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Abstract

AvastinH (bevacizumab) is a protein drug widely used for cancer treatment although its further use is questionable due to
serious side effects reported. As no systematic proteomic study on posttranslational modifications (PTMs) was reported so
far, it was the aim of the current study to use a gel-based proteomics method for determination of AvastinH-
protein(s). AvastinH was run on two-dimensional gel electrophoresis (2-DE), spots were picked, followed by multi-enzyme
in-gel digestion. Subsequently, the resulting peptides and posttranslational modifications were identified by mass
spectrometry (nano-LC-ESI-MS/MS; HCT and LTQ Orbitrap MS). Heavy and light chains were observed and the 9 spots that
were picked from 2DE-gels were identified as bevacizumab with high sequence coverage. MS/MS results showed multiple
tyrosine nitrations on the AvastinH light and heavy chains that were either represented as nitrotyrosine or as aminotyrosine,
which was shown to be generated from nitrotyrosine under reducing conditions. Protein nitration is known to significantly
change protein functions and interactions and it may well be that some of the adverse effects of the protein drug AvastinH
may be due to this PTM, which may have been generated during production- thus, nitration of AvastinH is a challenge for
the pharmaceutical industry.
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Introduction

AvastinH (bevacizumab) is an antibody widely used in antitumor

therapy with the underlying principle of neutralizing vascular

endothelial growth factor (VEGF) thus moderating tumor growth.

Although no final assessment of the effectiveness of bevacizumab

in large cohorts of cancer patients has been published, it can be

considered a therapeutic antibody with high potential [1-5].

Fatal adverse effects, however, have been reported in tumor

patients treated with this protein drug and in according to a meta-

analysis, bevacizumab therapy was associated with increased

treatment-related mortality [6].

More specifically, bevacizumab treatment may significantly

increase the risk of serious hemorrhage, hypertension, proteinuria,

cardiac toxicity, vascular thromboembolism, gastrointestinal,

dermatological and endocrine toxicity in cancer patients [7-15].

According to the statement by Stone et al. [10], toxicity

management in treatment with anti-angiogenic agents has not

been an endpoint in most studies carried out up to now and there

is therefore a fundamental need for investigations that will

generate more evidence-based practice guidelines.

Vascular side effects may be readily assigned to biological

activity of VEGF inhibition directly whereas others may be due to

other mechanisms, including probable modifications of this

humanized antibody. No information on AvastinH protein

modifications is available so far and the only systematic mass

spectrometrical approach analysing AvastinH was not designed to

characterise protein modifications but rather to determine stability

[16].

The absence of this information formed the rationale for the

current study with the aims to identify and characterise Avastin

protein and protein modifications in order to form the basis for

studies linking protein modifications to adverse side effects. And

indeed, heavy tyrosine nitration, known to modify protein

properties and functions, was observed in the commercially

available medical product.

Materials and Methods

AvastinH was purchased from Roche, Basel, Switzerland, as

manufactured by Genentech, Inc., San Francisco, USA (Batch

number H0102B01).

Samples of 100 mg protein were applied on immobilized pH 3–

10 nonlinear gradient strips. Focusing started at 200 V and the

voltage was gradually increased to 8,000 V at 4 V/min and kept

constant for a further 3 h (approximately 150,000 Vh totally).

Prior to the second dimensional run, strips were equilibrated twice

for 15 min with gentle shaking in 10 mL of SDS equilibration

buffer (50 mM, pH 8.8, Tris-HCl, 6 M urea, 30% v/v glycerol,

2% w/v SDS, trace of bromophenol blue). DTT (1% w/v) was

added at the first incubation for 15 min and 4% (w/v)

iodoacetamide instead of DTT at the second incubation step for
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15 min. The second-dimensional separation was performed on

10–16% gradient SDS-PAGE. After protein fixation for 12 h in

50% methanol and 10% acetic acid, gels were stained with

colloidal Coomassie blue (Novex, San Diego, CA, USA) for 8 h

and excess of dye was washed out from the gels with distilled

water. Apparent molecular weights were determined by running

precision protein standard markers (Bio-Rad Laboratories,

Hercules, CA, USA), covering the range of 10–250 kDa and

isoelectric points of the immobilized pH gradient strips were from

3-10 [17].

Sodium hydrosulfite treatment
In order to verify nitration [18], 50 mM sodium hydrosulfite

(Na2S2O4) (Sigma, Germany) was added to AvastinH in its original

solvent. The reaction mixture was stirred at 23uC for 30 min to

convert 3-nitrotyrosine to 3-aminotyrosine. Subsequently buffer

was exchanged by 25mM ammonium bicarbonate by Amicon

Ultra 10K (Millipore, Billerca, US) 4 times.

In-gel digestion
Selected gel spots were picked for the investigation (Fig. 1). Gel

pieces were put into a 1.5 mL tube and washed with 10 mM

ammonium bicarbonate and 50% acetonitrile (ACN) in 10 mM

ammonium bicarbonate repeatedly. Addition of ACN resulted in

gel shrinking and the shrunk gel plugs were then dried in a

Speedvac Concentrator (Eppendorf, Germany). Dried gel pieces

were re-swollen and in-gel digested with 40 ng/mL trypsin

(Promega, Madison, WI, USA) in digestion buffer (consisting of

5 mM octyl b-D-glucopyranoside (OGP) and 10 mM ammonium

bicarbonate, pH 7.8) and incubated overnight at 37uC. Digestion

with chymotrypsin (Roche Diagnostics), 25 ng/mL was done in 25

mM NH4HCO3 with 5 mM OGP (pH 7.8) at 30uC for 4 h.

Digestion with 40 ng/mL Pepsin (Roche Diagnostics) was done in

0.1M HCL (pH 1) at 37uC for 4 h.

Peptide extractions were performed with 15 mL of 1% formic

acid (FA) in 5 mM OGP for 30 min, 15 mL 0.1% FA for 30 min

and 15 mL 0.1% FA in 20% ACN for 30 min. The extracted

peptides were pooled for nano-LC-ESI-CID/ETD-MS/MS or

LTQ orbitrap MS/MS analyses.

nano-LC-ESI-CID/ETD-MS/MS
The HPLC used was an Ultimate 3000 system (Dionex,

Sunnyvale, CA, USA) equipped with a PepMap100 C-18 trap

column (300 mm65mm) and PepMap100 C-18 analytic column

(75 mm6150 mm). The gradient was (A 50.1% FA in water, B

50.08% FA in ACN) 4–30% B from 0 to 105 min, 80% B from

105 to 110 min, 4% B from 110 to 125 min. An HCT ultra ETD

II (Bruker Daltonics, Bremen, Germany) was used to record

peptide spectra over the mass range of m/z 350–1500, and MS/

MS spectra in information dependent data acquisition over the

mass range of m/z 100–2800. Repeatedly, MS spectra were

recorded followed by three data-dependent CID MS/MS spectra

and three ETD MS/MS spectra generated from three highest

intensity precursor ions. An active exclusion of 0.4 min after two

spectra was used to detect low abundant peptides. The voltage

between ion spray tip and spray shield was set to 1,500 V. Drying

nitrogen gas was heated to 150uC and the flow rate was 10 L/min.

The collision energy was set automatically according to the mass

and charge state of the peptides chosen for fragmentation.

Multiple charged peptides were chosen for MS/MS experiments

due to their good fragmentation characteristics. MS/MS spectra

were interpreted and peak lists were generated by DataAnalysis

4.0 (Bruker Daltonics).

Raw spectra were processed by Mascot Daemon 2.2.2 (Matrix

Science Ltd, London, UK), the search engine was Mascot 2.2.04.

Peptide tolerance was set to 60.2Da, the MS/MS tolerance was

set to 0.6 Da. Carbamidomethylcysteine was set as static,

oxidation of methionine residues as variable modification. An in-

house generated FASTA data base was used for the search

containing the sequences of the AvastinH (http://www.pmda.go.

jp/english/service/pdf/Abastin-Bevacizumab.pdf), common con-

taminants and proteolytic enzymes. The data base contained 330

sequences and 110,409 residues. Mascot identifications required at

least ion scores greater than 20. PTM searches were also done

using the ModiroH software with following parameters: enzyme

selected as used with two maximum missing cleavage sites, a

peptide mass tolerance of 0.2 Da for peptide tolerance, 0.6 Da for

fragment mass tolerance, modification 1 of carbamidomethyl (C)

and modification 2 of methionine oxidation. Searches for

unknown mass shifts, for amino acid substitutions were carried

out and calculation of significance were selected on advanced

PTM explorer search strategies. A list of 172 common modifica-

tions was selected and added to virtually cleaved and fragmented

peptides searched against experimentally obtained MS/MS

spectra [19]. Manual inspection of spectra was carried out in the

experiments reported.

LTQ Orbitrap MS
The LC-MS/MS analysis was carried out on an LTQ-Orbitrap

Velos ETD mass spectrometer (Thermo Scientific, Waltham, MA,

USA). The data acquisition software was XCalibur 2.1.0. The

nanospray source of Proxeon (Thermo Scientific, Waltham, MA,

USA) was used with the distal coated silica capillaries of New

Objective (Woburn, MA, USA). The electrospray voltage was set

to 1,500 V. The mass spectrometer was operated in positive

ionization mode; the survey scan was performed in the orbitrap,

recording a window between 400 and 1,800 m/z. The resolution

was set to 60,000 for full MS and the automatic gain control was

Figure 1. 2-DE image of AvastinH is shown providing assign-
ments of identified protein spots.
doi:10.1371/journal.pone.0034511.g001
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set to 1,000,000 ions with a maximal acquisition time of 500 ms.

The instrument was operated in data-dependent acquisition mode.

The minimum MS signal for triggering MS/MS was set to 500,

and m/z values triggering fragmentation were put on an exclusion

list for 30 s. In all cases one microscan was recorded and a

maximum of 20 MS/MS experiments were triggered for the most

intense ions from an MS scan. The lock mass option was enabled,

and polydimethylcyclosiloxane (protonated (Si(CH3)2O)6; m/z

445.120025 Da) was used for internal recalibration of the mass

spectra. CID was applied as fragmentation method with a target

value of 1,000 in the linear ion trap, the maximal acquisition time

was 100 ms, the collision energy was set to 35%, and the Q value

to 0.25. An activation time of 10 ms was applied. Singly charged

ions and ions with unassigned charge states were not fragmented.

Helium was used as collision gas.

Raw spectra were processed by Mascot Daemon 2.2.2 (Matrix

Science Ltd, London, UK), the search engine was Mascot 2.2.04.

Peptide tolerance was set to 62ppm, the MS/MS tolerance was

set to 0.8 Da. Otherwise data mining was carried out as given

above.

Results and Discussion

As shown in Fig. 1 the commercially available protein drug

AvastinH was presenting with several spots. Heavy and light chain

were clearly separated and heavy chain protein showed tracking

while the light chain showed three major spots. Seven spots were

picked and sequence coverages, enzyme that generated matching

peptides, peptide sequences, ion scores and mass errors that were

less than 0.2 Da are provided in Table S1 and Figure S1. Only

spots 2,3,6 and 7 were presenting with tyrosine nitrations. The

proposed multiple protein modifications (PMs) rather than

sequence conflicts or amino acid exchanges observed in the

individual spots resulting from HCT analysis respecting CID and

ETD fragmentations may have been responsible for horizontal

and vertical electrophoretic shifts as given in Table S2A.

LTQ-orbitrap analyses were used to find additional PMs in

some AvastinH spots, and showed the presence of PMs and the

results are demonstrated in Table S2B. PMs observed by both

methods are presented in Table 1. Results on different

modifications of avastinH expression forms are assigned to spot

numbers.

Table 2 shows tyrosine nitrations shown by ion trap using CID

but not by ETD fragmentation as well as using LTQ orbitrap.

On the light chain as well as on the heavy chain of the antibody

(AvastinH) LTQ identified this PM. HCT analysis demonstrated

two tyrosine nitrations on the light chain and three at the heavy

chain. LTQ orbitrap detected five tyrosine nitrations on the light

chain and four on the heavy chain. Nitration was observed as

nitration or as aminotyrosine [20]. Both MS/MS methods

detected nitration of Y192 expressed by nitrotyrosine and

aminotyrosine identification.

To support the identification of nitrotyrosine, AvastinH was

reduced by sodium hydrosulfite and indeed, aminotyrosine on

Y192 was detected (Figure S2), which does not rule out that the

other modifications are not valid: results from different method-

ologies depend on fragmentation and formation of corresponding

ions generated. Misidentifications of tyrosine nitration by a series

of factors was ruled out [21].

Multiple nitrations of the humanised antibody AvastinH may

have chemical and biological consequences: potential changes of

Avastin immunochemistry may include antigenic changes and

nitration has been repeatedly shown to modify this immunological

property and was even leading to autoimmune phenomena [22].

The underlying cause of nitrations cannot be addressed but

chemical modification by manufacturing is as plausible as nitration

that occurred in vivo during primary generation of the antibody as

a posttranslational modification [23]. Details from manufacturing

and production are not available from the supplier or the

corresponding patent (6,054,297 US patent, 2000).

Antibodies against nitrotyrosine have been observed [24] and it

is known that nitrated peptides and proteins are eliciting antibody

formation [25-27]. Moreover, antibodies against nitrated alpha

synuclein produced an inflammatory response in mice that led to

degeneration of dopaminergic neurons [28]. One may also suggest

that nitration not only leads to autoantibody formation but also to

conformational changes of the nitrated protein [29] that in turn

may change antigenic properties and also protein-protein

interactions with unknown functional consequences. Apart from

nitration-induced antigenic changes of epitopes, nitration is known

to impair function of proteins including Mn superoxide dismutase

[30,31].

A major finding indicating pathogenetic or toxic properties of

nitrated proteins was presented recently: assembly of alpha-

synuclein and fibrinogen were deteriorated by nitration of only a

small fraction of proteins [25,32]. As for fibrinogen, nitration is

accelerating the rate of fibrin clot formation [33]. It cannot be

ruled out, therefore, that nitration of AvastinH may lead to side

effects based upon probable disturbed protein-protein interactions

as aggregations that in turn may lead to a series of complications as

listed in the drug information sheet.

As to the underlying cause of tyrosine nitration it remains open,

whether it can be considered as a post-translational modification of

the immunoglobulin AvastinH or technical in nature, or both [34-

38].

Taken together, it remains unclear if the observed nitrations

and other PMs detected on AvastinH may be responsible for

different biological or pharmacotoxicological properties and

Table 1. The modifications verified by HCT and Orbitrap.

Spot Modifications from MODIROH

2 Deamidation: R87, N321, N390

Dihydroxy: Y284

Methylation: T266

Oxidation: M34, M83

4 Deamidation: N321

Dihydroxy: Y284

Hydroxylation: D73

Methylation: E6

Oxidation: M34, M83

6 Amino: Y192

Deamidation: R142, Q199

Methylation: S121, D122, E123

Nitro: Y192

Oxidation: M4

7 Deamidation: Q199

Dihydroxy: Y36, T197

Hydroxylation: K39

Methylation: E123, E195

Oxidation: M4

doi:10.1371/journal.pone.0034511.t001
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effects. Quantification of nitrations and their presence in several

batches of the product has to be taken into considerations on

probable toxicity as well, but corresponding in vivo analyses based

upon these findings should be carried out by the manufacturers to

probably save this protein drug that may have strong potential in

tumor therapy.

Supporting Information

Figure S1 Sequence information of AvastinH is shown. -

identified by A) HCT and B) Orbitrap.

(PDF)

Figure S2 Spectra of aminotyrosine and nitrotyrosine
modifications.
(PDF)

Table S1 MS/MS results of from Avastin (MASCOT)
identified by HCT (7 spots) and by Orbitrap (4 spots).

(PDF)

Table S2 The modifications revealed by the Modiro
search engine from HCT and Orbitrap data.

(PDF)
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