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Abstract

The substantial winter influenza peak in temperate climates has lead to the hypothesis that cold and/or dry air is a causal
factor in influenza variability. We examined the relationship between cold and/or dry air and daily influenza and pneumonia
mortality in the cold season in the New York metropolitan area from 1975–2002. We conducted a retrospective study
relating daily pneumonia and influenza mortality for New York City and surroundings from 1975–2002 to daily air
temperature, dew point temperature (a measure of atmospheric humidity), and daily air mass type. We identified high
mortality days and periods and employed temporal smoothers and lags to account for the latency period and the time
between infection and death. Unpaired t-tests were used to compare high mortality events to non-events and
nonparametric bootstrapped regression analysis was used to examine the characteristics of longer mortality episodes. We
found a statistically significant (p = 0.003) association between periods of low dew point temperature and above normal
pneumonia and influenza mortality 17 days later. The duration (r = 20.61) and severity (r = 20.56) of high mortality episodes
was inversely correlated with morning dew point temperature prior to and during the episodes. Weeks in which moist polar
air masses were common (air masses characterized by low dew point temperatures) were likewise followed by above
normal mortality 17 days later (p = 0.019). This research supports the contention that cold, dry air may be related to
influenza mortality and suggests that warning systems could provide enough lead time to be effective in mitigating the
effects.
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Introduction

It is well known that intra-annual mortality exhibits a

pronounced winter peak in locations with seasonal climates [1],

[2]. In the United States, mortality arising from respiratory disease

is 50% higher in winter than in summer [1]. One contributor to

this excess winter mortality is influenza [3], the timing and severity

of which can vary significantly from year to year. The association

between the annual influenza peak and winter weather in

temperate locations has lead to the hypothesis that weather

variability could influence influenza mortality variations [4], [5].

Recent research examining climatic influences on influenza

transmission has galvanized interest in this topic. Airborne

transmission of Influenza A/Panama virus between guinea pigs

was more likely at low temperatures and relative humidities [4].

Because temperature is physically/mathematically linked to

relative humidity and thus confounds interpretation, a mass-based

humidity measure (such as specific humidity or vapor pressure)

provides a stronger relationship to influenza transmission [5].

Given the cold-season decline in specific humidity in temperate

climates, a retrospective study [6] showed an association between

year-to-year humidity variations and the timing of the influenza

seasonal onset in U.S. states. This differs from tropical locations

which generally lack a seasonal influenza peak [7]. One theory is

that tropical climates are dominated by direct contact transmission

which, unlike airborne transmission, is not influenced by air

temperature and humidity [7].

These recent studies [4], [5], [6], [7] have motivated several

reviews on climate and influenza seasonality [8]. [9], [10]. These

reviews, which approach the issue from atmospheric sciences,

virological, and epidemiological perspectives, do not reach firm

conclusions on the causes of influenza seasonality but suggest that

those causes are complex and multifactorial and that the solution

will require interdisciplinary cooperation.

A variety of theories exist as to how weather and climate might

exert some influence on influenza seasonality. Low temperatures

enhance viral stability [4], reduce mucosal blood flow [11], and/or

diminish mucociliary clearance [12]. Correlations exist between

the number of upper respiratory infections and cold-air outbreaks

[13]. It is commonly assumed that winter indoor crowding

enhances influenza virus transmission, though direct evidence is

lacking [8]. Low humidity conditions, which are often but not

always accompanied by low temperatures, enhance survival times

of viral aerosols [14], [15], [16]. If correct, these relationships

suggest that indoor winter heating without humidification could

enhance influenza transmission [8], as indoor absolute humidity

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e34091



tends to be correlated with outdoor values and thus is typically

lower in winter [6].

From a micro-physical perspective, there is evidence that both

droplet size and transmission mode depend on ambient environ-

mental factors [17], [18]. Small droplets can remain airborne

longer whereas large drops tend to precipitate, suggesting that

ambient conditions would influence whether airborne- or contact-

mode transmission predominates. The virulence of the influenza

virus changes constantly as the virus undergoes antigenic shift and

antigenic drift [8]. Although virulence depends upon a variety of

factors, one possible atmospheric influence is that cold, dry air

allows the lipid envelope encasing the influenza virus to remain

intact longer, increasing the likelihood of infection [19].

Theories proposing that factors other than weather/climate are

responsible for influenza seasonality include cycles in viral

interference [20] and intrinsic temporal viral dynamics that

operate independent of external forcing factors [21]. Some

research suggests that the seasonality is driven by the school

calendar in which students reconvene after a summer break, but

this timing is not consistent with the typical onset of influenza in

early winter [22].

We examine the hypothesis that cold and/or dry weather

enhances human pneumonia and influenza (P&I) mortality

through a retrospective study of daily mortality in New York City

and environs from 1975–2002. We hypothesize that periods with

colder and/or less humid conditions exhibit excess P&I mortality

for a period of time following those climatic conditions. Our

research differs from recent work on this topic that examined the

timing of the influenza season onset over large geographic areas

[6]—our focus is on the influence of daily weather on influenza

characteristics for a single, large metropolitan area.

We selected New York City for this study for several reasons.

Our study examines daily mortality, and statistical robustness is

enhanced when the daily sample size is sufficiently large. Weather

obviously has a high spatial variability, so it is important that the

observed weather be representative of the environmental condi-

tions likely experienced by the decedents. In addition, New York

City’s mid-latitude location provides a high degree of both

interannual and intra-annual variability in weather and climate,

so this variability provides a wider range of sample conditions.

Thus, New York City has both a large enough population to

provide a consistent daily mortality signal while the population

density is high enough that the weather observed at a single station

is sufficiently representative of conditions experienced throughout

the metropolitan area.

Methods

Outcome Data
We conducted a retrospective cohort study of pneumonia and

influenza (P&I) mortality of residents of the New York City

metropolitan area. Daily frequencies of P&I mortality were tallied

from National Center for Health Statistics archives for the New

York City Consolidated Metropolitan Statistical Area (which, as

defined in the year 2000, includes 30 counties in New York, New

Jersey, Connecticut, and Pennsylvania). This period of record

spans three revisions of the International Classification of Diseases

(ICD) codes (Table 1).

In the National Center for Health Statistics mortality files that

we used for this research, all information that could allow an

individual to be identified has been removed. This research

utilized only mortality counts for a large metropolitan area. These

de-identified counts are stored in governmental archives for the

purposes of retrospective research; because all personal identifying

information is redacted, consent is not required. Thus, this

research is exempt from IRB review under the auspices of Title 45

Part 46 exemption category 4.

Pneumonia or influenza must be listed as the primary cause of

death to be included in this analysis. These diseases are commonly

combined as an endpoint because of specific challenges associated

with influenza. First, the number of deaths attributable to

influenza is difficult to estimate directly because of a lack of

virologically-confirmed infections. Second, many influenza-associ-

ated deaths occur from secondary complications when influenza

viruses are no longer detectable by laboratory means [6], [23],

[24], [25]. Third, the use of P&I mortality in the study of influenza

also reflects the problems associated with other measures of

prevalence of influenza. Reporting of cases of influenza through

routine channels is unsatisfactory because mild influenza may be

under-diagnosed and the use of laboratory confirmation is skewed

by the impact of variable testing patterns based on prevalence of

disease [26]. Finally, multiple studies have shown that there exists

a relationship between influenza morbidity and P&I mortality that

can be mathematically described and used in epidemiological

studies [3], [27], [28], [29], [30], [31].

Daily deaths were aggregated into ten age groups (0–4, 5–14,

15–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84 and .84) and

standardized via direct standardization [32] based upon the age

distribution of population of the United States in the year 2000.

This procedure adjusts for temporal changes in age demographics

over the period of record based on data for each county using

U.S. Census archives, thereby allowing for consistent compari-

sons of mortality rates over time. After age standardization, the

long-term mean for each day (within ICD period) was subtracted

from that day’s standardized P&I mortality to remove the

inherent seasonal signal from the time series. Because our goal

was to determine if cold and/or dry days or periods within a year

were related to P&I mortality peaks, this level of granularity

requires the examination of daily data with the seasonal signal

removed.

Examination of the P&I mortality time series exhibits obvious

temporal discontinuities that are exactly coincident with the dates

of ICD revision code changes. We removed this artifact by

converting each day’s P&I mortality to a z-score by dividing the

mean departure by the standard deviation separately for each of

the three relevant ICD periods (Table 1). The time series of age-

standardized mortality prior to and after deseasoning and z-score

adjustment is shown in Figure 1a and Figure 1b, respectively.

Because of the general lack of influenza in the summer months,

June, July, and August were removed from the analysis as they had

the potential to distort any relationships during the primary

influenza season.

Mortality data were smoothed using a 17-day leading moving

average (e.g., mortality on January 1 is the mean from January 1–

17). This smoother was selected after testing a variety of filter

lengths and based upon prior research [6].

Table 1. International Classification of Diseases periods and
codes for pneumonia and influenza.

REVISION DATES APPLICABLE CODE

8th 1975–1979 470–474, 480–484

9th 1980–1998 480–484, 487

10th 1999–present J10–J16, J18

doi:10.1371/journal.pone.0034091.t001

Weather and Influenza and Pneumonia Mortality
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We examined both daily P&I mortality ‘‘events’’ and longer

mortality ‘‘episodes.’’ ‘‘Events’’ are days with (smoothed) mortality

at least one standard deviation above the long-term (smoothed)

mean for that date. This z$1 criterion was chosen because the

frequency distribution of smoothed mortality is positively skewed

with the tail beginning at approximately one standard deviation.

After smoothing, there is an obvious tendency for high mortality

events to cluster into prolonged periods when the z$1 threshold is

Figure 1. Time series of pneumonia and influenza mortality for New York City from September, 1975–May, 2002. a) (top) Daily age-
standardized pneumonia and influenza mortality time series (deaths per million; June, July and August have been deleted). The relevant periods for
the International Classification of Diseases (ICD) are identified by a thick vertical line; b) (bottom) Resulting mortality time series after removing the
seasonality and converting to z-scores for each ICD period. Vertical dividers identify influenza seasons (September–May) with the year assigned to the
January–May period (i.e., December, 1979 is in the 1980 flu ‘‘season,’’ labeled as ‘‘80’’ on the x-axis).
doi:10.1371/journal.pone.0034091.g001

Weather and Influenza and Pneumonia Mortality
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exceeded (Figure 2). We thus identified 12 P&I mortality episodes

over the 28-year period of record (Table 2).

To summarize the outcome data treatment, after age standard-

ization the daily mortality data were deseasoned to remove the

large influence of season on respiratory infection and converted to

z-scores to adjust for discontinuities related to ICD coding. These

data were then smoothed using a 17-day leading smoother to

account for the inherent lag between infection and mortality. Days

or periods with z-scores.1 were identified as mortality ‘‘events’’ or

‘‘episodes,’’ respectively (Figure S1).

Weather Data
Hourly climate data from La Guardia Airport, New York, were

retrieved from National Climatic Data Center archives. We utilize

1200 and 1900 Universal Time Coordinate (UTC) air tempera-

ture (T) and dew point temperature (Td) to approximate the

typical times of the warmest and coldest hours of the day (7 or 8

a.m. and 2 or 3 p.m. local time). The dew point temperature is the

temperature at which water vapor begins to condense via cooling

at constant pressure. We use dew point as a measure of the

amount of moisture in the air because, unlike relative humidity, it

is independent of air temperature [5].

In addition to dew point temperature, we employ an air mass

classification, which has the advantage of incorporating a variety

of weather variables into a single nominal variable. Specifically, we

utilize the Spatial Synoptic Climatology (SSC) [33] which classifies

each day’s weather into one of six air mass types [dry moderate

(DM), dry polar (DP), dry tropical (DT), moist moderate (MM),

moist polar (MP), moist tropical (MT)]. A seventh transition (TR)

category identifies days characterized by a significant change in

weather—typically a frontal passage [34]. The SSC uses air

temperature, dew point temperature, wind, surface air pressure,

and total cloud cover observations taken four times per day as

input to the classification. Thus, the SSC is a multivariate nominal

classification of daily weather conditions. The approach has been

utilized in a variety of human health applications [35], [36], [37],

[38], [39], [40], [41].

The temperature and dew point time series were converted to z-

scores to remove seasonality and then smoothed using a centered

5-day moving average filter. This filter length was employed after

examining various options because it represents a balance between

Figure 2. Identification of 12 mortality ‘‘episodes’’ that exceeded the z$1 criterion. The time series is Figure 1b smoothed with a 17-day
centered moving average filter. A centered smoother is used here to more clearly present the peak times of the mortality episodes (see Table 2).
doi:10.1371/journal.pone.0034091.g002

Table 2. Characteristics of the 12 high mortality ‘‘episodes.’’

SEASON START END
DURATION
(DAYS)

TOTAL
DEATHS

AVERAGE
DEATHS/DAY

1976 19-Jan 28-Mar 70 144.58 2.07

1978 14-Dec 2-Feb 51 66.84 1.31

1980 16-Jan 21-Mar 65 82.67 1.27

1981 22-Nov 6-Feb 77 137.21 1.78

1985 15-Jan 25-Feb 42 44.54 1.06

1986 27-Feb 26-Mar 28 28.60 1.02

1988 12-Mar 11-Apr 31 28.55 0.92

1990 27-Dec 19-Feb 55 66.19 1.20

1992 31-Dec 21-Jan 22 22.61 1.03

1993 30-Jan 23-Mar 53 65.68 1.24

1999 5-Jan 4-Mar 59 78.26 1.33

2000 16-Dec 1-Feb 47 51.29 1.09

Deaths are age-standardized deaths per million in z-score units. Total deaths
and average deaths per day include the entire time period between the start
and end of the episode.
doi:10.1371/journal.pone.0034091.t002

Weather and Influenza and Pneumonia Mortality
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high frequency weather events and more long-term (monthly to

seasonal) trends.

The seasonality of the SSC air mass types was removed by

comparing the presence (coded 1) or absence (coded 0) of each air

mass type on each day of the year to the long-term average

frequency. For example, if Moist Moderate air was present on

average 30% of the time on January 1 over the period of record,

then its occurrence on January 1, 2000 would result in a value of

+0.7 for that day. These daily anomalies were then converted into

continuous variables using a centered 7-day moving average filter

for each SSC category.

In summary, raw dew point observations were first de-seasoned

by conversion to z-scores and then smoothed using a 5-day filter.

Daily air mass frequencies were converted from a nominal to a

continuous variable by first adjusting for the long-term frequency

on each day and then smoothing those frequencies using a 7-day

moving average (Figure S2).

Statistics
Daily Analyses. A series of t-tests were employed to

determine if temperature, dew point, and air mass frequency

differed between high P&I mortality events (z$1) and non-events.

To address the temporal autocorrelation in the weather variable

time series and the resulting overestimate of the true degrees of

freedom, the sample size was adjusted based upon the lag one

temporal autocorrelation [42] (Wilks 2006) as follows:

N ’~ 1{Pð Þ= 1zPð Þ½ �|N

where N = number of observations

N9 = adjusted degrees of freedom

P = lag one temporal autocorrelation.

N9 was then adjusted again based on the length of the smoother

employed to determine the final effective sample size. For these

and all other tests, a Type I error rate of 0.05 was employed and

Levene’s test for equality of variances was used to determine if

pooling of the samples was required.

The following tests were performed:

1) smoothed temperature, dew point, and air mass frequency,

lagged 17-days, between mortality events (z$1) and non-

events (z,1) using an unpaired two-sample t-test (Figure S3);

2) same as in 1 for unsmoothed temperature and dew point

temperature (to determine if a strict 17-day lag exists); and

3) same as in 1 but using a one-sample t-test (to account for the

possible influence of disparate sample sizes between groups).

Episodic Analyses. For each high P&I mortality episode, we

calculated the duration (in days), the summed total mortality over

the entire episode, and the average daily episode mortality

(Table 2). These quantities served as dependent variables in a

linear regression analysis vs. the independent (weather) variables

(1200 and 1900 UTC T and Td and the deseasoned SSC

frequencies). We used a 17-day lag in which the mean for each

variable was calculated across the days in the episode and the

preceding 17 days. This lag was selected based upon prior research

that examined absolute humidity [6] and the results of other

studies [28], [43].

Given the relatively small number of episodes, we used

bootstrapped regression analysis to generate a robust estimate of

the regression coefficients. Based on the initial full sample, data

sets of the same size were generated by randomly sampling

variable pairs, with replacement, and estimating the regression

parameters from that sample using ordinary least-squares. This

procedure was repeated 10,000 times and the resulting suite of

regression coefficients was examined to determine if the 2.5

percentile and 97.5 percentile observations were of the same sign.

If so, the regression slope was deemed to be statistically significant

[44].

Results

Daily Analyses
In the daily analysis, 1200 UTC dew point temperature was

significantly lower for events than for non-events (p = 0.003), a

result that is consistent with the hypothesis that drier conditions

are related to enhanced P&I mortality. However, 1900 UTC dew

point was higher during events (p = 0.036), a result that contradicts

the underlying hypothesis.

Table 3. Results of t-tests comparing weather variables between mortality event days to non-event days.

2-sample Smoothed 2-sample Unsmoothed 1-sample

Event Non-Event p Event Non-Event p p

1200 UTC T 20.114 20.025 0.068 20.120 20.026 0.150 0.018

1200 UTC Td 20.372 0.003 0.003 20.383 20.248 0.028 0.000

1900 UTC T 20.012 20.028 0.725 20.012 20.029 0.767 0.783

1900 UTC Td 20.053 20.138 0.036 0.056 20.032 0.139 0.181

Dry Moderate 0.013 0.005 0.984 n/a n/a n/a 0.239

Dry Polar 20.000 20.008 0.277 n/a n/a n/a 0.994

Dry Tropical 0.001 0.002 0.998 n/a n/a n/a 0.561

Moist Moderate 20.026 0.001 0.000 n/a n/a n/a 0.000

Moist Polar 0.020 20.002 0.019 n/a n/a n/a 0.015

Moist Tropical 0.000 0.001 0.691 n/a n/a n/a 0.931

Transition 20.009 0.001 0.484 n/a n/a n/a 0.153

Air mass analysis could not be run without smoothing (n/a = not applicable). Results with p#0.05 are shown in bold. Mean values for events and non-events are air
temperature (T) and dew point temperature (Td) departures from the long-term daily mean in z-score units. Air mass values are mean frequencies based on a 7-day
centered moving average filter. The z-score values for events in the 1-sample test are the same as in column 2.
doi:10.1371/journal.pone.0034091.t003

Weather and Influenza and Pneumonia Mortality
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When this test was repeated without smoothing the weather

variables, only 1200 UTC dew point was significant (p = 0.028;

Table 3). The lack of a relationship for 1900 UTC dew point

(p = 0.181) suggests that the finding of high afternoon dew points

during mortality events using smoothed weather data was not

robust.

Because the high number of non-event days vs. event days can

bias the t-test, an additional test was performed comparing the 5-

day smoothed weather variables during events to the long-term

mean. Here, 1200 UTC temperature and dew point were both

significantly lower during high P&I mortality events (Table 3).

For the daily SSC analysis, lower frequencies of moist moderate

(MM) air (p = 0.019) and higher frequencies of moist polar (MP)

air (p,0.001) occurred 15–19 days before high mortality events

(Table 3). No relationship was found for dry polar (DP) air

(p = 0.277).

Episodic Analyses
Temperature, dew point temperature, and air mass frequencies

were examined 17 days prior to and throughout each of the 12

high P&I mortality episodes identified from 1975–2002. There is a

statistically significant negative relationship between episode

duration and mean 1200 UTC dew point (r = 20.61, p,0.05;

Figure 3a). The longest episode (57 days in 1981) was associated

with a dry period during which the mean dew point was more than

0.8uC below normal for that time of year. Total episode mortality

is likewise negatively correlated with 1200 UTC dew point

(r = 20.56, p,0.05; Figure 3b). Two of the three episodes with the

lowest mortality also had dew points that were near normal,

whereas the higher mortality episodes exhibited drier conditions.

No significant relationships were found for afternoon variables, air

temperature, or any of the SSC air mass types.

Discussion

Dew point temperature is commonly used by atmospheric

scientists to measure humidity because it is relatively invariant to

pressure and temperature changes and thus is a conservative

quantity. In New York City from 1975–2002, periods with high

P&I mortality were preceded 2–3 weeks by periods with low

morning dew points. Furthermore, for the 12 high mortality

episodes identified in that period, morning dew point was

negatively correlated with both episode duration (r = 20.61) and

total episode mortality (r = 20.56). This finding of a linkage

between dry air and influenza mortality is consistent with the

results of recent research [6] showing that absolute humidity (a

correlate of Td) influences the timing of the onset of the influenza

season in various U.S. states (including New York state). Our

results provide some limited evidence supporting laboratory

studies linking dry air to higher airborne infection rates among

guinea pigs [4].

The association between high frequencies of Moist Polar air

masses prior to high mortality events is consistent with the dew

point results. The average morning dew point in Moist Polar air in

New York City is lower than for any air mass other than Dry Polar

(Table 4). Although it may seem counter-intuitive that a ‘‘moist’’

air mass has a low dew point temperature, dew point must

(physically) be less than or equal to air temperature, so cold air

masses typically have low dew points, especially in winter. In

general, Moist Polar air masses are relatively uncommon in the

cold season in New York, occurring only 7.3% of the time (Table 4)

Figure 3. Scatter plots of pneumonia and influenza mortality episode duration and total mortality vs. dew point temperature. a)
(left) Total episode duration (days) vs. mean episode dew point temperature (uC) (r = 20.61). b) (right) Total episode mortality (in z-score units) vs.
mean episode dew point temperature (uC) (r = 20.56). The regression line shown in both graphs is for the least squares linear regression of the full
data set. Both of these relationships were determined to have statistically significant slopes based upon 10,000 bootstrapped samples.
doi:10.1371/journal.pone.0034091.g003

Table 4. SSC air mass frequencies, mean 4 a.m. dew point
temperatures, and ranks for October–March for New York City
(La Guardia).

AIR MASS FREQUENCY RANK MORNING Td RANK

DP 25.9 2 29.3 1

MP 7.3 4 22.0 2

DM 31.2 1 21.5 3

MM 13.6 3 3.5 5

DT 1.7 6 21 4

MT 6.9 5 9 6

doi:10.1371/journal.pone.0034091.t004

Weather and Influenza and Pneumonia Mortality
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and are associated with cold, overcast and often stormy conditions

with moist air arriving from the Atlantic Ocean [33].

We also identified a significant relationship between low Moist

Moderate air mass frequencies 3–4 weeks before mortality

episodes. In an effort to understand this association, we calculated

the correlation between Moist Moderate frequencies and the other

air mass types during that period. Moist Moderate is negatively

correlated with the two driest air masses—Dry Polar (r = 20.47)

and Moist Polar (r = 20.31) (Table 4). Thus, the significant

association between low Moist Moderate frequencies prior to P&I

mortality events appears to be a proxy for the cool, low dew point

conditions that are common when Moist Polar and Dry Polar air

masses are present. On average, cold season dew points are 5.5uC
higher in Moist Moderate air masses than in Moist Polar (Table 4).

The lack of a direct Dry Polar relationship is surprising, as Dry

Polar air masses exhibit the most extreme combination of cold air and

low humidity. Dry Polar is far more common than Moist Polar in New

York winters, however, so its high daily frequency during the influenza

season limits the likelihood of identifying an underlying relationship. It

might be more fruitful to examine an extreme cold, dry subset of Dry

Polar air masses to identify the coldest and driest days.

Conclusions
In New York City, high P&I mortality periods within a given year

were preceded by multiple day periods with unusually low

temperature and humidity. Over the 28-year period of this study,

we identified 12 episodes of high P&I mortality and found that both

the total mortality occurring during each episode and duration of

each episode were inversely correlated with the average morning

dew point temperature prior to and during the episodes. These

results support the burgeoning hypothesis that unusually cold dry air

enhances the airborne transmission of influenza virus.

The exploratory nature of this analysis was necessitated by the

lack of an underlying theory of influenza seasonality, socio-

behavioral factors, and inherent variability in disease transmission

and virulence. The time between infection and a resulting mortality

event (i.e. ‘‘latency’’) varies between individuals depending on age,

overall health, co-morbid conditions, and other factors. Thus, lags

must be estimated to best fit the overall data structure. Similarly, the

high frequency variability in the variables requires some smoothing

to elucidate relationships, and the selection of appropriate

smoothers is somewhat subjective. Nevertheless, our findings are

consistent with several others. For example, there is evidence

supporting a two-week lag between rising influenza virus and

pneumonia mortality [28]. Other research showed fairly convinc-

ingly the existence of a 2–4 week lag between laboratory-confirmed

cases of influenza and increased incidence of invasive pneumococcal

disease [43]. The weather variables used in this study do not directly

account for the ambient conditions experienced by the influenza

victims while indoors, but cold and/or stormy weather could result

in the decedents spending more time in heated indoor environs with

low humidity, thereby enhancing infection opportunities [8].

For this study, P&I mortality was used to characterize the

influenza time series in New York City. The limitation of this

method is the potential for confounding as P&I mortality includes

mortality from infections other than influenza. In addition, in non-

pandemic years, P&I mortality is skewed by the extremes of age.

This limitation is unlikely to be a major contributor in this study as

90% of influenza-related deaths involve persons over the age of 65

during seasonal epidemics [45] and our mortality data are age-

adjusted to account for demographic changes in New York City

over the period of the study.

We chose to focus on New York City because the large

population (and thus large daily P&I mortality rate) enhances

statistical robustness, and New York weather is highly variable

owing to its midlatitude, coastal location. These results should be

confirmed using a similar methodology in other cities worldwide to

determine if the humidity-influenza linkage is pervasive. It would

be particularly interesting to determine how these relationships

evolve in subtropical or tropical climates where the P&I mortality

seasonality is more muted or nonexistent.

It is likely that the underlying causes of influenza seasonality are

multi-factorial, and we suspect that weather is but one of those

factors. A predictive model for P&I mortality based on weather

alone would likely be unsuccessful in accounting for most of the

short-term influenza variability. Nevertheless, our results confirm

recent emerging hypotheses of a relationship between cold, dry air

and influenza transmission or virulence [6], [8]. Identifying periods

of low dew point temperatures a few days or even weeks in advance

is well within the skill of existing weather forecast models. Given the

lag between infection and mortality, it seems reasonable to propose

that, during the prime influenza season, skillful forecasts of high P&I

mortality periods could be made weeks to months in advance.

Supporting Information

Figure S1 Sample of mortality data from December 1,
1998 through March 10, 1999. Daily mortality (z-scores) (red

dashed lines) shows evidence of the beginning of a prolonged peak

starting around day 43. When these data are smoothed using a 17-

day centered moving average filter (solid red line), the mortality

peak becomes more evident. In our analysis, we instead employ a

leading 17-day smoother (blue line), which effectively shifts the red

line forward by 8 days. High mortality episodes are classified when

the z-scores exceeds 1, so the 1999 episodes begins on day 39 and

ends on day 77.

(TIF)

Figure S2 Example of weather data treatment for 1998–
1999. (Bottom panel) Raw dew point temperature (blue dashed

line), dew point z-score (green line) and z-scored after application

of a 5-day centered moving average smoother (solid black line).

(Top panel) Days classified as having a moist moderate air mass

present (vertical bars), moist moderate frequency anomalies to

remove seasonality (red dashed line), and smoothed using a 7-day

centered moving average filter (purple line). For the air mass

variable, this procedure converts a nominal variable into a

continuous variable for subsequent analysis.

(TIF)

Figure S3 Comparison of smoothed mortality (black
dashed line) to smoothed dew point temperature (red
line) for the 1998–1999 season. The decline in dew point on

day 10 preceded the start of the mortality increase by

approximately 17 days. During the subsequent period of declining

dew points, mortality continued to rise. When dew point reached

its minimum for this period on day 31, 17-day lagged mortality

was one standard deviation above the mean. Although there is no

consistent 1:1 lagged relationship between dew point temperature

and mortality, this example illustrates the procedure and shows a

general linkage between a low dew point period in mid-late

December, 1998 and a subsequent high pneumonia and influenza

mortality anomaly several weeks later.

(TIF)
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