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Abstract

Here we introduce a rapid, cost-effective method of generating molecular DNA probes in just under 15 minutes without the
need for expensive, time-consuming gel-extraction steps. As an example, we enzymatically concatenated six variable
strands (50 bp) with a common strand sequence (51 bp) in a single pool using Fast-Link DNA ligase to produce 101 bp
targets (10 min). Unincorporated species were then filtered out by passing the crude reaction through a size-exclusion
column (,5 min). We then compared full-length product yield of crude and purified samples using HPLC analysis; the
results of which clearly show our method yields three-quarters that of the crude sample (50% higher than by gel-extraction).
And while we substantially reduced the amount of unligated product with our filtration process, higher purity and yield,
with an increase in number of stands per reaction (.12) could be achieved with further optimization. Moreover, for large-
scale assays, we envision this method to be fully automated with the use of robotics such as the Biomek FX; here, potentially
thousands of samples could be pooled, ligated and purified in either a 96, 384 or 1536-well platform in just minutes.
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Introduction

Synthetic DNA probes are widely used in many assays today

including massively parallel SNP detection, cancer genome resequen-

cing, proximity ligation, and gene knockout studies [1–3]. Typically

probes are between 100 and 120 bp, the length of which may

constitute regions of homology with the target, forward and reverse

primer sequences for amplification, and a barcode for identification

(e.g. molecular inversion probe design [4]). Within the last decade,

advances in chemistry and instrumentation development of oligo-

deoxynucleotide (ODN) synthesis have made it possible to generate

strands .100 bp with coupling efficiencies (CE) 99% or higher.

However, synthesis of whole strands this size has its drawbacks which

include: 1) the longer the probe, the more failure sequences result (full-

length product (FLP) generation = (CEn-1)). For example, synthesis of a

101 mer at a coupling efficiency of 99% yields ,37% FLP; the

remaining ,64% must be removed by means of purification to

prevent n-1 species from contaminating the downstream application,

and 2) synthesis time for probes .100 bp can easily exceed 10 hr, and

often technicians are not available to monitor the entire run, and

therefore cannot catch an instrumentation failure or replenish

consumables before they are exhausted. The latter can cost the end-

user hundreds of dollars in time and reagents with the additional costs

of having to repeat the synthesis. On the other hand, the notion of

ligating shorter constituent fragments into a full-length, single-stranded

probe, has its advantages such as 1) synthesis time and reagent

consumption are both cut in half, 2) a crude 50 mer with a 99% CE,

yields ,61% FLP compared to only 37% for a 101 mer, and 3) in

cases where probes share a common sequence (e.g. universal primer

regions for PathogenMIP detection [5], reagent consumption is

further reduced by requiring only the variable regions, one universal

strand and one complimentary bridge for assembly.

The current method of ligating shorter strands into full-length

probes [5–7] follows the general scheme of concatenating two

fragments of approximately equal length using a thermal-stable

ligase in combination with a bridge; the FLP is then separated out

from the unincorporated species by gel-extraction using Agarose,

Capillary [8] or polyacrylamide gel electrophoresis (PAGE). While

the ligation reaction can take anywhere from 20 to 60 min with

cycling parameters, the process of isolating FLP can take up to

4 hr (including gel preparation, sample loading, electrophoresis,

and sample extraction/purification).

Here we introduce a rapid, cost-effective alternative method of

generating single-stranded ODN.100 bp in under 15 min. After

room temperature (RT) ligation, the reaction mixture is then filtered

through a size-exclusion column to remove all unincorporated species

without the use of laborious, expensive, and low yielding extraction

methods. As such, the end-user can acquire empty, recycled desalting

columns or barrier-style pipette tips to load with the polymeric resin

for sample purification. Furthermore, we have eliminated the need

for a thermal cycler, gel electrophoresis apparatus, Agarose/PAGE

pre-casts, voltage box and kit for gel extraction, all of which could

save the end-user thousands of dollars in sample preparation.

Materials and Methods

ODN Synthesis
ODN synthesis was done in-house (Stanford Genome Technol-

ogy Center) with an ABI 3900 DNA/RNA synthesizer (Applied
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Biosystems) using 1000 Å CPG columns (Biosearch Technologies)

for a 50 nm-scale synthesis. Cycle conditions were similar to

manufacture’s recommended protocol, which included the

following reagents: deblock (3% TCA/DCM) (AiC), acetonitrile,

0.02 M oxidizing solution, cap A/B, 0.1 M solutions of dA,

dC, dG and dT (Proligo), and 0.25 M 5-Benzylthio-1H-tetrazole

(Glen Research). Post-synthesis steps included ODN cleavage

from the support followed by base-deprotection overnight at 55uC
with ammonium hydroxide (28–30%) (J.T. Baker). After lyophi-

lization, ODNs were resuspended and the optical density for

each was measured via Spectramax 384 Plus 96-well plate reader

at 260 l.

ODN Analysis
All ODNs were normalized to 1000 mM in water, and analyzed

for purity using reverse-phase high-performance liquid chroma-

tography (HPLC) with UV detection at 260 l; running buffers

consisted of water, acetonitrile, triethyl ammonium acetate and

EDTA (HPLC unit and operating software used for sample

analysis consisted of the Transgenomic Wave System).

Probe design
Each 101 bp probe consists of a common strand (51 bp),

variable (50 bp), and a bridge (20 bp); the bridge in turn, shares

homology with 10 bases of the variable 39 end and 10 bases

at the 59 end of the common strand. In addition to the

sequences listed in Table 1 (S1, S2, S3, S4, S5, S6), we tested

several other combinations to further validate the process (data

not shown).

Ligation reaction
Prior to ligation, common strands were enzymatically 59

phosphorylated by adding 3 ul (,3000 pm) DNA to 41 ml water,

5 ml 106 T4 DNA ligase buffer with ATP (NEB) and 10 U T4

Polynucleotide Kinase (NEB) for a 50 ml final volume. The

mixture was incubated at 37uC for 30 min then heat-inactivated at

60uC for 20 min using the Veriti 96-well thermal cycler (Applied

Biosystems).

Six ml variable (1 ml each), 6 ml bridge and 6 ml common strand

were added in equimoloar amounts (1000 pm/ml) to 22 ml water,

5 ml buffer, 3 ml ATP, 2 ml Fast-LinkTM DNA ligase (Epicentre) for

a total reaction volume of 50 ml. Reactions were carried out for

10 min at RT; FLP was then purified from the unligated species

by both gel-extraction and size-exclusion methods to compare

their relative yield and purity.

Sample purification
For separating FLP from the unligated product, we used Bio-

Gel P-10 Polymeric resin (BIO RAD) with a size-exclusion limit of

20,000 daltons. Eight-hundred ml of slurry (1 gm P-10/10 ml in

water) were dispensed into empty BIO RAD desalting columns (P-

6 or P-30). Approximately 200 ml of water were removed from the

column by applying a slight vacuum—enough to uniformly

package the resin to prevent air pockets. Afterward, columns

were placed inside 2 ml collection tubes and centrifuged at 2400

RPM for 2 min; the resultant water was then discarded. The

complete reaction mixture (50 ml) was then added to the resin bed

and then centrifuged again for 2 min (2000 RPM). In addition, we

chose two popular gel-extraction methods to compare both yield

and purity with that of our size-exclusion process.

Results and Discussion

Molecular probes are essential to many biological applications

including interrogation of tumorigenic polymorphisms, as well as

for identifying pathogens of interest. For such large-scale,

multiplexed assays where thousands of probes are used, cost can

become a limiting factor. Typically, strands in the range of 100—

120 bp are made chemically via DNA synthesis automation;

however, the longer the strand synthesized, the more failure

sequences are produced. Consequently, samples often require

PAGE purification to isolate the FLP, which can be very costly.

One avenue taken to circumvent this drawback is by enzymatically

ligating two shorter constituents of ,equal length to generate the

full-length probe. Current methods are generally time-consump-

tive (,5 hr) and require expensive laboratory equipment and

extraction kits to purify the end-product. As such, the focus of our

paper has been to detail an alternative method of assembling and

purifying ODNs.100 bp, a process that takes just under 15 min

(outline given in Figure 1).

Figure 2 shows a chromatogram of a crude ligation reaction

with A) unincorporated variable and common strands and B)

101 bp FLP (S1–S6) between 5 and 5.5 min. Superimposed on to

this image is C) the purified product after filtration through a size-

exclusion P-10 polymeric resin, with a final yield three-quarters

that of the initial reaction compared to D) standard gel-extraction

method, with a final yield at about one-half. Though there are

some residual common and variable strands following the size-

exclusion purification, it is significantly reduced.

We tested several ligation pools of random variables with

different common strands and bridges, and found the overall yields

between crude and purified samples comparable to those shown in

Table 1. Sequences used for generating 101 bp probes (variables, S1–S6, were pooled with the complimentary bridge and
common strand in the presence of Fast-Link/Quick Ligase).

Sample Sequence (59 – 39)

Bridge_20 bp CTGAACCGCTCTTCCGATCT

Common strand_51 bp AGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTG

Random Variable 50 bp S1 TGCAAGTCCAGTTTTACTGGAACACACAGCACGCTCCCTTAGATCGGAAG

Random Variable 50 bp S2 CAACATTAGCCTTAGTTCCCTATTGATTGTGATGCCATCAAGATCGGAAG

Random Variable 50 bp S3 CAAGACAAGTTCACAGAGTTAGAATGAGTAGTTTAATATTAGATCGGAAG

Random Variable 50 bp S4 ATGTAGTTTGGGTCCAGGAAGAAACAAGGCTTGGGGTCCAAGATCGGAAG

Random Variable 50 bp S5 AATAATACAGCTGGGGACGACCTGGCCAAGCTGCTGTGGCAGATCGGAAG

Random Variable 50 bp S6 GTACTGGAAGTTTCAAGGTTTTGGAAAACAAGCAATTCTCAGATCGGAAG

doi:10.1371/journal.pone.0034373.t001
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Figure 2. However, yield for samples after gel-extraction varied

considerably where FLP return was never greater than 50%, and

often as low as 25% of the initial full-length amount.

For this work, the process of phosphorylating the common

strands was done enzymatically, which required the use of a

thermal cycler; however, whether the strands are purchased from

an outside vendor or made in-house, the 59 phosphate group can

be coupled directly onto the ODN using a phosphorylation

reagent (cheapest of all 59 ODN modifiers).

While both Fast-Link and Quick ligase mixes were examined for

this research, and shown to perform equally well, Quick ligase

does have one drawback. When separating out FLP from the

unincorporated species through a size-exclusion column, the

polyethylene glycol (PEG) in the buffer had a leaching effect on

the resin; when hydrated, the sample was opaque, and when

lyophilized, a significant amount of precipitation occurred where

the remaining pellet could not be dissolved. Alternatively, we did

not observe any precipitation with Fast-Link, the buffer of which

Figure 1. Figure shows the general process of probe ligation followed by FLP size-exclusion purification. To make each probe, the
variable, bridge and common strands are first combined in the presence of a ligase mix (e.g. Fast-Link or Quick Ligase); the reaction is then carried out
at RT for 10 min. Afterward, the sample is passed through P-10 polymeric resin where unincorporated species are thus retained, and FLP eluted. The
final purified, desalted product of pooled ODN probes is now ready for downstream application.
doi:10.1371/journal.pone.0034373.g001
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was absent of PEG. Therefore, this made the latter an obvious

choice for our ligation method using size-exclusion purification.

As for modifying the ligation reactions to maximize incorpora-

tion of common and variable strands into FLP, we found no

benefits of 1) increasing ligation times above 10 min, 2) varying

reaction temperatures 3) cycling parameters, 4) annealing samples

prior to ligation (e.g. boil, then slowly cool to RT over 15 min), or

5) varying bridge lengths above or below 20 bp; consequently, the

one determining factor of ligation efficiency has been to achieve a

1:1:1 ratio of reactants. And while initial normalization of

reactants is essential, it is the most challenging step of the assay;

no matter how careful we were in measuring sample concentra-

tions, there was usually some residual variable, bridge and

common strand leftover as evidenced by HPLC. This discrepancy

can likely be a product of an improperly calibrated pipettor or

manual handling error, both of which may be resolved by sample

automation. Nevertheless, this has necessitated our use of a

method for purifying the FLP from the unligated species as to

prevent any possible contamination during downstream applica-

tion.

Though we determined operational centrifugation time and

speed for purifying 101 mers using the P-10 resin, the overall

procedure could benefit from further optimization. This includes

adjusting 1) resin loading (column resin-bed height and more

uniform packaging), 2) RPM, 3) spin time, and 4) resuspending the

P-10 slurry in a storage buffer that is [salt] and pH specific.

Moreover, cost and time may be further decreased by scaling-up

the ligation reactions from 6 variables per pool to 12 or more. The

only caution we have is during the purification process;

overloading the column with sample could have a negative effect

on final yield. To compensate for this, we suggest lowering the

final reactant concentrations accordingly.

Conclusion
Here we introduce a quick and cost-effective method for

assembling and purifying synthetic DNA probes .100 bp. As an

alternative to currently used protocols, our ligation reactions are

carried out at RT for only 10 min, and the process of purifying

FLP from unligated species is done simply by passing the reaction

mixture through a size-exclusion column, which takes less than five

minutes. As such, we eliminate the need for costly laboratory

equipment including a thermal cycler and gel electrophoresis

apparatus; expensive sample extraction kits are also unnecessary.

Furthermore, the end-user only requires recycled desalting

columns or barrier-style pipette tips for loading with P-10 resin

for purifying the ligation reaction. Moreover, for large-scale assays,

we envision this method to be fully automated with the use of

robotics such as the Biomek FX; here potentially thousands of

samples could be pooled, ligated and purified in either a 96, 384 or

1536-well platform in just minutes.
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