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Abstract

To study mechanisms of T cell-mediated rejection of B cell lymphomas, we developed a murine lymphoma model wherein
three potential rejection antigens, human c-MYC, chicken ovalbumin (OVA), and GFP are expressed. After transfer into wild-
type mice 60–70% of systemically growing lymphomas expressing all three antigens were rejected; lymphomas expressing
only human c-MYC protein were not rejected. OVA expressing lymphomas were infiltrated by T cells, showed MHC class I
and II upregulation, and lost antigen expression, indicating immune escape. In contrast to wild-type recipients, 80–100% of
STAT1-, IFN-c-, or IFN-c receptor-deficient recipients died of lymphoma, indicating that host IFN-c signaling is critical for
rejection. Lymphomas arising in IFN-c- and IFN-c-receptor-deficient mice had invariably lost antigen expression, suggesting
that poor overall survival of these recipients was due to inefficient elimination of antigen-negative lymphoma variants.
Antigen-dependent eradication of lymphoma cells in wild-type animals was dependent on cross-presentation of antigen by
cells of the tumor stroma. These findings provide first evidence for an important role of the tumor stroma in T cell-mediated
control of hematologic neoplasias and highlight the importance of incorporating stroma-targeting strategies into future
immunotherapeutic approaches.
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Introduction

Tumor cells harbor genetic changes that frequently cause the

synthesis of mutated proteins. The ability of the immune system to

recognize small genetic changes including point mutations has

created great hopes for cancer treatment. Mutated proteins that

may serve as targets for T cell rejection are regularly found in

human tumors and in murine tumor models, particularly those

induced by physical or chemical carcinogens [1–3]. Unfortunately

no generic immunogenic mutations have been found that might be

used to raise a neutralizing immune response against a given

tumor type and foreign antigens are usually not available except in

some virus-associated tumors. Most attempts of immunotherapy

have therefore targeted auto-antigens preferentially expressed by

the tumor. Usually, only low-affinity T cells with limited

therapeutic potential against these antigens are systemically

present since these must evade negative selection in the thymus

[4,5].

The ability of the immune system to fight hematologic

malignancies efficiently has been demonstrated in two paradig-

matic clinical settings in humans: allogeneic stem cell transplan-

tation (SCT) for treatment of chronic myeloid leukemia (CML)

[6,7] and adoptive T cell therapy (ATCT) for the treatment of

Epstein-Barr virus-induced post transplant lymphoproliferative

disease (PTLD) [8–10]. Both have in common that T cells target

foreign antigens: minor histocompatibility antigens in the case of

CML and viral antigens in PTLD. This underscores the notion

that cancer immunotherapy should not rely on a negatively

selected T cell repertoire.

The incidence of high-grade B cell lymphomas has increased

over the last decades in western countries for unclear reasons [11].

Improvement of conventional chemotherapy regimens translated

into increased 5-year survival rates (currently 60% for all B cell

lymphoma entities) [12,13]. Relapse of aggressive B cell lympho-

mas after chemotherapy remains to be a difficult clinical issue and

allogeneic SCT is frequently the last treatment option. Contrary to
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CML, the benefit of allogeneic SCT for treatment of high-grade

lymphomas is not well established. Several studies suggested a

potential graft-versus-leukemia/lymphoma (GvL) effect for acute

lymphoblastic leukemia (ALL) and several types of non-Hodgkin

lymphomas (NHL) [14–16], but comparison of different trials

could not establish a GvL effect unequivocally for diffuse large B

cell lymphomas (DLBCL) and Burkitt’s lymphoma (BL) [17].

Over the last years, it became evident that immunotherapy

against solid tumors is not effective in the long term when only

antigen-expressing tumor cells are targeted. To eliminate antigen-

negative tumor cells as well, targeting the tumor stroma is

evidently important and any effective T cell therapy has to include

activity against stromal tissue. In solid tumors the term stroma

refers to non malignant cells surrounding and potentially

supporting malignant growth including vessles, connective tissue,

but also hematopoietic cells such as macrophages or other antigen

presenting cells. For example, outgrowth of antigen-loss variants of

carcinogen-induced sarcomas is prevented by antigen-specific T

cells that eradicate antigen cross-presenting stroma cells in an IFN-

c-dependent manner [18–21]. In contrast, the role of the stroma in

aggressive B cell lymphomas is ill-defined and it is unclear,

whether conclusions drawn from the analysis of solid tumors hold

true for hematopoietic malignancies. We have established a

lymphoma model to investigate mechanisms of antigen-dependent

rejection in hematopoietic tumors. Ovalbumin (OVA) and/or

green fluorescence protein (GFP) were expressed as tumor-specific

foreign antigens in lymphomas derived from l-c-myc transgenic

mice [22]. Using this model, we addressed whether IFN-c
signaling in the tumor or in the host influences rejection of

antigen-expressing lymphoma cells, rejection of antigen-loss

variants, and overall survival. Here, we demonstrate that the

stromal IFN-c signaling-dependent mechanism known to contrib-

ute to solid tumor rejection, is also an essential component of

immune-mediated B cell lymphoma elimination.

Results

Expression of OVA and/or GFP leads to lymphoma
rejection in immunocompetent hosts

To generate lymphoma cells that express defined foreign

antigens, a cell line (291PC, parental cells) was established from

a spontaneous l-hu-MYC lymphoma and transduced with

retroviruses encoding either OVA cDNA upstream of IRES-

GFP (termed 291OVA) or IRES-GFP as control (termed

291GFP). More than 95% of the sorted cells expressed GFP

(Figure 1A, left panel). Expression of OVA in transduced cells was

confirmed by Western blotting (Figure 1A, right panel). When

inoculated into wild-type mice, 291OVA cells thus express OVA,

GFP and human c-MYC, 291GFP cells GFP and c-MYC, and

untransduced 291PC cells c-MYC as foreign antigen. The human

and murine c-MYC proteins, however, share more than 90%

amino acid sequence identity. To address whether the human c-

MYC protein acts as a rejection antigen, increasing cell numbers

of the lymphoma cell line 291PC were injected subcutaneously

into wild-type (Figure 1B) and GFP-transgenic mice (Figure 1C).

Injection of 16105 cells or more led to 100% mortality. When less

than 16105 cells were inoculated, more than 10% of the animals

survived for 100 days. Subcutaneous injection resulted in local

lymphoma growth, but in almost all cases systemic disease was also

observed with lymphomas arising in the spleen. Thus, MYC

lymphoma cells are capable of tumor-initiation and are not

eliminated by rejection if more than 16105 cells are transferred.

Next, we addressed whether lymphomas expressing OVA and

GFP are rejected in wild-type mice. Injection of 16105 291OVA

cells into either wild-type (Figure 1B) or GFP-transgenic mice

(Figure 1C) led to a significant reduction and/or delay of

lymphoma growth and strongly increased the survival of recipient

mice compared to mice inoculated with (untransduced) 291PC

cells. 15 of 20 wild-type (75%) and 17 of 25 of GFP-transgenic

mice (68%) rejected the tumor within the 100 day observation

period (Figure 1B: 291OVA vs. 291PC, p = 0.001 in wild-type

recipients; Figure 1C: p = 0.01 in GFP-tg recipients). Similarly to

OVA, also GFP acted as rejection antigen in this experimental

system. 9 out of 15 wild-type mice (60%) rejected 291GFP cells,

whereas all except one out of 25 GFP-transgenic, i.e. GFP-tolerant

mice succumbed to lymphomas within 100 days (96%) (Figure 1C).

Thus, OVA mediated lymphoma rejection in vivo in GFP-

transgenic mice and, presumably synergistically with GFP, in

wild-type mice. Animals inoculated with OVA-expressing lym-

phoma cells mounted a strong CD8+ T cell response specific for

the immunodominant OVA-derived peptide SIINFEKL. CD90-

selected splenic T cells from animals that rejected OVA-expressing

lymphomas for over 50 days responded with IFN-c secretion when

restimulated either with peritoneal macrophages loaded with

SIINFEKL peptide or with OVA-expressing lymphoma cells

(Figure 2A). Notably, T cell responses were detectable at the

earliest on day 7 after lymphoma transfer in the peripheral blood.

Within 21 days after inoculation of 291OVA cells, up to 11%

SIINFEKL-specific CD8+ cells appeared in the peripheral blood

(Figure 2B). This T cell response was accompanied by massive

infiltration of OVA-expressing lymphomas with CD3+ cells

(Figure 2C).

Rejection of OVA expressing lymphomas in wild-type mice was

confirmed in a second independent model system. l-hu-MYC

mice were crossbred with OVA-transgenic mice [23] and a cell

line was established from a spontaneously developing OVA-

transgenic l-hu-MYC lymphoma (line 83OVA). Injection of

16105 83OVA-transgenic lymphoma cells into wild-type mice

resulted in 100% rejection of the inoculated cells (Figure S1),

whereas in OVA-transgenic (i.e. OVA-tolerant) recipients seven of

nine mice (78%) succumbed to locally as well as systemically

growing lymphomas (p = 0.01).

Antigen loss and increased MHC expression in
lymphomas in mice receiving 291OVA cells

25% of wild-type mice developed lymphomas after inoculation

of 291OVA cells (left panel of Figure 1B). Lymphomas growing

systemically in the spleen as well as locally growing lymphomas

were analyzed for GFP expression by FACS as surrogate marker

for OVA expression. Lymphomas arising in wild-type mice after

inoculation of 291OVA cells invariably displayed decreased GFP

expression not only at the site of the primary lesion but also

systemically (as shown for splenic lymphoma in Figure 3A).

Likewise, GFP expression was strongly reduced in 291GFP

lymphomas developing in wild-type mice (outgrowing lymphoma

vs. injected cell line p = 0.01). Of note, in GFP-transgenic recipient

mice, GFP expression was lost when 291OVA cells, but not when

291GFP cells were injected. Thus, outgrowing lymphomas

escaped rejection by either downregulation or loss of antigen

expression. Similar results were obtained when 291OVA cells

were analyzed in vitro after outgrowth in either OVA tolerant

actOVA transgenic recipients or in wild-type animals. As shown in

figure 3B left panel, lymphomas outgrowing in wild type recipients

expressed neither OVA on a protein level (western blot) nor on

RNA level (RT-PCR) in contrast to lymphomas outgrowing in

actOVA animals. Consequently, OVA negatively selected lym-

phoma cells that escaped in vivo T cell pressure, failed to stimulate

OT-I cells in vitro to secrete IFN-c (Figure 3B, middle panel). In
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line with these results, coculture of OT-I T cells with lymphoma

cells derived from actOVA recipients resulted in induction of the

T cell activation marker CD69 and expansion of CD8+ (OT-1)

cells. (Figure 3B, upper right panel). In contrast, antigen negatively

selected lymphomas from wild type recipients (WT), failed to

induce CD69 and expansion of CD8+ (OT-I) T-cells, and

continued to proliferate in coculture (Figure 3B lower right panel).

In contrast, the number of GFP expressing lymphoma cells

derived from actOVA recipients was reduced after 48 h of

coculture with OT-1 T cells.

Lymphomas growing out after inoculation of 291OVA cells into

wild-type or GFP-transgenic mice expressed MHC class I and II

more strongly than lymphomas induced by inoculation of 291PC

cells (Figure 3C).

Host IFN-c and host IFN-c-responsiveness are required
for rejection

In this model lymphoma rejection depends on foreign antigen

expression. The marked increase in SIINFEKL-pentamer-positive

T cells in mice rejecting the tumors and the elimination of antigen

expression in 291OVA cells cocultured with in vivo-primed OT-I

cells in vitro point to a T cell-mediated mechanism of rejection.

Given the importance of IFN-c as effector molecule of T cells, we

asked whether rejection depends on IFN-c. 291OVA cells were

injected into IFN-c-deficient recipient animals, and lymphoma

growth was monitored over time. As shown in Figure 4A, IFN-c
deficiency in the recipient led to almost complete loss of

protection, and 80% of the recipient mice died from outgrowing

lymphomas. The kinetics of tumor onset and speed of tumor

growth were not markedly different after injection of 291OVA

cells and untransduced 291PC cells (Figure 4A, right panel), with

the difference that 20% of the IFN-c-deficient animals receiving

291OVA cells remained tumor-free for at least 100 days. To ask

whether IFN-c acts on the side of the recipient, 291OVA and

291PC lymphoma cells were injected into IFN-c-receptor- and

STAT1-deficient mice lacking essential components of the

interferon signaling system. Figure 4B shows that loss of

responsiveness to both types of interferons (STAT12/2 recipients)

resulted in 100% mortality after inoculation of 291OVA cells. No

infiltration of T cells was observed in STAT12/2 recipients that

had received 291OVA cells suggesting that recruitment of antigen-

specific T cells to the tumor site is severely impaired in STAT12/2

mice (bottom panel, Figure 4C). In recipient mice lacking IFN-c
receptor (IFN-cR2/2) onset of lymphoma growth after inoculation

occurred at the same time as in STAT12/2 recipients and

lymphomas appeared to grow out slightly faster in IFN-cR2/2

recipients. From day 18 on mean tumor diameters were

significantly different in IFN-cR2/2 and STAT12/2 recipients

(p = 0.046–0.013, Mann Whitney test), but this difference did not

result in differences in survival. In IFN-cR2/2 recipients absence

of antigen (291PC) did not result in faster lymphoma growth. T

cell infiltration was observed in IFN-cR2/2 recipients after

inoculation of 291OVA cells in contrast to STAT12/2 recipients

(Figure 4C), although to a lesser extent than in wild-type recipients

(shown Figure 2C). These results show that both IFN-c and IFN-c-

signaling are both required in the host to achieve antigen-

dependent lymphoma rejection.

We next asked whether the presence of IFN-c or IFN-cR2/2 in

recipient mice affects MHC expression in tumors arising after

inoculation of 291OVA cells. The degree of MHC class I and II

induction was significantly reduced in lymphomas arising in IFN-

c2/2 recipients compared to wild-type controls (Figure 5A).

However, a similar degree of MHC class I induction and even a

higher degree of MHC class II induction was observed in IFN-

cR2/2 recipient compared to wild-type mice.

Having observed that (i) 291OVA cells were not or only poorly

rejected in IFN-c2/2, IFN-cR2/2, and STAT12/2 recipient

mice (Figure 4), and (ii) that IFN-c expression in the host was

required to upregulate MHC expression in tumor cells (Figure 5A),

we asked whether antigen expression was maintained or lost in

IFN-c2/2, IFN-cR2/2, and STAT12/2 recipient mice after

inoculation of 291OVA cells. Lymphomas arising in STAT12/2

mice invariably expressed GFP consistent with the lack of T cell

immigration to the tumor site (Figure 3C). However, all excised

lymphomas from IFN-c2/2 and IFN-cR2/2 recipients were

negative for GFP, indicating that OVA was not expressed in the

lymphomas (Figure 5B). This indicated that in IFN-c2/2 and IFN-

cR2/2 recipients, the T cell response was sufficient to eliminate

OVA-expressing lymphoma cells. However, the elimination of the

OVA-expressing cell population within the tumor neither

decreased lymphoma incidence nor influenced the kinetics of

lymphoma outgrowth to a significant extent and did not improve

overall survival (Figure 4).

IFN-c-responsiveness of lymphoma cells is not required
for antigen-dependent rejection

The requirement of host IFN-c for lymphoma rejection can be

explained by two non-mutually exclusive mechanisms: a direct

action of IFN-c on the tumor cells [24] or an effect of IFN-c on the

host [18]. To address whether IFN-c-responsiveness of the tumor

is required for lymphoma rejection, l-hu-MYC mice were crossed

onto syngeneic IFN-c-receptor-deficient or STAT1-deficient mice.

Cell lines were established from spontaneously arising lymphomas.

One cell line established from an IFN-cR2/2 lymphoma (50PC)

was retrovirally transduced with OVA-IRES-GFP. The parental

line and the retrovirally transduced line were inoculated into wild-

type and into STAT1-deficient mice as a positive control. The

parental untransduced line displayed tumorigenic potential with

100% mortality after inoculation into wild-type mice (Figure 6).

The OVA-IRES-GFP-transduced line (50OVA) was similarly

tumorigenic in STAT12/2 mice. In contrast, IFN-c-receptor-

deficient OVA-IRES-GFP-transduced cells were readily rejected

in wild-type mice, and in only one out of 13 cases a lymphoma

grew out resulting in 92.7% overall survival (Figure 6). The finding

that OVA-expressing lymphomas lacking the IFN-c receptor were

readily rejected indicated that IFN-c responsiveness of the tumor

cells had little if any impact on tumor rejection in this model.

Similar results were obtained with STAT1-deficient lymphoma

cells (line 9PC, 9OVA, table 1). A STAT1-deficient cell line (9PC)

established from a spontaneous lymphoma was retrovirally

transduced with OVA-IRES-GFP (9OVA) and injected into

Figure 1. OVA and GFP serve as foreign antigens and mediate rejection of the l-huMYC lymphoma cell line 291 in wild-type mice.
(A) 291PC cells were transduced with retroviruses expressing IRES-GFP or OVA-IRES-GFP. Fluorescence activated cell sorting for GFP resulted in a
purity of 96 to 98% GFP-positive cells, respectively (left panel of A). Expression of OVA was confirmed by Western blot analysis (A, right panel). (B and
C) 16105 l-huMYC 291PC (parental cells) lymphoma cells (dashed line), retrovirally transduced with IRES-GFP (291GFP) (dotted line), or OVA-IRES-GFP
(291OVA) (solid line) were injected s.c. into either wild-type (B) or into GFP-transgenic UBI-GFPtg mice (C). Overall survival (left panels) and tumor
growth (right panels) were monitored as described in Material & Methods (data are compiled from 3 independent experiments).
doi:10.1371/journal.pone.0034552.g001
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Figure 2. Inoculation of OVA-expressing lymphoma cells into wild-type mice elicits an OVA-specific CD8+ T cell response. (A) 16105

CD90-selected splenic T cells of mice challenged with 291OVA cells were restimulated with peritoneal macrophages (APC, antigen presenting cells) in
the presence or absence of SIINFEKL peptide (p = 0.020) or with 291 parental (291PC) or OVA-expressing lymphoma cells (291OVA, p = 0.021, Mann-
Whitney test, n = 5 animals/group). (B) T cell responses against OVA were monitored at different time points by flow cytometry using SIINFEKL-
specific pentamers in the peripheral blood of wild-type mice inoculated with 291OVA cells. The percentage of SIINFEKL pentamer-positive CD8+ T
cells increased over time as shown for one representative mouse (B, left panel). Mean values (+/2 standard deviation) of percentage of SIINFEKL
pentamer-positive CD8+ T cells increased over time as compiled from 5 mice (B, right panel). (C) After inoculation of 16105 291 parental or 291OVA
cells, the developing lymphomas were analyzed by immunohistochemistry for infiltration of CD3-positive (peroxidase brown staining) and perforin
expressing (alkaline phosphatase red staining) cells (C, left panel). CD32 and perforin-positive cells were quantified in blinded fashion by counting 10
high power fields (HPF, 4006) per section. Values are given as a mean 6 standard error of the mean (C, right panel). Only CD3-positive and CD3/
perforin-double positive cells (CD3/HPF) were regarded as T cells, whereas single perforin-positive cells were considered to be NK cells and excluded
from the analysis. For each group 8–15 sections were analyzed. Mann Whitney-U test was used for comparison.
doi:10.1371/journal.pone.0034552.g002
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either wild-type or STAT1-deficient recipients. In accordance with

the data shown above for OVA-expressing lymphomas lacking the

IFN-c receptor, approximately 85% of wild-type recipients but

none of the STAT1-deficient recipient mice rejected STAT1-

deficient lymphoma cells expressing OVA.

Defective cross-presentation in host tissue results in
impaired T cell response and faster lymphoma growth

To address the role of the stroma for lymphoma rejection, we

made use of C57BL/6H2K bm1 mice that harbor a mutation in the

H-2K class I locus preventing the presentation of SIINFEKL

peptide by the stroma [25,26]. The bm1 mutation is recognized as

an alloantigen [27]. Therefore, we T cell-depleted recipient

animals by injection of the anti-CD90.2 antibody 30H12 one day

before lymphoma transfer and biweekly thereafter. This antibody

treatment caused a 2-log reduction in peripheral blood T cell

numbers. This reduction was maintained over 28 days by repeated

antibody treatment. Either wild-type or bm1 mutants, were

inoculated s.c. with 16105 291OVA cells on day 0 and received

16106 primed CD90.1 positive OT-I cells on day 1. Anti-CD90.2

antibody treatment depleted endogenous CD90.2-positive T cells

but not CD90.1-positive OT-I cells. Animals harboring the bm1

mutation had significantly reduced T cell expansion within the

peripheral blood compared to wild-type recipients (Figure 7A).

Within the observation period of 28 days, all bm1 mice but only

50% of wild-type animals succumbed to lymphomas (Figure 7B,

left panel) and cumulative lymphoma growth was significantly

more pronounced in bm1 than in wild-type mice (right panel).

Outgrowing lymphomas invariably were antigen-negative (as

revealed by GFP as a surrogate marker for antigen expression),

regardless whether lymphomas arose in bm1 mice or wild-type

mice (Figure 7C), indicating that direct antigen-dependent killing

had occurred in wild-type as well as in bm1 animals.

These findings indicate (i) that direct antigen-dependent T cell

killing is responsible for the eradication of antigen-expressing

lymphoma cells, and (ii) that antigen cross-presentation by non-

tumor cells is required to prevent lymphoma growth of antigen-

loss variants.

Discussion

OVA and GFP serve as rejection antigens in the l-hu-MYC
model

The advent of cloning TCRs with high avidity and their

transduction into T cells opens new avenues for cellular immuno-

therapy. The therapeutic potential of these novel strategies,

however, is closely linked to the risk of uncontrollable auto-

immunity similar to life-threatening GvHD after allogeneic SCT.

We reason that B cell leukemias and lymphomas will become an

important paradigm for the evaluation of this treatment option,

because auto-immunity, if restricted to the B cell compartment, is

compatible with life. We set up a mouse model that explores the

power as well as potential pitfalls of adoptive T cell therapy.

Since high-avidity TCRs for B cell differentiation antigens are

not yet available, we have introduced chicken OVA into l-hu-

MYC lymphoma cells as a foreign antigen for which MHC class I-

as well as class II-restricted TCR-transgenic mice and epitope-

specific MHC class I-pentamers are available. We utilized two

types of lymphomas, l-hu-MYC lymphomas into which OVA-

IRES-GFP had been introduced by retroviral transduction as well

as lymphomas arising spontaneously in b-Act-OVA/l-hu-MYC

double transgenice mice. Besides OVA, human c-MYC (in the

double transgenic model) or human c-MYC plus GFP (in the

retrovirally transduced lymphoma model) are expressed as foreign

antigens whose potential as tumor rejection antigens have not been

explored. The latter is particularly important as GFP is frequently

introduced into tumors without accounting for its immunogenic

potential [28]. When OVA, GFP, or OVA plus GFP were

expressed in these cells, tumors were rejected except for a few cases

in which tumor outgrowth resumed after a considerable delay.

OVA- and/or GFP-expressing lymphomas were rejected at a dose

of 16105 cells without prior immunization, but human c-MYC-

expressing lymphomas were not rejected.

The increase in SIINFEKL-MHC-class I-pentamer-specific T

cells from 0.8% up to 11% and the strong IFN-c production of

OT-I T cells upon stimulation with antigen-expressing tumor cells

indicated that rejection was mediated by OVA-specific (and

presumably also by GFP-specific) T cells. In about 25% of the

cases, lymphomas grew out with delayed kinetics, were GFP-

negative and had upregulated MHC class I and class II expression,

representing cells that had either been selected for loss of antigen

expression in vivo [29], or more likely, for cells that had not been

retrovirally transduced. Since the purity of FACS-sorted lympho-

ma cells ranged between 95 and 99%, approximately 1–56103

untransduced GFP-negative lymphoma cells were injected.

Interferon-c signaling in the host, and not in the tumor, is
required for efficient rejection

To address whether antigen-dependent lymphoma rejection

depends on IFN-c signaling in the host or in the tumor cells,

OVA-GFP-expressing wild-type lymphoma cells were inoculated

into either IFN-c2/2 or IFN-cR2/2 mice, and on the other hand,

antigen-expressing lymphoma cells deficient for either the IFN-c
receptor or STAT1 were inoculated into wild-type mice. Contrary

to wild-type mice, neither IFN-c2/2 nor IFN-cR2/2 mice

prevented outgrowth of OVA-GFP-transduced lymphoma cells

Figure 3. Transfer of OVA-expressing tumor cells into wild-type mice results in loss of antigen and induction of MHC on lymphoma
cells. (A) Systemically growing lymphomas isolated from the spleen after s.c. inoculation of 291GFP or 291OVA cells were analyzed for GFP
expression as a marker for antigen expression in comparison to the inoculated cell lines. Introduction of either GFP alone (291GFP) or OVA-IRES-GFP
(291OVA) into lymphoma cells resulted in loss of or strong decrease in GFP expression in outgrowing lymphomas after transfer into wild-type mice
(left panel, n = 6). Outgrowing lymphomas in GFP-transgenic recipients (tolerant for GFP) likewise lost GFP expression after inoculation of 291OVA
cells, but retained the antigen when 291GFP cells had been inoculated (right panel). Flow cytometric histogram inlets show representative examples.
Grey lines represent GFP expression at the time of injection, black lines after harvest of lymphomas from spleen. (B) Left: western Blot and RT-PCR
analysis (arbitrary units, A.U.) of lymphomas harvested after s.c. inoculation of 291 OVA cells from either OVA tolerant (actOVA) or wild type (WT)
recipients. In contrast to WT recipients OVA tolerant actOVA animals did not select for antigen (OVA) loss variants. Middle: Explanted lymphomas
were cocultured with unprimed OT-I cells (1:1 ratio). OVA positive lymphomas from actOVA recipients activated OT-I T-cells to secrete large amounts
of IFN-c (ELISA of supernatant, n = 4, Mann Whitney test) whereas OVA negatively selected lymphomas form wild type recipients did not stimulate
OT-I cells. Right: Coculture of OT-I T-cells with lymphoma cells dervived from actOVA or wild type recipients resulted in induction of the T-cell
activation marker CD69 expansion of CD8+ (OT-I) cells and reduction of the number of GFP expressing cells CD19+ lymphoma cells. Representative
analysis from lymphoma cells harvested from individual mice. (C) Inoculation of 291OVA cells, but not of 291PC cells, into wild-type (n = 5) and GFP-
transgenic mice (n = 5) significantly induced MHC class I (left panel) and class II (right panel) in outgrowing lymphoma cells. The strong increase in
MHC class I and II expression in outgrowing lymphomas depended on the presence of OVA in the lymphoma inoculum (Mann Whitney test). Fold
induction was calculated by comparing MHC expression on freshly explanted lymphoma cells with the corresponding cell line on the same day.
doi:10.1371/journal.pone.0034552.g003
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resulting in poor overall survival. In contrast, the vast majority of

wild-type mice inoculated with OVA-GFP-transduced lymphoma

cells deficient for the IFN-c receptor or STAT1 rejected the tumor

cells and survived the observation period of 100 days indicating

that IFN-c signaling in the host but not in the tumor is required for

rejection of OVA-GFP-transduced lymphomas.

Interferon-c signaling in the host is required to eliminate
antigen-loss variants efficiently

When comparing overall survival, no significant differences

between IFN-c2/2, IFN-cR2/2, and STAT12/2 mice inoculated

with OVA-GFP-transduced lymphoma cells were observed.

Moreover, transduction of lymphoma cells with an OVA-GFP-

Figure 4. Host IFN-c and host IFN-c signaling are required for rejection of 291OVA cells. 16105 291 parental cells (291PC) and retrovirally
transduced 291OVA cells were injected s.c. into IFN-c-deficient (A) and into IFN-c-receptor- and STAT1-deficient recipient mice (B). Survival (left
panels) and corresponding cumulative tumor growth (right panels) were monitored over 100 days. The data are compiled from two independent
experiments. (C) Lymphomas developing in IFN-c-receptor- and STAT1-deficient mice after inoculation of 16105 291 parental or 291OVA cells were
analyzed by immunohistochemistry for infiltration of CD3-positive cells (peroxidase brown staining) and perforin expressing cells (alkaline
phosphatase staining) (left panel) in the same fashion as shown in Figure 2C. 10 animals per group were analyzed and Mann Whitney test was used
for comparison.
doi:10.1371/journal.pone.0034552.g004

Figure 5. Loss of antigen expression in IFN-c or IFN-c-receptor-deficient, but not in STAT1-deficient animals. (A) Upregulation of MHC
class I and II expression in lymphomas arising in wild-type and in IFN-c-receptor-deficient mice after inoculation of 291OVA cells. Values are given as a
mean (6 standard error of the mean) of fold-induction based on values obtained from 291OVA cells in culture (n = 13–22 animals per group). (B)
Antigen expression was maintained in outgrowing lymphomas after inoculation of 291OVA cells in STAT12/2 mice, but was invariably lost after
inoculation of 291OVA cells into wild-type, IFN-c2/2 and IFN-c-receptor2/2 mice and their heterozyogous littermates (compiled IFN-c+/2 and IFN-cR+/2)
(n = 8–15, p = 0.01), comparison of GFP expression in the 291OVA cell line and in STAT12/2 recipients with that in all other recipients. Mean fluorescence
intensity of GFP in outgrowing lymphomas as a surrogate marker for OVA expression.
doi:10.1371/journal.pone.0034552.g005
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encoding retrovirus prior to inoculation did not influence overall

survival significantly in all three mouse strains deficient in IFN-c
signaling. Notably, tumors arising in IFN-c2/2 and IFN-cR2/2

mice were invariably GFP-negative, whereas all lymphomas

arising in STAT12/2 mice were GFP-positive. Apparently, T

cells were not recruited to the site of antigen production in

STAT12/2 mice (Figure 4C), and thus foreign antigen expression

was not a selective disadvantage in STAT12/2 recipient mice. In

contrast, in IFN-c2/2 and IFN-c-R2/2 mice antigen-expressing

tumors were apparently counterselected and antigen-negative cells

grew out efficiently. Thus, antigen-positive lymphoma cells can be

eliminated in an IFN-c- and IFN-cR-deficient host in a similar

manner to wild-type mice, but tumor outgrowth and overall

survival depends greatly upon eradication of antigen-negative

lymphoma cell variants.

Antigen cross-presentation is required to eliminate
antigen-loss variants of the tumor

Our observations are reminiscent of findings by Schüler and

Blankenstein in a transplanted OVA-expressing B16 melanoma

model [30] and of Hans Schreiber and collaborators obtained in a

chemical carcinogen-induced murine sarcoma model [19–21].

The latter is a highly immunogenic tumor that is rejected in wild-

type mice. It was converted into a tumor model for adoptive T cell

therapy (i) by using OT-I mice as recipients that harbor a skewed

T cell repertoire and cannot reject the tumor, and (ii) by

expression of SIY and gp33 at high and low levels in the sarcoma

cells which makes them vulnerable to transferred SIY- and gp33-

specific T cells from TCR-transgenic mice [19–21]. They showed

that antigen-specific T cells can kill antigen-loss variants in an

IFN-c- and TNF-a-dependent manner and can cure mice with an

even larger tumor burden. Antigen-specific T cells eradicated

tumor stroma cells that cross-present the tumor antigen from

Figure 6. IFN-c responsiveness of lymphoma cells is not required for antigen-dependent lymphoma rejection. IFN-c-receptor-deficient
l-huMYC lymphoma cells, either retrovirally transduced (50OVA) (solid line) or untransduced (50PC) (dashed line), were injected s.c. into wild-type
mice. STAT1-deficient mice inoculated with retrovirally transduced 50OVA cells served as positive control (dotted line). Mice were monitored for
survival (left panel) and cumulative tumor growth (right panel). The data are combined from 2 independent experiments.
doi:10.1371/journal.pone.0034552.g006

Table 1. Cell lines used for this study.

Cell line Genotype Lymphoma-specific antigen Rejection in wild type B6

291PC l-hu-MYC tg huMYC 0%

291GFP l-hu-MYC tg huMYC/GFP 60%

291OVA l-hu-MYC tg huMYC/GFP/OVA 75%

83OVA l-hu-MYC; tg Act-OVA tg OVA 100%

9PC STAT12/2 l-hu-MYC tg huMYC 30%

9OVA STAT12/2; l-hu-MYC tg huMYC/GFP/OVA 82%

50PC IFN-c-R2/2; l -hu-MYC tg huMYC 0%

50OVA IFN-c-R2/2; l -hu-MYC tg huMYC/GFP/OVA 93%

Overview of genotype potential foreign antigens and rejection of lymphoma cell lines used in this study. Numbers are given as % of rejection after s.c. injection of
16105 lymphoma cells from cell lines indicated into recipient wild type C57BL/6 mice.
doi:10.1371/journal.pone.0034552.t001
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Figure 7. Defective cross-presentation in cells of the recipient impairs T cell response and enhances lymphoma growth. Recipient
animals were T cell depleted as described in Materials and Methods and T cell depletion was continued for 28 days. Wild-type (WT) or bm1 mutant
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dying tumor cells, thus withdrawing the tumor-supportive

microenvironment.

To see whether a similar mechanism holds true for B cell

lymphomas, we transplanted antigen expressing l-hu-MYC

lymphoma cells into T cell-depleted bm1 mice and treated the

mice with OT-I T cells. OT-I T cells can attack tumor cells, but

cannot recognize cross-presented antigen on bm1 stroma cells.

Indeed, antigen-negative lymphomas grew out within four weeks

in all 291OVA-inoculated bm1 mice but only in 50% of wild-type

mice supporting the notion that elimination of antigen-loss

variants requires antigen cross-presentation by non-tumor cells,

presumably by stromal cells.

Provided that the bm1 mutation would lead to NK cell

activation, the reduced expansion of adoptively transferred OT-I

cells might also be a result of NK-cell mediated resistance in bm1

recipients in the peripheral blood. The fact that almost all antigen

positive lymphoma cells are eliminated strongly suggest that not

insufficient T cell recognition of lymphoma cells and numbers of T

cells but rather (similar to what has been observed for solid tumors)

the elimination of stromal support by the destruction of cross

presenting stromal cells is responsible for the differences shown in

Figure 7B and 7C.

The similarities between a chemical carcinogen-induced murine

sarcoma and our l-hu-MYC lymphoma model into which OVA

and GFP were introduced as foreign antigens are intriguing. The

carcinogen-induced sarcoma is intrinsically highly immunogenic

and rejected in wild-type mice even in the absence of SIY and

gp33 (regressor phenotype). In contrast, the l-hu-MYC lymphoma

is a poorly immunogenic, highly malignant tumor that rapidly

progresses in wild-type mice in the absence of OVA and/or GFP

(progressor phenotype). This is to our knowledge the first report of

T cell-mediated antigen-dependent bystander killing of tumor

antigen-loss variants in mice with a normal T cell repertoire and a

non-lymphopenic environment.

Stroma cells play an important role in sustaining survival and

proliferation of tumor cells in chronic lymphocytic leukemia [31],

multiple myeloma [32] and Hodgkin’s disease [33]. In Hodgkin’s

disease the Reed-Sternberg tumor cells comprise only a minority

of the tumor suggesting that surrounding non-malignant T cells

play an auxiliary role. For the murine Em-myc model, human

NHLs and multiple myeloma, hedgehog cell signaling by stroma

cells plays an important tumor-supportive role [34]. Gene

expression signatures of stroma cells isolated from diffuse large B

cell lymphomas (DLBCLs) ex vivo, have been correlated with

favorable or adverse prognosis [35]. Moreover, in the Em-myc

mouse lymphoma model, apoptotic tumor cells cause secretion of

TGF-b by macrophages in the tumor stroma thus inducing

cellular senescence [36]. Thus, stroma cells not only contribute to

tumor progression but can also limit tumorigenesis. In the sarcoma

model discussed above, both non-bone marrow-derived cells as

well as bone marrow-derived myeloid cells are necessary to control

antigen-loss variants by antigen-specific T cells [37]. Immature

myeloid stroma cells can act immunosuppressively in many

malignancies in mice and man [38,39].

Although the nature of stroma cells in our l-hu-MYC

lymphoma model requires further investigation, our data support

an auxiliary role of stroma cells in a murine high-grade NHL

model and stress the importance of targeting the stroma during

immunotherapy for non-solid tumors as well. In our model we do

not know which type of cells within the stroma of the lymphomas

contribute to the effects seen in this study and further experiments

using hematopoietic chimeras are necessary to clarify this

important question. Chemotherapeutic agents and irradiation

induce tumor cell death and thereby increase cross-presentation of

tumor antigens by stroma cells [20]. In addition, chemotherapy

induces lymphopenia which is favorable for the expansion of

adoptively transferred T cells. Thus, adoptive T cell and

conventional tumor therapy may synergize in tumor eradication

by preventing outgrowth of antigen-loss variants.

Materials and Methods

Mice
All mice were of C57BL/6 background (henceforth referred to

as wild-type). l-hu-MYC male mice were bred to wild-type

females. Offspring were genotyped for the transcript by PCR using

primers as published [22].

For some experiments l-hu-MYC mice were backcrossed to

IFN-c2/2 (129S7-Ifngtm1Ts/J), IFN-cR2/2 (.129S7-Ifngr1tm1Agt/J)

or STAT12/2 [40] kindly provided by David E. Levy (New York)

through Matthias Müller (Vienna). F1 generations were back-

crossed into the knock out strains giving rise to lymphomas of IFN-

c2/2, IFN-cR2/2 or STAT12/2 genotype. OT-I mice (-

Tg(TcraTcrb)1100 Mjb/J), mice transgenic for GFP (ubiquitin

promoter-driven GFP expression) [41] and mice transgenic for

OVA (beta actin promoter-driven OVA expression) (2Tg(Actb-

OVA)916Jen/J) [23] were purchased from Jackson Laboratories,

Bar Harbor, Maine, USA. Wild-type mice were purchased from

Charles River Laboratories (Germany). Wild-type, RAG12/2,

IFN-c2/2, IFN-cR2/2, STAT12/2 and C57BL/6H2kbm1 recip-

ient mice were bred in our facility under specific pathogen free

conditions (SPF). Only sex-matched recipients of similar age (10–

14 weeks) were used for transfer experiments.

All experiments were performed according to guidelines and

approval of the local animal protection committee (application:

55.2-1-54-2531-8-04 and 209.1/211-2531-8/04, Government of

Bavaria, Munich, Germany).

Immunization of OT-I mice
T cells from OT-I mice were primed by subcutaneous

immunization with 50 mg chicken OVA (Sigma, Germany) in

combination with incomplete Freund’s adjuvant. CD8+ T cells

were isolated with anti-CD8 magnetic beads (Miltenyi, Germany)

at day 7 after immunization and used for assays or i.v. transfer into

recipient mice as indicated.

recipient mice received 16105 291OVA lymphoma cells s.c. together with 16106 in vivo primed OT-I cells. (A) Development of an OVA-specific T cell
response is impaired in bm1 recipients. Peripheral blood of animals inoculated with 16105 291OVA and 16106 OT-I cells were analyzed by flow
cytometry for the presence of CD90.1-positive cells (OT-I) on the days indicated. Numbers of OT-1 T cells are expressed as percentage of lymphocytes
in the peripheral blood. In wild-type mice (solid line, n = 10) adoptively transferred OT-I cells expand more readily (Mann Whitney test) than in bm1
recipients (dashed line, n = 9, p = 0.001 for day 8–27). (B) Disease-free survival and cumulative tumor growth after lymphoma transfer: bm1 recipient
mice (dashed line) developed tumors significantly faster and cumulative lymphoma growth was enhanced (right panel). (C) Mean fluorescence of GFP
in lymphomas arising in wild-type mice or bm1 mice in the presence and absence of OT-I cells. T cell depletion in the absence of OT-I cells (WT no OT-
I, n = 9) resulted in preservation of antigen expression, while adoptive transfer of OT-I cells (WT+OT-I, n = 5) led to selection of antigen-negative
lymphoma cells.
doi:10.1371/journal.pone.0034552.g007
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Cell lines, cell culture, and retroviral transduction
Developing lymphomas were explanted, resuspended, and

plated onto irradiated MRC5 feeder cells in Iscoves IMDM

Media (GibcoBRL, Germany) supplemented with 20% FCS,

2 mM glutamine, 100 U/ml Penicillin, 100 mg/ml Streptomycin,

1 mM sodium pyruvate, 20 nM bathocuproine disulfonate and

50 mM a-thioglycerol [42]. 291 cells were chosen as representative

cells that display feeder-independent growth in culture, express

high amounts of human c-MYC protein and low amounts of

MHC class I, and virtually no class II in culture.

Parental cells (PC) from established cell lines (291PC, 50PC

(IFN-cR2/2), 9PC (STAT12/2) were transduced with retroviral

MSCV-based vectors [43] expressing OVA-IRES-GFP or IRES-

GFP alone giving rise to GFP or OVA cell lines (see below). Using

the Phoenix packaging cell line, retroviral supernatants were

generated as described [44]. High titer viral supernatant was

passed through a 0.45 mm filter and supplemented with 4 mg/ml

polybrene (Sigma, Germany). Three ml of the viral supernatant

were used to resuspend pellets of 5 million lymphoma cells. The

infection procedure was repeated twice at 12 hours intervals. After

48–72 h GFP expression was determined by flow cytometry and

10–15% of virus-transduced lymphoma cells were positive for

GFP. Retrovirally transduced cells were sorted for high GFP

expression by FACS and 95–98% purity of GFP expressing cells

was obtained. As GFP is the second gene expressed from a

bicistronic transcription cassette, expression of GFP can be reliably

taken as a surrogate for OVA expression [45,46].

The cell line 83OVA was established from double transgenic b-

actin-OVA, l-hu-MYC mice. These mice were generated by

crossing b-actin-OVA-transgenic mice [23] (Jackson Laboratories,

Bar Harbor, Maine) to l-hu-MYC mice [22]. An overview of cell

lines used in this study is given in table 1.

Incubation with 100 IU murine IFN-c for 24 h induced MHC

class I and II expression in 291OVA cells, but not in IFN-cR-

deficient 50OVA and in STAT1-deficient 9OVA cells (Figure S2).

Tumor transfer and monitoring
For lymphoma transfer experiments, cells from cultured

lymphomas (line 291PC, GFP or OVA, line 9PC or OVA and

line 50PC or OVA) were freshly split 48 h prior to transfer. Cells

were washed in cold PBS and injected s.c. in the upper flank of

recipient mice. Lymphoma growth was measured at the site of

injection at least 3 times per week as indicated in the figures using

a sliding caliper. Tumor size is expressed as average of cumulative

data (6 standard error of the mean) from all mice injected with

lymphoma cells.

T cell depletion of recipient mice
In some experiments we depleted lymphoma recipient mice of

T cells by intraperitoneal injection of 1 mg 30H12 anti CD90.2

antibody 1 day before lymphoma transfer and biweekly thereafter.

Depletion was monitored by FACS of peripheral blood using anti-

CD4 or anti-CD8 antibody.

Flow cytometric analysis
Cells were washed in freshly prepared, ice cold PBS/5% FCS

and incubated using 10% supernatant from clone 2.4G2, to block

Fcc receptors for 30 min on ice. FITC- or PE-labeled monoclonal

antibodies were applied and incubated for 30 min on ice. Cells

were washed twice in cold PBS/FCS and subsequently analyzed

(FACSCalibur, Becton Dickinson, Heidelberg, Germany). Penta-

mers (ProImmune, Oxford, UK) were used according to the

manufacturer’s protocol.

Histology and immunohistochemistry
Mice were killed by CO2 asphyxiation. Parts of the lymphomas

were fixed in 10% formalin for 12 h. For immunostaining of

paraffin embedded material, 2–3 mm sections were cut, depar-

affinized and subjected to a heat-induced epitope retrieval step

before incubation with antibodies. Sections were immersed in

sodium citrate buffer solutions at pH 6.0 and heated in a high-

pressure cooker. The slides were washed in Tris-buffered saline

(pH 7.4) and incubated with primary antibodies against perforin

(P1-8, 1:100) and CD3 (1:10). For detection, biotinylated rabbit

anti-rat (Dako) or donkey anti-rabbit (Dianova, Hamburg,

Germany) secondary antibodies were used, followed by the

streptavidin-AP kit or the Envision-PO kit (Dako). Alkaline

phosphatase was revealed by Fast Red as chromogen and

peroxidase was developed with a highly sensitive diaminobenzi-

dine (DAB) chromogenic substrate for approximately 10 min.

Primary antibodies used
For flow cytometry the following antibodies were used: CD19

(clone 1D3), H-2Kb (clone AF6-88.5), IAb (clone 25-9-17), CD80

(clone 16-10A1), CD86 (clone GL1), CD54 (clone 3E2), CD4

(clone RM4-5), CD8 (clone 53-6.7), CD3 (clone 145-2C11), TCR

Va2 (clone B20.1), TCR Vb5.1 (clone MR9-4), all from Becton

Dickinson, (Heidelberg, Germany).

For immunohistochemistry the following antibodies were used:

CD3 (Dako, Glostrup, Denmark), perforin (clone P1-8, Hoelzel

Diagnostika, Cologne, Germany).

Light Cycler PCR
Total RNA was isolated from cell lymphoma samples according

to the manufacturer’s instructions using a Qiagen RNeasy Plus

Mini kit (Qiagen, Germany). After DNAse treatment (New

England Biolabs) cDNA was prepared by reverse transcription

with Random Decamers (Applied Biosystems, Germany) as

suggested by the manufacturer. cDNA was analysed by quantita-

tive real time PCR (ABI step one) using the following primers

(selected by Pearlprimer software; Metabion, Germany): 18S RNA

forward 5-CGCCGCTAGAGGTGAAATTC-3, reverse 5-

CGAACCTCCGACTTTCGTTCT-3. OVA-RNA forward 5-

GGAGCTTCCATTTGCCAGTGG-3, reverse 5-AGA-

GACGCTTGCAGCATCCAC-3. Ct values were quantified using

appropriate software (Applied Biosystems, Germany) and ex-

pressed in arbitratry units (A.U.).

Supporting Information

Figure S1 Act-OVA transgenic animals fail to reject
291OVA cells. l-hu-MYC transgenic mice were crossbred with

Act-OVA-transgenic animals and cell lines established from

spontaneously arising lymphomas in double transgenic mice.

16105 cells of the cell line 83OVA were injected s.c. into either

wild-type or Act-OVA- transgenic recipients. Left panel: wild-type

animals rejected OVA-expressing lymphoma cells (dotted line),

whereas OVA-tolerant Act-OVA-transgenic recipients succumbed

to rapidly growing tumors (solid line). Right panel: corresponding

growth curve of lymphomas representing the cumulative tumor

diameter of all lymphomas at the site of injection.

(TIF)

Figure S2 Induction of MHC class I and II by IFN-c is
dependent on STAT1- and IFN-c receptor-signaling.
291OVA (wild-type), 9OVA (STAT12/2), and 50OVA (IFN-c-

R2/2) were exposed to 100 U IFN-c for 24 hours and MHC class

I expression was assessed by flow cytometric analysis. STAT1-
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deficient and IFN-c receptor-deficient lymphoma cells do not

upregulate MHC class I upon IFN-c treatment.

(TIF)
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