habitat suitability models derived from

towed-video. When compared to the baited-video datasets,

more variation in similarity between the three modeling

approaches was observed across the nine fish taxa based on the

towed-video datasets (Table 2; Figure 1; Figure 2). Similar to the

baited-video-derived models, GAM and GLM provided identical

or very similar predictions for eight of the nine taxa; with only

moderate differences being observed for Upeneichthys vlamingii

(southern goatfish; I = 0.78). Similarly, comparison between

MAXENT and the other two modeling approaches showed a high

degree of similarity for five of the nine fish taxa. For U. vlamingii

GAM was moderately different to both GLM and MAXENT, but

no difference was observed between GLM and MAXENT (I = 1).

Similarly, both GAM and GLM were moderately different to

MAXENT for Parequula melbournensis (silverbelly), but no difference

was observed between GAM and GLM (Table 2). Meuschenia scaber

(cosmopolitan leatherjacket) showed the same trend as P.

melbournensis, albeit to a greater degree (i.e. low similarity;

Table 2). The GLM and MAXENT predictions showed only

moderate similarity for Odax cyanomelas (herring cale).

Similarity in habitat suitability models between

observation techniques. In contrast to models derived from

the same dataset (i.e. baited or towed video), greater dissimilarity

were observed when the predictions of habitat suitability based on

the two video observation techniques were compared (Table 2).

Caesioperca spp. (perch) was the only taxa to exhibit a high degree

similarity for all modeling approaches between the two

observation datasets (Table 2; Figure 1). With exception of the

baited-video-derived MAXENT model for Cheilodactylus nigripes

(magpie morwong) that showed a high degree of similarity with

towed-video-derived MAXENT, models for this species had a

moderate degree of similarity between observation datasets

irrespective of modeling approach (Table 2). Identical

predictions of habitat suitability were observed for GAM and

GLM between observation datasets for M. scaber (Table 2). A high

degree of similarity was observed for towed-video-derived

MAXENT and baited-video-derived GAM and GLM (Table 2).

Towed-video-derived GLM also showed a high degree of

similarity with baited-video-derived MAXENT. A moderate

degree of similarity was also observed between the towed-video-

derived GLM and the baited-video-derived MAXENT. However,

the towed-video-derived MAXENT showed a low degree of

similarity with baited-video-derived MAXENT. For Notolabrus

tetricus (blue-throated wrasse) a high degree of similarity was

observed between the two observation datasets for GAM, GLM

and MAXENT. Towed-video-derived MAXENT, however,

showed a moderate degree of similarity with baited-video-
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derived GAM, GLM and MAXENT (Table 2). Predictions of

habitat suitability using GAM, GLM and MAXENT based on

either observation technique showed a high degree of similarity for

O. cyanomelas. Towed-video-derived GLM, however, showed a

moderate degree of similarity with all three models based on

baited-video data. Towed-video-derived MAXENT for P.

melbournensis showed a high degree of similarity with all three

baited-video-derived models. Both towed-video-derived GAM and

GLM showed the same trend; with a low degree of similarity

between GAM and GLM between observation datasets (Table 2).

Baited-video-derived MAXENT showed a moderate degree of

similarity (i.e. I = 0.70). A moderate degree of similarity between

the two observation datasets was observed for all models for

Pseudolabrus psittaculus (rosy wrasse; Table 2). Towed-video-derived

MAXENT for U. vlamingii showed a high degree of similarity with

all three baited-video-derived models. In contrast, GAM and

GLM showed a moderate degree of similarity with all three baited-

video-derived models (Table 2). A low degree of similarity between

the two observation datasets was observed for all models for P.

multiradiata (Table 2; Figure 2).

Discussion

This study explored two commonly used underwater video

techniques to provide occurrence data to develop and compare

presence/pseudo-absence and presence-only fine-scale, habitat

suitability models for nine species of temperate marine sedentary

fishes. The habitat suitability models built in this study performed

considerably better than random when assessed by AUC. The

AUC values recorded in this study are similar to those observed in

previous marine and terrestrial habitat suitability modeling studies

(e.g. [14,25,26,27]). Despite the fact that AUC has recently been

criticized (see [28,29]), it does provide a preliminary indication of

the usefulness of a model for the identification of suitable habitat

for a particular species [14]. This study has also demonstrated this

to be the case, and further, that baited and towed video survey

techniques are capable of providing models of similar quality

(AUC); a conclusion supported by other recent studies

[18,25,30,31,32,33]. For example, Moore et al. [18] compared

the ability of presence/absence methods (GAM and classification

and regression trees) to predict fine-scale habitat suitability for

demersal fishes based on baited-video and multibeam sonar

datasets. They found that baited-video and multibeam sonar

datasets were useful in providing a detailed understanding of

demersal fish-habitat associations, as well as accurately predicting

species distributions across unsurveyed locations where continuous

spatial seafloor data were available [18]. Similarly, Monk et al.

[25] used towed-video and multibeam sonar derived datasets to

compare commonly used presence-only methods (i.e. BIOCLIM,

DOMAIN, Ecological-Niche Factor Analysis, MAXENT). They

concluded that towed-video-based occurrence data provided well-

performing, fine-scale models and encouraged the ongoing use of

presence-only approaches, particularly MAXENT, in modeling

suitable habitat for demersal marine fishes [25]. Despite these

studies supporting the idea that underwater-video-based occur-

rence and multibeam sonar-derived datasets are capable of

providing well-performing models, this study is one of the first to

contrast these two video observation techniques for generating

occurrence datasets for predictions of fine-scale habitat suitability

for temperate marine fishes (using both presence/pseudo-absence

and presence-only modeling techniques).

While numerous studies have compared modeling approaches

in terms of model performance (i.e. via AUC or kappa;

[14,25,26,27,34,35]), the main purpose of this study was to

highlight how sensible-looking, well-performing (based on AUC)

models can provide very different predictions of habitat

suitability depending on which video observation dataset was

used. Overall, greater dissimilarity between the three modeling

approaches was observed across the nine fish taxa when models

based on the two occurrence datasets were compared (relative to

models based on the same survey method). This finding suggests

Table 1. Summary of model performances as measured by AUC for the baited and towed video datasets.

Taxon Observation technique GAM AUC GLM AUC MAXENT AUC

Caesioperca spp. Baited video 0.73 0.80 0.63

Towed video 0.57 0.57 0.61

Cheilodactylus nigripes Baited video 0.66 0.66 0.65

Towed video 0.77 0.77 0.84

Meuschenia scaber Baited video 0.96 0.96 0.92

Towed video 0.69 0.59 0.68

Notolabrus tetricus Baited video 0.89 0.89 0.90

Towed video 0.75 0.75 0.84

Odax cyanomelas Baited video 0.87 0.87 0.92

Towed video 0.81 0.75 0.90

Parequula melbournensis Baited video 0.70 0.70 0.82

Towed video 0.67 0.67 0.59

Pempheris multiradiata Baited video 0.82 0.82 0.89

Towed video 0.70 0.70 0.73

Pseudolabrus psittaculus Baited video 0.90 0.90 0.87

Towed video 0.60 0.60 0.68

Upeneichthys vlamingii Baited video 0.72 0.72 0.74

Towed video 0.54 0.54 0.63

doi:10.1371/journal.pone.0034558.t001
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that the characteristics of the occurrence data are important.

This concept is supported by Kadmon et al. [36] who suggested

that models are influenced by the reliability of occurrence data

and distribution characteristics of the modeled species. The latter

has been thoroughly discussed in previous marine and terrestrial

studies (e.g. [25,26,36,37]), and suggest that narrowly distributed

species that exhibit minimal niche variation provide more

reliable models.

There are many factors that potentially influence the reliability of

occurrence data of fishes, including traits such as; body size,

crypticity, schooling behavior, habitat, camera avoidance and

observer biases [38,39,40]. These issues are all inherently linked to

the choice of survey method. For example, on numerous occasions,

males of N. tetricus were observed aggressively guarding the bait

against conspecific males and, in some cases, other species.

Guarding behavior from territorial species could potentially lead

to underestimates of species and densities on deployments where it is

occurring [41]. Similarly, after reviewing some of the baited-video

footage where the deployment vessel is heard approaching (to

retrieve the unit after the 60-min deployment), it was noticed that on

several occasions the fishes in the field of view rapidly departed.

Avoidance behavior towards boat noise could potentially bias the

towed-video dataset and has been reported by other researchers

(e.g. [42,43]). Sarà et al. [42] found that agonistic behavior of

Thunnus thynnus (northern bluefin tuna) was more evident when

exposed to sounds from outboard motors. Further, Stoner et al. [44]

found that the presence of underwater camera systems (e.g. towed-

video system or remotely operated vehicles) could potentially bias

the fish species observed; albeit difficult to quantify as most

avoidance (or attraction) occurs outside the field of view.

Another possible explanation for the disparity between predictions

of habitat suitability may be attributed to the deployment differences

between the surveying methods (i.e. stationary v. moving). Consider

habitat patches with comparable fish population density but varying

in natural shelters such as crevices or macroalgae. Sampling that

relies on the use of a moving platform (e.g. an obliquely angled

towed-video camera that is flown 2 m above the seafloor) to provide

visual observations could result in incomplete detection in habitat

patches with more natural cavities or canopy forming macroalgae

(e.g. kelp). By contrast, sampling that relies on a stationary platform

(e.g. baited-video) to provide a visual observation dataset may allow

time for species that are hiding amongst the crevices or canopy

forming macroalgae to be observed. However, the use of bait in these

systems is well documented to increase the number of pelagic or

epibenthic carnivores in the vicinity of the camera deployment

[45,46,47], which may result in reduced observations of cryptic or

prey species recorded by these systems. The deployment of unbaited

stationary cameras may decouple the effects of bait and seafloor

structure, and warrants further investigation.

Table 2. Summaries of the similarity between habitat
suitability predictions using the I-statistic (I < 1: identical, I <
0: completely different).

Baited Towed

GAM GLM MAXENT GAM GLM

Caesioperca spp. Baited GLM 0.96

MAXENT 0.87 0.88

Towed GAM 0.92 0.93 0.88

GLM 0.92 0.93 0.88 1.00

MAXENT 0.87 0.87 0.83 0.87 0.87

Cheilodactylus
nigripes

Baited GLM 0.99

MAXENT 0.82 0.82

Towed GAM 0.76 0.76 0.83

GLM 0.76 0.76 0.83 1.00

MAXENT 0.76 0.76 0.82 0.90 0.90

Meuschenia
scaber

Baited GLM 0.98

MAXENT 0.90 0.90

Towed GAM 1.00 1.00 0.75

GLM 0.75 0.75 0.82 0.80

MAXENT 0.82 0.82 0.64 0.66 0.60

Notolabrus
tetricus

Baited GLM 0.95

MAXENT 0.90 0.90

Towed GAM 0.87 0.87 0.84

GLM 0.87 0.87 0.84 1.00

MAXENT 0.79 0.79 0.77 0.86 0.86

Odax
cyanomelas

Baited GLM 0.99

MAXENT 0.89 0.89

Towed GAM 0.81 0.81 0.80

GLM 0.76 0.76 0.75 0.81

MAXENT 0.82 0.82 0.81 0.83 0.76

Parequula
melbournensis

Baited GLM 0.98

MAXENT 0.86 0.86

Towed GAM 0.68 0.68 0.70

GLM 0.68 0.68 0.70 1.00

MAXENT 0.82 0.82 0.87 0.72 0.72

Pempheris
multiradiata

Baited GLM 0.95

MAXENT 0.77 0.77

Towed GAM 0.63 0.63 0.67

GLM 0.63 0.63 0.67 0.97

MAXENT 0.60 0.60 0.70 0.83 0.83

Pseudolabrus
psittaculus

Baited GLM 0.97

MAXENT 0.87 0.88

Towed GAM 0.75 0.75 0.75

GLM 0.75 0.75 0.75 0.89

MAXENT 0.71 0.71 0.70 0.89 0.89

Table 2. Cont.

Baited Towed

GAM GLM MAXENT GAM GLM

Upeneichthys
vlamingii

Baited GLM 0.99

MAXENT 0.87 0.87

Towed GAM 0.78 0.78 0.79

GLM 0.78 0.78 0.79 0.78

MAXENT 0.80 0.80 0.82 0.78 1.00

doi:10.1371/journal.pone.0034558.t002
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While the use of presence-only methods (such as MAXENT in

this study) potentially reduces the issue of non-detections, the fact

still remains that if a species is less detectable in a subset of its niche

by a particular survey method, then this may influence model

predictions. As highlighted by the differences between MAXENT

model predictions observed in this study, the two video survey

methods detected presences in slightly different environmental

niches. For example, the fish taxon that provided predictions that

were most similar was Caesioperca spp. (Figure 1). These are

conspicuous aggregating fish species that are commonly observed

in cloud-like schools feeding above reef crests [48]. Consequently,

both video methods detected this conspicuous species in the same

ecological niche, and are thus reflected in the similar predictions of

suitable habitat. Conversely, P. multiradiata showed the lowest

similarity in model predictions between survey methods (Figure 2).

This timid species inhabits caves ranging from shallow (,10 m)

Figure 1. Example of similar habitat suitability predictions. Example of predicted habitat suitability for Caesioperca spp. showing very similar
predictions based on the baited and towed video datasets. Left column: baited video. Right column: towed video. (a–b) presence/pseudo-absence
localities (presence: black; pseudo-absence: white). (c–d) MAXENT predictions. (e–f) GLM predictions (g–h) GAM predictions. Red shading indicates
high suitability, while blue highlights low suitability.
doi:10.1371/journal.pone.0034558.g001
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macroalgal-dominated reefs to deeper (,50 m) invertebrate

colonized systems [49]. For this species, the two video methods

detected individuals in different environmental niches. For example,

the stationary characteristic of the baited-video method enabled

individuals hiding among the shallow, complex reef systems to be

recorded. However, the baited system recorded fewer occurrences

in the deeper regions, which can possibly be attributed to the higher

number of pelagic and epibenthic carnivores that were attracted to

(and recorded by) the baited-video throughout these areas. This

may result in avoidance by P. multiradiata from the baited-video on

deployments were these predatory fishes were present in high

numbers. By contrast, the towed video did not attract these

predatory individuals, and recorded more P. multiradiata in the

deeper invertebrate dominated regions of the study site.

Whilst all model predictions for the nine fish taxa reflect aspects

of their known ecology, the results from this study suggest that

Figure 2. Example of dissimilar habitat suitability predictions. Example of predicted habitat suitability for Pempheris multiradiata showing
dissimilar predictions based on the baited and towed video datasets. Left column: baited video. Right column: towed video. (a–b) presence/pseudo-
absence localities (presence: black; pseudo-absence: white). (c–d) MAXENT predictions. (e–f) GLM predictions (g–h) GAM predictions. Red shading
indicates high suitability, while blue highlights low suitability.
doi:10.1371/journal.pone.0034558.g002
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differences between model predictions are actually reflecting the

apparent species distribution (i.e. a combination of the habitat

suitability of a fish species and the probability of detecting it; [50]).

This bias cannot be resolved without consideration of variations in

detectability that may arise from differences between survey

methods, habitats and species [51]. Additionally, the strength of a

habitat variable relationship in a SDM may be underestimated

whenever imperfect detection is not accounted for, even with

constant detectability [52]. Although some conventional SDMs

allow for the problem of missing non-detection data to be partially

addressed (i.e. missing zeros; [53]) or permit very general

functional forms of covariates to be fitted, such as regression trees

[54] and boosted regression trees [55], site-occupancy models may

provide a useful alternative [50]. Site-occupancy models use the

presence/absence (or more correctly termed detection/non-

detection) patterns at sites surveyed multiple times (i.e. at least

twice) to separate the sampling method from the ecological process

and thus obtain estimates of the true species distribution along

with unbiased estimates of variable importance [50,52,56].

However, temperate marine fish studies have rarely addressed

the issue of detectability in video-derived occurrence datasets as

surveying a site (especially for the purpose of building localized,

fine-scale SDMs) more than once is often impractical due to

limited weather windows (for more multiple surveys in a single

field season) and deployment costs (both in a single season and

between seasons). While underwater visual census methods have

developed distance sampling techniques (e.g. [57]) that enable

detectability to be accounted for, further research is needed to

determine the relative detectability of fishes using towed or baited

video systems.

Conclusions
This study has demonstrated that the characteristics of the

video-derived occurrence data are potentially more important

than the chosen modeling technique in developing fine-scale

models of habitat suitability for temperate marine fishes. However,

based on the results in the present study it is difficult to draw any

general trends in regards to which circumstances what survey

method provides more reliable occurrence datasets. Nonetheless,

the main objective here was not to directly compare model

performance, or even emphasize which of the two video methods

compared is better for building models of habitat suitability for

marine fishes. Instead, the purpose of this paper was to raise

awareness that interpretation of habitat suitability models needs to

account for the potential influence that the choice of survey

method used to provide occurrence datasets may have. Whilst

limitations within the datasets used in the present study precluded

the use of site-occupancy models, which incorporate measures of

detectability, it is suggested that these models may provide a

practical alternative to conventional SDMs to predict the

distribution of suitable habitat for demersal fishes. However, in

the absence of repeat surveys (which would enable the use of

enable site-occupancy models), researchers should select the

method that is most likely to best detect their focal species; given

the known behavior and ecology of the species (e.g. will the species

react to bait? Or will the species respond to a moving camera?).

Alternatively, conventional SDMs could be built utilizing

occurrence datasets derived from different survey methods

deployed at the same study site in a single field season. The

similarity between these predictions can then be assessed (e.g.

using I-statistic) to ensure that model outputs reflect as close to the

actual distribution of suitable habitat for marine fishes as possible.

Materials and Methods

Study Site
The study site encompassed an area 25.7 km2 that was situated

offshore from the city of Warrnambool (38u 439 S, 142u 439 E),

south-eastern Australia (Figure 3). The site ranged in depth from

12 to 50 m (calculated from multibeam sonar coverage for the

study area which is based on lowest astronomical tide datum). The

deeper regions consisted of a mixture of low (,1 m) profile reef

and sandy sediments dominated by mixed red algae, sponges,

ascidians, bryozoans and gorgonian corals [58]. The shallow reefs

Figure 3. Study area. The location of the Warrnambool study area off the south-eastern coast of Australia. Shading indicates water depth. Black
lines indicate towed video transects. White dots indicate baited video deployments. Red line delineates the southern extent of the Hopkins Bank.
doi:10.1371/journal.pone.0034558.g003
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along the northern section (Hopkins Bank) of the study site were

dominated by canopy-forming kelp (Ecklonia radiata and Phyllospora

comosa). A large sandy area in the north-western region of the study

site also supported a sparse cover of seagrass (Zosteraceae).

Fish Surveying Techniques
Ethics statement. This study was undertaken in strict

accordance with the recommendations and procedures

determined by the Prevention of Cruelty to Animals Act 1986

and its Regulations, and the Australian Code of Practice for the

Care and Use of Animals for Scientific Purposes. This protocol

was approved by the Deakin University Animal Welfare

Committee (permit number A9-2009).

Video deployments. Two video methods were deployed; (1)

baited and (2) towed. The sampling strategy for each method was

designed to provide adequate spatial coverage of the study site and

to be representative of the dominant substrata types and benthic

biological habitats, whilst also being appropriate for SDM analysis.

Baited-video deployments. The sampling strategy for the

baited-video drops was a stratified random design. Stratified

deployments were allocated utilizing the multibeam sonar

bathymetry and accurately predicted biotic habitat map

available for the study area. The validation test for this biota

map returned overall accuracy of 83%. Detailed descriptions of

the method used to validate the biota map are available in

Ierodiaconou et al. [58]. Ten replicate drops were preformed

across three multibeam sonar derived variables; (1) bathymetry

was grouped into 10 m depth strata (i.e. 10–19, 20–29, 30–39 and

40–49 m), (2) rugosity was reclassified into high, medium and low

strata and (3) Benthic Position Index (BPI) was classed into trough,

flat and peak. For predicted biotic habitat, 10 replicate drops were

performed in each of the six predicted habitats (e.g. mixed brown

algae, for details see; [58]). To ensure adequate spatial coverage 59

additional drops were randomly allocated throughout the deeper

(i.e. .20 m) regions of the study site.

The baited-video systems used comprised two Sony HC 15E

video cameras mounted 0.7 m apart on a base bar inwardly

converged at 8u to gain an optimized field of view with visibility of

,7 m distance (water clarity dependent; [59]). Detailed informa-

tion on the design and photogrammetric specifics can be viewed in

Harvey and Shortis [60]. Up to five baited-video systems were

deployed at any one time to increase sampling efficiency. Each

baited-video system was deployed by boat and left to film on the

seafloor for a period of 1 h. At least 36 min of filming time is

recommended to obtain measures for the majority of fish species,

though 60 min is advisable to obtain measures of numerous

targeted fish species [61]. Each camera system was equipped with

a synchronizing Light Emitting Diode (LED) that was visible in the

fields of view of both video cameras. The LED was used to check

synchronization of the video footage, thereby eliminating

systematic error of motion parallax [59]. The LED emitted

minimal light and was standard across all drops. Each system was

also baited with ,800 grams of crushed Sardinops sagax (pilchard)

in a closed plastic-coated wire mesh basket, suspended 1.2 m in

front of the two cameras. Adjacent concurrent drops were

separated by at least 250 m to avoid overlap of bait plumes and

reduce the likelihood of fish moving between sites within the 1 h

sampling period [62]. This distance is well accepted by baited

camera operators to reduce the effects of bait plume between

concurrent deployments [20,62,63,64]. All drops were deployed

between 08:00 and 18:00 to minimize the effects of diurnal

changes in fish behavior [65].

Fish were sampled from February to March 2009, with a total of

219 60-min baited-video deployments precisely positioned with a

differential GPS to ensure accurate spatial location (Figure 3).

However, 15 deployments were excluded from the analysis due

poor visibility or being smothered in kelp. Footage from each

baited-video deployment was interrogated to obtain the maximum

number of fish belonging to each species present in the field of

view of the cameras at one time (MaxN; [66]). These observations

were obtained using the program EventMeasure (SeaGIS Pty Ltd;

www.seagis.com.au) and converted to presence/pseudo-absence

and presence-only datasets (see ‘Data Treatment’).

Towed-video transects. Twenty nine towed-video transects

were used to provide fish occurrence data. The 29 transects were

selected to encompass the main physical gradients of the study site

(e.g. depth, topographic variation, exposure). Additional transects

were undertaken throughout the shallow heterogeneous regions of

the site to ensure adequate representation of habitats throughout

the study site. The 29 transects covered 68 linear km of the study

area (Figure 3). Over eight days (December-March 2005/06 and

February-March 2009) a micro remotely-operated vehicle

(VideoRay Pro 3) was towed along the 29 transects at

0.521 ms21 (1–2 knots). The oblique angled camera was

maintained approximately 2 m from the bottom with a field of

view of ,7 m distance (water clarity dependent). The distance

from the seafloor was monitored and maintained using live-feed

video and a vessel-mounted winch system. A text overlay

containing a time stamp and transect ID were recorded with the

video using a Sony MiniDV recorder. The video footage was

interrogated to identify fish species and the spatial position of each

occurrence locality was then determined by matching the time

stamp of the video with the corresponding survey positional data.

The towed-video system was geo-located by integrating vessel

location (Omnistar satellite dGPS), motion sensor (KVH) and

acoustic camera positioning (Tracklink Ultra Short Baseline). The

total propagated error at the maximum depth of the study site was

65 m accuracy.

Species Distribution Models
The SDMs were built for the nine most common fish taxa

(Table 3) across the two video survey techniques. For each of the

fish taxon, GLM, GAM and MAXENT models were built using

the same training and evaluation data derived from either the

baited and towed video datasets. By using the same training and

evaluation dataset derived from baited and towed video model

performance can be directly compared.

Generalized linear models. The GLM is often used in

ecological studies, and therefore serves as a benchmark for the

other model types [67]. The GLMs were built in the Marine

Geospatial Ecology Tool kit (MGET; Duke University), which

interfaces between statistical software ‘R’ (and its contributing

packages; [68]) and ArcGIS 9.3. Each fish taxon was individually

modeled using a logit link and a binomial error term. All models

were fitted with the predictor variables listed in Table 4 using a

backward stepwise procedure. The Akaike Information Criterion

(AIC) was used to determine variable contribution as predictor

variables were sequentially added and then dropped from the

model.

Generalized additive models. The GAM is an extension of

GLMs, allowing several transformations to be applied to

individual independent variables before addition to the model.

This improves the ability of the model to deal with nonlinear data.

The GAMs were implemented using the R ‘gam’ package within

MGET. Where necessary local spline smoothers equivalent to two

degrees of freedom were used [69]. Backward stepwise procedure

was again used to determine variable importance based on the

AIC.
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Maximum entropy. The MAXENT approach has emerged

as a powerful and flexible alternative to GLM and GAM for

assessing species habitat suitability (see [14]). This general-purpose

machine learning approach is designed for modeling species

distributions based on presence-only data to determine the largest

spread (i.e. maximum entropy) in a geographic dataset of species

presences in relation to a set of background environmental

variables [70]. This is essentially the same as maximizing the log

likelihood of the data associated with the presence sites minus a

penalty term [70]. This is conceptually similar to other commonly

used information criteria (e.g. AIC). The penalty term regulates

each environmental variable (known as a feature) by weighting it

according to how much it adds complexity to the model; the sum

of these weightings (including a regularization parameter, which is

determined empirically) determines how much the likelihood

should be penalized to prevent over-fitting [70]. Models used

default settings; convergence threshold (0.00001), maximum

iterations (1000), auto features, regularization multiplier (r = 1)

and background points (10000).

Data Treatment
The GLMs and GAMs were fitted using presence/pseudo-

absence, while MAXENT used only the presence datasets from

each survey method. For the towed-video-derived models a 1:1

ratio of presence/pseudo-absence points were used (i.e. if there

were 50 occurrences, then 50 pseudo-absence points were

randomly generated; Table 3). For these towed-video datasets,

pseudo-absence points were randomly generated along transects

where no fish taxa were observed. For the baited-video-derived

models pseudo-absences were generated from every deployment

where the particular fish taxon was not observed (Table 3). All

models used a set of relatively uncorrelated (i.e. spearman rho,0.5)

multibeam sonar derived seafloor habitat variables as predictors

(Table 4), and the fish occurrences as response variables (Table 3).

For more detail on the 5 m2 cell resolution multibeam sonar and

habitat variables see Monk et al. [31]. Habitat variables were log-

or root-transformed as necessary to prevent extreme frequency

distributions within GLM and GAM.

Model Evaluation
Using the occurrence datasets that were set aside for model

testing, model performance was evaluated using the threshold-

Table 4. Description of the nine seafloor variables retained to model building.

Variables Variable description Software

Aspect-Eastness Northness Aspect (azimuthal bearing of steepest slope) has a inherent circularity built in, to overcome
this, two trigonometric transformations [60] were applied; northness (sin(aspect)) and eastness
(cos(aspect)). These two variables represent proxies for exposure.

Spatial Analyst- ArcGIS 9.3

Bathymetry Bathymetry provides a measure of water depth based on lowest astronomical tide datum. Fugro Starfix suite 9.1

Benthic position index Measure of a location relative to the overall landscape. Calculated by comparing the elevation
of a cell with the mean elevation of surrounding cells by the three analysis extents. Regions with
positive values are higher than their surroundings, whereas areas negative values are lower. Flat
areas have values closer to zero [61]

Benthic Terrain Modeler Tool for
ArcGIS

Euclidean distance to bank Hopkins bank is a major reef feature along the north section of the study region. This bank
feature was extracted from a predicted reef class from a substratum map that was generated using a
decision tree classifier [45]. The Euclidean distance to this feature was calculated in meters.

Spatial Analyst- ArcGIS 9.3

Euclidean distance to nearest
reef

A predicted reef class from a substratum map, generated using a decision tree classifier [45],
was used to calculate Euclidean distance (in meters) to nearest reef.

Spatial Analyst- ArcGIS 9.3

HSI-b Hue-saturation-intensity (HSI) is a transformation of backscatter (proxy for seafloor hardness/
softness), initially developed to decrease noise in radar reflectance [62]. Since backscatter
represents seafloor reflectance, a HSI transformation may improve the separation of high and
low frequency signal scattering properties of the substratum.

ENVI 4.2

Maximum Curvature Maximum Curvature provides the greatest curve of either the profile or plan convexity relative
to the analysis window [63].

ENVI 4.2

Rugosity Rugosity provides the ratio of surface area to planar area within the analysis window and is to
represent a measure of structural complexity [64].

Benthic Terrain Modeler Tool for
ArcGIS

doi:10.1371/journal.pone.0034558.t004

Table 3. Summary of the number of occurrences used in
model building for each taxon based on the two video
methods.

Taxon Video method Presence Pseudo-absence

Caesioperca spp. Baited 115 87

Towed 431 431

Cheilodactylus nigripes Baited 38 164

Towed 32 32

Meuschenia scaber Baited 106 96

Towed 37 37

Notolabrus tetricus Baited 114 88

Towed 50 50

Odax cyanomelas Baited 39 163

Towed 56 56

Parequula melbournensis Baited 29 173

Towed 15 15

Pempheris multiradiata Baited 15 187

Towed 154 154

Pseudolabrus psittaculus Baited 61 141

Towed 90 90

Upeneichthys vlamingii Baited 37 165

Towed 31 31

doi:10.1371/journal.pone.0034558.t003
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independent AUC of the ROC (receiver operating characteristic)

[71]. The ROC plots sensitivity (the fraction of occurrence records

that are classified as presence) against 1 – specificity (the portion of

absence points that are classified as absent) for all possible

thresholds. A curve that maximizes sensitivity for low values of the

false positive fraction is considered a good model and is quantified

by calculating the AUC. An AUC value of 0.5 implies the model

predicts species occurrence no better than random, and a value of

1.0 implies perfect prediction [71]. The ROC curves and the

AUC values were calculated in DIVA-GIS.

Potential Spatial and Temporal Confounding Factors
Semi-variograms and Moran’s I statistics were built using SAM

(Spatial Analysis in Macroecology) to check all model residuals for

spatial autocorrelation. Only very weak spatial auto-correlation

(i.e. all taxa,0.1) was found and corrections were not needed [72].

It is accepted that the collection of the two datasets three years

apart is not ideal. Research suggests that many of the nine species

used were highly territorial and maintain strict territories year

round (e.g. labrids, monacanthids and pempherids). Barrett [73],

for example, studied the short- and long-term patterns of six

temperate marine fishes (from labrid and monacanthid families)

and found that these species appeared to be permanent residents

of the reef. Accordingly, these nine fish taxa should exhibit similar

niche characteristics over time. However, to statistically address

the time discrepancies within the towed-video dataset a permu-

tation analysis of variance (PERMANOVA; [74]) was used to test

differences in the nine fish taxa between 2005/6 and 2009. The

Bray-Curtis coefficient was used to create resemblance matrix. To

account for undefined values caused by joint absences a dummy

species value of 1 was added in all samples. The PERMANOVA

was run with 9999 permutations to obtain P(perm) values under

unrestricted permutation of raw data using time as a factor. No

significant difference was detected between 2005/6 and 2009 for

towed video (pseudo-F 1, 161 = 2.28, P(perm) . 0.05). This

evidence, combined with aforementioned research, indicates that

time within and between video datasets is not a confounding

factor.

Similarity between Distribution Predictions
As proposed by Warren et al. [23], a modified Hellinger

distance was used in order to compare between model predictions

derived from the two observation techniques. This statistic (I)

allows quantitative similarity assessments between distribution

predictions (i.e. GIS grid layers) by computing the differences

between them cell by cell. The I-values range from 0, indicating

that the two predictions are completely different, to 1, suggesting

that both are equal. The I-statistic is independent of sample size

and predicted range sizes, making it superior to other metrics that

have been proposed earlier [23]. This study adapted thresholds

used by Roubicek et al. [24], and considered I values .0.8 are

indicative of high degree of prediction overlap, values between 0.7

and 0.8 are moderate and values ,0.7 indicate low similarity.
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