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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. The latest version of the
miRBase database (Release 18) includes 1,157 mouse and 680 rat mature miRNAs. Only one new rat mature miRNA was
added to the rat miRNA database from version 16 to version 18 of miRBase, suggesting that many rat miRNAs remain to be
discovered. Given the importance of rat as a model organism, discovery of the completed set of rat miRNAs is necessary for
understanding rat miRNA regulation. In this study, next generation sequencing (NGS), microarray analysis and
bioinformatics technologies were applied to discover novel miRNAs in rat kidneys. MiRanalyzer was utilized to analyze
the sequences of the small RNAs generated from NGS analysis of rat kidney samples. Hundreds of novel miRNA candidates
were examined according to the mappings of their reads to the rat genome, presence of sequences that can form a miRNA
hairpin structure around the mapped locations, Dicer cleavage patterns, and the levels of their expression determined by
both NGS and microarray analyses. Nine novel rat hairpin precursor miRNAs (pre-miRNA) were discovered with high
confidence. Five of the novel pre-miRNAs are also reported in other species while four of them are rat specific. In summary,
9 novel pre-miRNAs (14 novel mature miRNAs) were identified via combination of NGS, microarray and bioinformatics high-
throughput technologies.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs of ,22

nucleotides in length and ubiquitously present in plant and animal

cells [1]. miRNAs play an important role in the post-transcrip-

tional regulation of gene expression via binding to the 39 UTR

region of the target mRNAs, resulting in mRNA degradation or

translation inhibition [2]. Recent studies indicate that miRNAs are

critical for many physiological processes, including cell prolifera-

tion, cell differentiation, and cell death [3,4]. Dysregulated

miRNAs have been found in different types of human diseases

and tumors [5,6,7].

miRNA genes are initially transcribed by RNA polymerase II to

generate primary miRNAs (pri-miRNAs). Pri-miRNAs are

processed by RNase Drosha to release approximately 70

nucleotides long miRNA precursors (pre-miRNAs) that have

characteristic hairpin structures. Pre-miRNAs are then exported

from the nucleus to the cytoplasm. RNase Dicer cleaves the pre-

miRNA hairpin to generate a double-stranded miRNA duplex

with a characteristic 39 2-nucleotide overhang. Subsequently, the

double-stranded miRNA duplex is separated and one strand is

selected as the mature miRNA, whereas most of the other strand

that are named as mature* sequences is degraded [8,9].

Sometimes, mature variants generated from the same miRNA

precursor contain different sequences from the mature and/or

mature* sequence. These mature variants are named as isomirs

[10]. The characteristic structures of these different stages of

miRNA biogenesis, such as hairpin structures and mature*

sequences, have been utilized for identification of novel miRNAs

based on certain guidelines [11,12]. The criteria for decision of

novel miRNAs depend on whether the novel miRNAs have

homologous ones in other species. Due to the phylogenetic

conservation of miRNAs, the requirements for defining homolo-

gous miRNAs are generally less strict than those for species-

specific miRNAs such as those found in rats only [11,12].

The first two miRNAs, lin-4 and let-7, were discovered in the

Caenorhabditis elegans [13,14]. Subsequently, about 100 miRNAs

were identified by cloning and Sanger sequencing

[15,16,17,18,19]. However, such approaches were limited in their

ability to detect rare miRNAs, or tissue-specific miRNAs from

tissues that are difficult to obtain. Next generation sequencing

(NGS), a high-throughput technology, has dramatically changed

the nature of biomedical research and medicine since 2005. NGS

is a combination of various procedures that includes template

preparation, sequencing and imaging, and genome alignment and

assembly. This new technology markedly reduces the cost and

time required to sequence large amounts of DNA

[20,21,22,23,24]. Also, unlike PCR- or microarray-based sequenc-

ing technologies, NGS can easily recognize unknown DNA

sequences. Thus, NGS can be used to identify new gene

sequences. Previous studies showed that NGS can successfully
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discover low abundance novel miRNAs in different species by

reverse-transcription of miRNAs to their cDNAs [25,26,27].

Since NGS platforms can generate several gigabases of

sequencing data per run, bioinformatics tools are required to

process the huge amount of data. Several tools have been widely

used for miRNA transcriptomic analysis of NGS data to discover

novel miRNAs, including miRDeep [28,29,30,31], miRDeep2

[32], miRDeep-p [33], miRanalyzer [34,35,36], miRExpress [37],

deepBase [38], miRTRAP [39], mirTools [40], SSCprofilter

[41,42], mirExplorer [43], and MIReNA [44]. Although these

tools use different algorithms to predict novel miRNAs, they share

the same two basic principles: 1) mapping of the reads to the

genome and 2) checking for the presence of a hairpin structure in

the genome. In addition, existence of mature* sequence and a

Dicer cleavage pattern provide further evidence for a miRNA. In

this study, the miRanalyzer standalone version was utilized for the

discovery of novel rat miRNAs.

Currently, there are three common methods for measuring

miRNAs, microarrays, quantitative PCR (qPCR) and NGS. The

clear advantage of NGS over microarrays and qPCR is its

capability for identification of novel miRNAs because microarrays

and qPCR detect miRNAs based on known miRNA sequences.

However, different steps of NGS, such as template preparation,

RNA ligation, PCR amplification and imaging, can introduce

errors. Therefore, novel miRNAs discovered by NGS need to be

validated through other platforms. Although qPCR is often

considered a ‘‘gold standard’’ in the detection and quantization

of gene expression, it is not a high-throughput application for

miRNA expression. According to our previous study, expression of

miRNAs measured by TaqMan quantitative real-time PCR is

comparable with that of LC Sciences’ microarray analysis [45].

Microarrays are still the best choice for high-throughput analysis

of miRNA expression. Microarrays and NGS can be used for

mutual validation of miRNA expression [46].

Currently, 21,643 mature miRNAs have been discovered and

deposited in the publically available miRNA database, miRBase

(version 18.0, November 2011; http://miRNA.sanger. ac.uk/

sequences/index.shtml). The database contains 1,921 miRNAs

from human, 1,157 from mouse and 680 from rat. Despite the

importance of the rat as a model organism, the number of known

rat miRNAs is not comparable to those for human and mouse,

considering the conserved nature of miRNAs among different

species. Therefore, it is very important to discover the unknown

rat miRNAs and explore their functional roles. In this study, NGS

was employed to sequence small RNAs in rat kidney; miRanalyzer

was applied for identifying known and unknown rat miRNAs; and

a custom vertebrate miRNA array containing more than five

thousand known vertebrate miRNAs and a hundred novel rat

miRNA candidates determined by the NGS analysis was designed

to verify novel rat miRNAs. These two high throughput

technologies, in combination with a potent tool for miRNA

bioinformatics and biostatistics analyses, helped us discover 9

novel rat pre-miRNAs, which express 14 novel mature miRNA

sequences.

Results

Recognition of Rat Homologous Novel miRNAs
Small RNA transcriptomes of kidney samples from 8 rats, 4

treated with aristolochic acid (AA) and 4 untreated as control,

were analyzed using NGS (NGS data are available through Gene

Expression Omnibus series accession numbers GSE33703). AA is

Group 1 carcinogen and able to induce the rat kidney tumors. Our

previous study (manuscript is in preparation) showed that many

miRNAs expressions increased in the AA treatment group,

compared with those of in control group. Using samples from

different animals as well as AA-treated and untreated rats should

strengthen the discovery of novel miRNAs as accidental discovery

due to fluctuations can be virtually discarded.

The sequencing data were input into miRanalyzer, a web server

and stand-alone tool, to predict both novel homologous and rat-

specific miRNAs [34]. A schema of the sequence analysis workflow

is shown in Figure 1. The tool first removed all reads with ‘N’ (or

other ambiguous bases) and those shorter than 17 bases. Reads

longer than 26 bases were trimmed and regrouped, because the

bases of miRNAs are normally ranging from 17 to 25. In total,

14,358,136 reads were obtained from the 8 rat kidney samples.

Rat homologous novel miRNAs are those miRNAs that have

been reported in other species but not in rat. To find the rat

homologous novel miRNAs, the known rat miRNAs were first

removed. There were 1,738,486 reads that were mapped to known

rat miRNAs and were eliminated from further analysis. The

remaining reads were then aligned to a non-redundant set of

known mature miRNAs from all other species (miRBase version

17), yielding 188,144 mapped reads. In total, 1,511 miRNAs were

detected by at least one read in at least 1 out of the 8 sequencing

samples. After mapping those reads to the genome, 40,603 read

Figure 1. Scheme of the work flow for identifying novel rat miRNAs.
doi:10.1371/journal.pone.0034394.g001
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clusters considered as putative mature miRNA sequences were

acquired. Genome sequences around the position of the read

cluster were extracted and the energetically best hairpin structures

were retained as putative pre-miRNAs if they had (i) at least 19

base pairings in the secondary structure and (ii) at least 11 base

pairings located in the read cluster region (number of pairings

between putative mature and mature*). After applying the

minimum number of base pairings to the 40,603 pre-microRNA

candidates (one for each read cluster) and forcing a hairpin

secondary structure we obtain 13,336 candidates that are used as

input for the machine learning prediction. Eventually 246 putative

novel miRNAs were predicted in the 8 samples. After comparing

the information across the 8 samples by using the differential

expression module of miRanalyzer, 19 pre-miRNA candidates

were predicted in at least 4 out of the 8 samples. After realigning

the reads to the consensus sequences of these 19 pre-miRNA

candidates, the cleavage pattern was analyzed. The homologous

pre-miRNAs were considered as novel pre-miRNAs if they had (i)

both the mature and mature* sequences, (ii) a characteristic 1–4 nt

39 overhang between mature and mature* sequences, and (iii) less

than 2 nt fluctuation of read start sites around the start site of the

predominant read (the read with the highest expression value).

After applying these structural criteria, 5 novel pre-miRNAs

homologous to known miRNAs in other species were discovered

and named as rno-mir-1839, rno-mir-3068, rno-mir-1843, rno-

mir-509 and rno-mir-1306. As mature and mature* sequences are

derived from the opposite arms of the hairpin pre-miRNAs, they

were named novel rat homologous miRNAs according to their

Figure 2. The sequences and secondary structures of five novel rat pre-miRNAs homologous to known miRNAs in other species. 2a.
rno-mir-1839. 2b. rno-mir-509. 2c. rno-mir-3068. 2d. rno-mir-1306. 2e. rno-mir-1843. The sequences of 5 novel rat homologous pre-miRNAs hairpin are
depicted above their dot-bracket notation secondary structures as determined by RNAfold [62,63] using minimum free energy algorithm (MFE).
RNAfold is a widely used webserver to predict RNA secondary structure. Below the dot-bracket notation secondary structures of these novel rat
homologous pre-miRNAs, each of the small RNA sequences that matched those pre-miRNAs hairpin are listed, with the number of reads representing
each sequence at its right side. The mature and the mature* sequences are marked in red and green respectively. The MFEs of those rat novel pre-
miRNAs predicted by RNAfold are above their sequences. The single nucleotide extension isomirs of the mature* sequences had higher read counts
than the mature* sequences with perfect 2 nt 39 overhang in two miRNAs (rno-miR-3068-3p and rno-miR-1843-3p).
doi:10.1371/journal.pone.0034394.g002
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locations. For example, rno-miR-1839-5p and rno-miR-1839-3p

were named because the two miRNAs were considered as the 59

and 39 arms of rno-mir-1839 pre-miRNA. Therefore, 10 rat

homologous miRNAs were generated from 5 rat homologous pre-

miRNAs. Although these 5 pre-miRNAs have been detected in

mouse, they have not been previously reported in rat. All these 10

rat homologous miRNAs possess a perfect 2 nt 39 overhang that is

a consequence of the Dicer cleavage. In addition, these novel

miRNAs were detected in multiple samples (at least 4 out of the 8

samples) with reads .10 (except rno-miR-1306-3p) [42]. There-

fore, all of the 10 novel miRNAs are high-confidence novel rat

homologous miRNAs according to the guidelines for novel

miRNAs. The sequences and the secondary structures of these 5

novel rat homologous pre-miRNAs are shown in Figure 2. The

single nucleotide extension isomirs of the mature* sequences had

higher read counts than the mature* sequences in two miRNAs

(rno-miR-3068-3p and rno-miR-1843-3p) (Figure 2c and 2e).

Table 1 shows sequences and genome locations of 10 rat

homologous miRNAs. All Sequences of novel rat miRNAs are

the same as those of other species except rno-miR-3068-5p, rno-

miR-509-3p and rno-miR-1306-3p. Table 2 shows homologous

miRNAs and the homologous sequences of the 10 novel rat

homologous miRNAs. All novel rat miRNAs have homologous

sequences in mouse except rno-miR-1306-5p and rno-miR-509-3.

Table 3 shows NGS read counts and microarray signal intensities

of the 10 novel rat homologous miRNAs, which were used in the

miRNA identification and validation in this study. Table 4 shows

sequences of the 5 novel rat homologous pre-miRNAs.

Recognition of Rat-Specific Novel miRNAs
For detection of the rat-specific novel miRNAs, all reads that

were mapped to known miRNAs, transcriptome, RFam, RepBase,

piRNAs and tRNA were removed first. Of the remaining reads,

7,250,602 could be mapped to the rat genome and were used for

the prediction of the novel miRNAs. The predictions were

performed as described previously [34] and resulted in 635 novel

miRNAs candidates. These candidates were expressed in at least 4

of the 8 samples (default settings of miRanalyzer). Although these

miRNA candidates are rat-specific in the sense that they have not

Table 1. Ten rat homologous miRNAs sequences and genome locations.

Novel Rat miRNA Mature Sequence Chromosome Start – End Strand

rno-miR-1839-5p AAGGUAGAUAGAACAGGUCUUG 1 137744048–137744110 +

rno-miR-1839-3p AGACCUACUUAUCUACCAACAG

rno-miR-3068-5p UUGGAGUUCAUGCAAGUUCUAACCA 6 111674240–111674314 2

rno-miR-3068-3p GGUGAAUUGCAGUACUCCAACA (#)

rno-miR-1843-5p UAUGGAGGUCUCUGUCUGACU 6 103413903–103413991 2

rno-miR-1843-3p UCUGAUCGUUCACCUCCAUACA (#)

rno-miR-509-5p UACUCCAGAAUAUGGCAAUCAUG X 154190989–154191072 2

rno-miR-509-3p UGAUUGACAUGUCUGCAGUGGA

rno-miR-1306-5p CCACCUCCCCUGCAAACGUCCA 11 84703718–84703789 +

rno-miR-1306-3p GACGUUGGCUCUGGUGGUGAUG

Note: The names of novel rat mature and mature* miRNAs are marked in bold and regular font, respectively. Sequences of three novel rat miRNAs differ from
homologous sequences related to other species and those different bases are marked in italic font. All miRNAs show a perfect 2 nt 39 overhang, except rno-miR-3068-3p
and rno-miR-1843-3p marked with (#). Those two miRNAs have perfect Dicer pattern with the second most expressed mature* read, while the most expressed mature*
read probably is a single nucleotide extension isomiR.
doi:10.1371/journal.pone.0034394.t001

Table 2. Homologous miRNAs and homologous sequences related to ten novel rat homologous miRNAs.

Novel Rat miRNA Homologous miRNA Homologous Sequence

rno-miR-1839-5p cfa-miR-1839#mmu-miR-1839-5p#bta-miR-1839#eca-miR-
1839#ssc-miR-1839-5p

AAGGUAGAUAGAACAGGUCUUG

rno-miR-1839-3p mmu-miR-1839-3p AGACCUACUUAUCUACCAACAG

rno-miR-3068-5p mmu-miR-3068 UUGGAGUUCAUGCAAGUUCUAACC

rno-miR-3068-3p mmu-miR-3068* GGUGAAUUGCAGUACUCCAACA

rno-miR-1843-5p mmu-miR-1843-5p UAUGGAGGUCUCUGUCUGACU

rno-miR-1843-3p mmu-miR-1843-3p UCUGAUCGUUCACCUCCAUACA

rno-miR-509-5p mmu-miR-509-5p UACUCCAGAAUGUGGCAAUCAU

rno-miR-509-3p age-miR-509b UGAUUGACACGUCUGCAGAUAGA

age-miR-509a UGAUUGACACGUCUGCAGGUAGA

rno-miR-1306-5p ssc-miR-1306-5p CCACCUCCCCUGCAAACGUCCA

rno-miR-1306-3p mmu-miR-1306-3p#ssc-miR-1306-3p ACGUUGGCUCUGGUGGUGAU

doi:10.1371/journal.pone.0034394.t002
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been detected in any other species, it does not rule out that they

might exist in other species as well.

Validation of the Novel miRNAs
To validate these rat homologous miRNAs and rat-specific

miRNA candidates, custom vertebrate miRNA microarray

(microarray data are available through Gene Expression Omnibus

series accession numbers GSE33360) was performed in 3

untreated and 3 AA treated rat kidney samples which were also

used in the NGS analysis. Vertebrate miRNA array from IC

Sciences covers all 5,460 miRNAs from 32 vertebrates based on

miRBase version 17. In addition, the complementary probes to the

mature sequences of the top 100 of 635 novel rat-specific

candidates generated via the NGS analysis were added to the

miRNA array (100 custom probes are the limit of custom miRNA

microarray made by LC sciences). Thus, the expression levels of a

total of 5,560 miRNAs were measured using this high throughput

platform. Since miRNA genes tend to be conserved across species,

the 5,460s vertebrate miRNAs could be used to validate the

expression of novel rat homologous miRNAs. At the same time,

the 100 rat-specific miRNA probes in the array could be used to

validate the expression of these miRNA candidates resulted from

the NGS analysis. The microarray data showed that 1,495 out of

5,560 miRNAs were expressed at different levels when microarray

signal intensity cutoff was set to 32 for determination of miRNA

expression as the manufacturer’s suggestion.

Two novel homologous miRNAs (rno-miR-1839-5p, rno-miR-

1306-3p) meet the manufacturer’s (LC Sciences) criteria and

further support they are novel rat miRNAs. rno-miR-1839-5p had

consistent NGS read counts of more than 1000 in all of the 8 NGS

samples and was significantly expressed in all 6 samples as

determined by the microarray analysis. Although rno-miR-1306-

3p had very low read counts (NGS reads counts are between 1 and

4 in 3 of 8 samples), it was consistently expressed in 5 of 6 samples

as determined by the microarray analysis. Therefore, rno-miR-

1306-3p is qualified as a novel rat miRNA [11].

Strict criteria were applied to define the rat-specific novel

miRNA candidates. The cutoff for NGS read count was set to 10

[12] and that for miRNA array signal intensity was set to 32 for

every sample [47]. Six rat-specific novel miRNA candidates were

matched to these criteria. After realigning their sequences to the

pre-miRNA sequences, two of the six candidates were discarded

due to high fluctuations of the read start positions. The remaining

four novel miRNA candidates were considered as novel rat-

specific miRNAs. They were named as rno-miR-3598, rno-miR-

3599, rno-miR-3600 and rno-miR-3601, respectively. The

alignments and secondary structures for these novel miRNAs are

displayed in Figures 3. Their mature sequences and genome

positions, NGS read counts and microarray signal intensities, and

precursor sequences are shown in Tables 5, 6 and 7, respectively.

For rno-miR-3601, the mature* sequence was also detected in the

NGS analysis and its sequence alignment and hairpin structure are

shown in Figure 3d. Also, the expression level of rno-miR-3598

was significantly altered by the treatment of AA according to the

microarray analysis (P = 0.0134).

Table 3. Ten novel rat homologous miRNAs - NGS read counts and microarray signal intensities.

Novel Rat miRNA NGS Reads miRNA Array Signal Intensity

CTL13 CTL14 CTL15 CTL16 AA19 AA20 AA21 AA22 CTL13 CTL14 CTL15 AA19 AA20 AA21

rno-miR-1839-5p 8162 7238 8496 5294 6110 6872 5256 5137 85.42 92.51 82.01 63.97 129.1 37.79

rno-miR-1839-3p 378 389 389 462 409 474 402 482 9.28 18.79 8.19 6.79 27.95 2.46

rno-miR-3068-5p 2288 2212 2190 3636 2506 1935 1884 5459 14.85 12.03 16.36 44.82 7.27 27.57

rno-miR-3068-3p 1477 1593 1775 1208 1285 1270 1169 1128 5.35 16.6 22.47 25.82 7.16 30.01

rno-miR-1843-5p 1181 970 1063 634 745 806 848 715 11.81 6.07 6.87 11.23 9.49 11.4

rno-miR-1843-3p 165 181 172 148 101 239 206 167 4.13 11.73 14.4 13.19 6.97 9.04

rno-miR-509-5p 9 16 30 10 8 8 36 12 0.67 0.03 1.11 0.02 0 3.19

rno-miR-509-3p 53 34 46 23 11 15 52 47 0 2.58 0.01 0.03 0 1.92

rno-miR-1306-5p 11 13 4 10 12 21 17 28 0 6.71 0.02 20.73 0 1.94

rno-miR-1306-3p 0 0 1 1 0 0 0 4 94.92 89.46 53.45 24.31 42.25 130.4

Note: rat kidney samples in the control group: CTL13, CTL14, CTL15 and CTL16; rat kidney samples in the AA treated group: AA19, AA20, AA21, and AA22.
doi:10.1371/journal.pone.0034394.t003

Table 4. Five novel rat homologous pre-miRNAs sequences.

Novel Rat
pre-miRNA Precursor Sequence

rno-mir-1839 GAAAAGGUAGAUAGAACAGGUCUUGUUUGCAAAAUAAAUUCAAGACCUACUUAUCUACCAACAG

rno-mir-3068 AAGAGUAAUUGGAGUUCAUGCAAGUUCUAACCAGUUUAACCAGUAGCUGGGUGAAUUGCAGUACUCCAACAUUCUG

rno-mir-1843 AGCGGUCCUACAUGAAUAUGGAGGUCUCUGUCUGACUUAGAAUAGUUGGCUAAGUCUGAUCGUUCACCUCCAUACAACUUUUAGACUGUC

rno-mir-509 CUGUGUGUGGUUCUUUACUCCAGAAUAUGGCAAUCAUGCAUAAUUAAAUGUGAUUGACAUGUCUGCAGUGGAGUAACACAUGCAA

rno-mir-1306 AGUCUCCACCACCUCCCCUGCAAACGUCCAGUGAUGCAGAGGUAAUGGACGUUGGCUCUGGUGGUGAUGGACA

doi:10.1371/journal.pone.0034394.t004
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Predicted Targets of the Novel miRNAs
TargetSpy was chosen to predict the target genes of the 14 novel

miRNAs by forcing the existence of a seed in silico [48,49] In total,

6918 target genes were identified for future functional analysis

(Data S1).

Discussion

Currently, there are two guidelines for discovery of novel

miRNAs, Ambros guideline and Griffiths-Jones guideline. The

Ambros guideline is a general guideline [11], while the Griffiths-

Jones guideline is a specific guideline for the discovery of novel

miRNAs using NGS data [12]. Both guidelines contain expression

and biogenesis criteria. In the Ambros guideline, expression

criteria include detection of miRNAs by hybridization (such as

northern blot, Taqman real time PCR or microarray) and cloning

and Sanger sequencing. Biogenesis criteria include classic hairpin

structure, phylogenetic conservation, and Dicer function. miRNAs

must meet at least 1 expression criterion and 1 biogenesis criterion

(although Dicer function only provides further evidence and it can

not be used as an independent biogenesis criterion). In addition,

the Ambros guidelines suggest that ‘‘very close homologs in other

species can be annotated as miRNA orthologs without experi-

mental validation, if they satisfy ‘‘the criterion of a high degree of

phylogenetic conservation’’ [11]. In the Griffiths-Jones guideline,

expression criterion is multiple reads from multiple independent

experiments (cutoff is 10–20). Biogenesis criteria are reads being

able to map to the genome, sequence flanking the putative mature

miRNAs showing a hairpin structure, mapped reads without

overlapping of other RNAs, conserved 59-end of the mature

sequence, and the existence of mature* sequence and correct 39

overhang. The Griffiths-Jones guideline considers that consistent

59-end processing and mature* sequences are critical for

discrimination between high-confidence miRNAs and fragments

of other RNAs in NGS data.

In our study, both guidelines were utilized to identify novel rat

miRNAs. Ten rat novel homologous miRNAs meet all Griffiths-

Jones criteria except rno-miR-1306-3p that was validated by the

microarray analysis, and meets the Ambros criteria. Four rat-

specific miRNAs meet at least 4 of 5 Griffiths-Jones criteria (rno-

miR-3601 meets 5/5 criteria). In addition, they were confirmed by

the microarray analysis. Thus, all four rat-specific miRNAs meet

Ambros criteria too. Thus, all 14 miRNAs generated from 9 pre-

miRNAs are high-confidence miRNAs according to the both

guidelines.

NGS and microarrays are two high-throughput platforms for

analysis of gene and miRNA expression. NGS is able to assess the

copy number of transcripts and provides ‘‘digital gene expression’’

while microarrays measure relative gene expression. Although

there are debates on accuracy and reliability of the two platforms

[50,51,52,53], they are generally considered as comparable and

can be used for validation of each other [46,54]. In this study, both

NGS and microarray analyses were applied to identify and

validate novel miRNAs in rat kidneys. Novel miRNAs that express

in both the platforms are more reliable than those that only

express in one platform. Therefore, 4 rat-specific miRNAs (rno-

miR-3598, rno-miR-3599, rno-miR-3600, rno-miR-3601) and 2

rat homologous miRNAs (rno-miR-1839-5p and rno-miR-1306-

3p) are high-confidence rat miRNAs. Although other 8 miRNAs

and their isoforms (rno-miR-1839-3p, rno-miR-3068-5p, rno-

miR-3068-3p, rno-miR-1843-5p, rno-miR-1843-3p, rno-miR-

509-5p, rno-miR-509-3p, rno-miR-1306-5p) were not confirmed

by microarray analysis, they are still considered as high-confidence

novel miRNAs because they satisfy the Ambros guidelines [11].

Also, miRNA expression detected using NGS may not be able to

be found by means of microarrays because the overlapping of

expressed genes between NGS and microarray platforms is about

40–50% [54]. It may be due to NGS’s high sensitivity in detecting

the genes with low expression levels than microarrays [27]. Thus,

the low level of expression of rno-miR-509-5p, rno-miR-509-3p,

rno-miR-1306-5p and rno-miR-509-3p measured by NGS might

not be detected by the microarray.

It is estimated that miRNAs target about 60% of protein-coding

genes [55] and miRNAs play important roles in a variety of

diseases and disorders [5,7]. The potential miRNAs targets

predicted by targetspy and their functions need to be further

studied, Given that AA is a top 2 potent human carcinogen that

induces kidney tumors in rats [56], rno-miR-3598 may be the

potential used as a kidney tumor biomarker for AA exposure.

In summary, NGS, microarray gene expression analysis and

bioinformatics tools were used for analysis of small RNA data

generated from rat kidneys. These combined approaches resulted

in discovery of 14 high confidence novel rat miRNAs based on

Ambros and Griffiths-Jones guidelines. Ten novel miRNAs from 5

pre-miRNAs are homologues to other species while four miRNAs

are rat-specific. Given that only one rat miRNA was added from

the miRbase version 16 to the latest version 18, discovery of 14

Figure 3. The sequences and secondary structures of the four novel rat specific pre-miRNAs. 3a. rno-mir-3598. 3b. rno-mir-3599. 3c. rno-
mir-3600. 3d. rno-mir-3601. The sequences of 4 novel rat specific pre-miRNAs are depicted above their dot-bracket notation secondary structures as
determined by RNAfold [62,63] using MFE. RNAfold is a widely used webserver to predict RNA secondary structure. Below the dot-bracket notation
secondary structures of these rat specific pre-miRNA, each of the small RNA sequences that matched those pre-miRNAs hairpin are listed, with the
number of reads representing each sequence at its right side. The mature and the mature* sequences are marked in red and green, respectively. The
MFEs of those rat specific miRNAs predicted by RNAfold are above their pre-miRNA sequences. For rno-miR-3598, the inferred mature* sequence is
shown in green in the secondary structure.
doi:10.1371/journal.pone.0034394.g003

Table 5. Four rat-specific novel miRNAs - Mature sequences and genome locations.

Novel Rat miRNA Mature Sequence Chromosome Start - End Strand

rno-miR-3598 UCUAGGGCUGGAGAGAUGGCUA 13 40705693–40705785 +

rno-miR-3599 AUUAGGGUUGCAGAGCCAGG 5 158395573–158395709 2

rno-miR-3600 UGUGGACUUGGAGUCAGAAGG 5 5156340–5156444 2

rno-miR-3601 GAUACACAGAGGCAGGAGGAGAA 3 41992498–41992610 2

doi:10.1371/journal.pone.0034394.t005
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novel rat miRNAs will significantly contribute to the understand-

ing of miRNA in rat gene expression.

Materials and Methods

Ethical Treatment of Animals
National Center for Toxicological Research (NCTR) Institu-

tional Animal Care and Use Committee (IACUC) reviewed and

approved this study. We followed the recommendations of the

NCTR IACUC for the handling, maintenance, treatment and

sacrifice of the rats. All efforts were made to minimize the animal

suffering.

miRNA Isolation
Aristolochic acid (AA) was purchased from Sigma (St. Louis,

MO). The purity of AA was 96% (40% of AAI and 56% of AAII).

Big Blue transgenic Fisher 344 rats were obtained from Taconic

Laboratories (Germantown, NY) through a purchase from

Stratagene (La Jolla, CA). The miRNA isolation from four AA-

treated and 4 control rats [56] was performed as previously

described [45]. Briefly, 40–50 mg rat kidney was cut and

mechanically minced using Tissue Tearor (Biospec Products Inc,

Bartlesville, OK). Total RNA was isolated using mirVanaTM

miRNA isolcation kit (Ambion, TX) that employed an organic

extraction followed by glass-fiber immobilization. RNA concen-

tration was determined using Nandrop1000 spectrophotometer

(Thermo Scientific, DE). The quality of the extracted RNA was

evaluated using the RNA 6000 LabChip and Agilent 2100

Bioanalyzer (Agilent Technologies, Palo Alto, CA).

Small RNA Library Construction
The small RNA library construction and deep sequencing was

carried out at University of Texas Southwestern Medical Center

Microarray Core Facility. Samples were prepared using Illumina

Small RNA Sample Prep kit according to the Small RNA v1.5

Sample Preparation Guide. Approximately 10 mg of total RNA

was used for the small RNA library construction. The v1.5 sRNA

39 and SRA 59 adaptors (Illumina, San Diego, CA, USA) were

added to both ends of the small RNAs. The 39 and 59 ligated

RNAs were used as templates for reverse transcription followed by

PCR amplification. The enriched cDNA constructs were size-

fractionated on a 6% polyacrylamide gel electrophoresis and the

bands containing the 22–30 nucleotide RNA fragments (93–100

nucleotide in length with both adapters) were purified. The

concentrations of the size-fractionated cDNA libraries were

determined using a NanoDrop ND-1000 Spectrophotometer and

the size and purity were determined using an Agilent 2100

Bioanalyzer in combination with the Agilent DNA 1000 Kit. The

purified DNA was used directly for cluster generation and

sequence analysis using the Illumina Genome Analyzer II

(Illumina) according to the manufacturer’s instructions (36 cycle

single read cluster kit v4 and sequence kit v4). Images taken during

the sequencing reactions were analyzed with the Illumina software,

performing the base-calling with Bustard and sequence analysis

with Gerald.

Identification of Novel miRNA Candidates
To predict novel miRNAs, the miRanalyzer standalone version

[34] was used. All reads that were mapped to a non-redundant set

of known rat miRNAs from miRBase version 17 were removed.

All mappings are performed using Bowtie, an ultrafast and

memory-efficient alignment program for aligning short DNA

sequence reads to genomes [57]. The remaining reads were then

aligned to a non-redundant set of all known miRNAs except for

rat miRNAs from miRBase version 17. These mapped reads were

retained and considered as belonging to putatively homologous

miRNAs (detected in other species but so far not in rat). Those

retained reads were mapped to the rat genome with a seed length

of 19 nt allowing 1 mismatch. The genome-mapped reads were

then clustered on the rat genome and the read clusters were used

for the prediction of miRNAs as described previously [34]. Thus,

the novel miRNAs detected in this way are homologous to those in

other species.

Table 6. Four rat-specific novel miRNAs - NGS read counts and microarray signal intensities.

Novel Rat miRNA NGS Reads miRNA Array Signal Intensity

CTL13 CTL14 CTL15 CTL16 AA19 AA20 AA21 AA22 CTL13 CTL14 CTL15 AA19 AA20 AA21

rno-miR-3598 80 88 81 80 150 109 80 289 164 173 180 312 315 391

rno-miR-3599 90 70 129 67 43 89 84 51 134 173 74 73 52 166

rno-miR-3600 3058 2741 1838 343 1095 1152 1595 592 316 236 223 164 133 254

rno-miR-3601 17 15 34 11 25 28 28 15 42968 33213 39003 47376 25834 48927

Note: rat kidney samples in the control group: CTL13, CTL14, CTL15, and CTL16; rat kidney samples in the AA treated group: AA19, AA20, AA21, and AA22.
doi:10.1371/journal.pone.0034394.t006

Table 7. Four rat-specific novel pre-miRNAs sequences.

Novel Rat pre-miRNA Precursor Sequence

rno-mir-3598 AUCACAGUCCUAUUUCUGCCCUCAAAGACAAAAAUGAUGUCUAGGGCUGGAGAGAUGGCUAAGUGGG

rno-mir-3599 ACCCCUGCCCCUGUGCUCUAGCACACUGCUCAGAAAACGUUUAGGGUUGCAGAGCCAGGGUGGGGGG

rno-mir-3600 AGGAGAACAGUGGACUUGGAGUCAGAAGGUCUGUGUGGAACUGGGCCUCCGACAUGGACUAUCACUGACCAUGAUUCCAUUCCG

rno-mir-3601 GAGGUGUUUGCUGGAUACACAGAGGCAGGAGGAGAAAGAAGUAUUUCCUCCUGCAUCUGUGUGUAUAGCAGGCACUUU

doi:10.1371/journal.pone.0034394.t007
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To detect rat-specific novel miRNAs, all reads that were

mapped to known miRNAs in miRBase version 17 and other

known small RNAs were removed. The known small RNAs

include 1) RNA from RFam 10.1 [58], 2) tRNA from the

GtRNAdb [59] and 3) piRNA from RNAdb [60] and mRNAs

from The Reference Sequence (RefSeq) database [61]. The

remaining reads were input into miRanalyzer for analysis to select

the candidate rat-specific novel miRNAs.

The consensus sequences of the novel rat homologous, rat-

specific mature and pre-miRNAs were predicted at least 4 of 8 rat

kidney samples by the miRanalyzer differential expression module.

The NGS reads from all 8 samples were then mapped to the rat

genome. Novel rat pre-miRNAs were identified based on the

presence of a classic hairpin structure, Dicer cleavage pattern (a

characteristic 2 nucleotide 39 overhang), the mature and mature*

sequences, and conservative 59 sequence, as well as detectable

expression (NGS read count).

Mature miRNAs tend to have several length variants and the

consensus sequence frequently is found to be longer than the

predominant form (the most expressed read) [10]. Here, the length

of the most expressed read was considered as the length of the

mature miRNAs. The pre-miRNA is defined as the sequence that

starts at the first bulge (regions in which one strand of a miRNA

has ‘‘extra’’ inserted bases with no counterparts in the opposite

strand) before the 59 mature miRNA and ends at the correspond-

ing position in 39. The minimum length of pre-miRNA is 65 nt if

the flanking side of the pre-miRNA does not reach the next bulge.

The secondary structures of rat miRNAs were determined by

the RNAfold using minimum free energy (MFE) algorithm.

RNAfold is a web server and widely used for prediction of RNA

structures [62,63].

Custom Vertebrate miRNA Microarray
Microarray assay was performed using a service provider (LC

Sciences, Houston, TX). The assay started from 4 to 8 mg total

RNA per sample. The RNA was 39-extended with a poly (A) tail

using poly (A) polymerase. An oligonucleotide tag was then ligated

to the poly (A) tail for later fluorescent dye staining. Hybridization

was performed overnight on a mParaflo microfluidic chip using a

micro-circulation pump (Atactic Technologies, Houston, TX)

[64,65]. Hybridization used 100 mL 66SSPE buffer (0.9 M NaCl,

60 mM Na2HPO4, 6 mM EDTA, pH 6.8) containing 25%

formamide at 34uC. After RNA hybridization, tag-conjugating

Cy3 dye was circulated through the microfluidic chip for dye

staining. Fluorescence images were collected using a laser scanner

(GenePix 4000B, Molecular Device, Sunnyvale, CA) and digitized

using Array-Pro image analysis software (Media Cybernetics,

Bethesda, Maryland). Data were analyzed by first subtracting the

background and then normalizing the signals using a LOWESS

filter (Locally-weighted Regression) [66]. Data adjustment includ-

ed data filtering, Log2 transformation, and gene centering and

normalization. The data filtering removed miRNAs with intensity

values below a threshold value of 32 across all samples. T-test was

performed between ‘‘control’’ and ‘‘test’’ sample groups to

determine the p-value [67].

Prediction of miRNAs’ Target Genes
TargetSpy, an algorithm for prediction of miRNA target genes,

was used to predict the target genes of the nine novel rat miRNAs

[48], The principle of prediction of miRNA target genes is based

on machine learning and selected features, such as compositional,

structural, and base pairing features (http://www.targetspy.org/).

TargetSpy has been demonstrated to have good prediction

accuracy and is used to predict miRNAs targets genes [68].

Supporting Information

Data S1 Predicted target genes of the fourteen rat novel
miRNAs.

(XLS)
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